diff --git a/-9FQT4oBgHgl3EQf7Ta5/content/2301.13442v1.pdf b/-9FQT4oBgHgl3EQf7Ta5/content/2301.13442v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..98892d19ad909697bc39a3e45d483b8091b87bd5 --- /dev/null +++ b/-9FQT4oBgHgl3EQf7Ta5/content/2301.13442v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:9ee59292193eb91ec024c7846fd08204bda4ce6055ded9d893b249fcf4f23ea7 +size 2143686 diff --git a/-9FQT4oBgHgl3EQf7Ta5/vector_store/index.pkl b/-9FQT4oBgHgl3EQf7Ta5/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..9e43c0f0664603a8398bddaa828543085af6ace3 --- /dev/null +++ b/-9FQT4oBgHgl3EQf7Ta5/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:7f1281296c04bee27a7f612a0b3110232133b3bcdb0ebd9e47ce5b9590d3ac05 +size 259515 diff --git a/-NFLT4oBgHgl3EQfuy_h/content/2301.12157v1.pdf b/-NFLT4oBgHgl3EQfuy_h/content/2301.12157v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..b08697ff5fdc5ed22c5a7ad7a640b97fc351b2c4 --- /dev/null +++ b/-NFLT4oBgHgl3EQfuy_h/content/2301.12157v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:2175378c645913ab0fce1c17d65b3a00b094dacde36567d820148d90fafdfcf3 +size 350948 diff --git a/-NFLT4oBgHgl3EQfuy_h/vector_store/index.faiss b/-NFLT4oBgHgl3EQfuy_h/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..10ed7fa3b1f8516b11000d53b93ed85f0d23108b --- /dev/null +++ b/-NFLT4oBgHgl3EQfuy_h/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:b87f4082d8ece62454fcc23c4a3e6d59ee5374e203ea9a7f2b95b779a37929cb +size 1638445 diff --git a/-NFLT4oBgHgl3EQfuy_h/vector_store/index.pkl b/-NFLT4oBgHgl3EQfuy_h/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..102243d053cb84cd84f47e7c465f516abaad34e8 --- /dev/null +++ b/-NFLT4oBgHgl3EQfuy_h/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:097cece77585a2cb3550a92aa7b6b3295a799e2afa85f788dd1a328b4ea5a966 +size 63192 diff --git a/.gitattributes b/.gitattributes index f29b801bd94d1f28a84902064c071699a27fbe66..9a17be850803fea4649c4efca3c5a2ce8ef9ce1c 100644 --- a/.gitattributes +++ b/.gitattributes @@ -7379,3 +7379,64 @@ sdAyT4oBgHgl3EQf0Pk5/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -tex hdE2T4oBgHgl3EQfHgaB/content/2301.03669v1.pdf filter=lfs diff=lfs merge=lfs -text XdE0T4oBgHgl3EQf3gIm/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text dNAzT4oBgHgl3EQfLvuL/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +yNE4T4oBgHgl3EQfYQyw/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +wNAyT4oBgHgl3EQfavcI/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +R9E0T4oBgHgl3EQf1wJf/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +sdFJT4oBgHgl3EQfcSx2/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +dtFST4oBgHgl3EQfFDgM/content/2301.13716v1.pdf filter=lfs diff=lfs merge=lfs -text +0NE2T4oBgHgl3EQf4gjD/content/2301.04182v1.pdf filter=lfs diff=lfs merge=lfs -text +P9E1T4oBgHgl3EQfagRh/content/2301.03162v1.pdf filter=lfs diff=lfs merge=lfs -text +0NE2T4oBgHgl3EQf4gjD/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +QNFJT4oBgHgl3EQf2i1I/content/2301.11656v1.pdf filter=lfs diff=lfs merge=lfs -text +ZtFJT4oBgHgl3EQf7i35/content/2301.11679v1.pdf filter=lfs diff=lfs merge=lfs -text +3tE2T4oBgHgl3EQf6AiT/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +R9E0T4oBgHgl3EQf1wJf/content/2301.02703v1.pdf filter=lfs diff=lfs merge=lfs -text +P9E1T4oBgHgl3EQfagRh/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +XdAyT4oBgHgl3EQfvPnb/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +wdFLT4oBgHgl3EQflC8K/content/2301.12117v1.pdf filter=lfs diff=lfs merge=lfs -text +dNAyT4oBgHgl3EQf-fq3/content/2301.00894v1.pdf filter=lfs diff=lfs merge=lfs -text +m9FQT4oBgHgl3EQfpTaJ/content/2301.13376v1.pdf filter=lfs diff=lfs merge=lfs -text +ydFJT4oBgHgl3EQfhyyK/content/2301.11567v1.pdf filter=lfs diff=lfs merge=lfs -text +QNFJT4oBgHgl3EQf2i1I/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +49E1T4oBgHgl3EQfAwK8/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +htFPT4oBgHgl3EQfDzQQ/content/2301.12993v1.pdf filter=lfs diff=lfs merge=lfs -text +EdFRT4oBgHgl3EQfyTjG/content/2301.13645v1.pdf filter=lfs diff=lfs merge=lfs -text +s9E4T4oBgHgl3EQfVwyP/content/2301.05027v1.pdf filter=lfs diff=lfs merge=lfs -text +bdFJT4oBgHgl3EQf9C1W/content/2301.11686v1.pdf filter=lfs diff=lfs merge=lfs -text +m9FQT4oBgHgl3EQfpTaJ/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +_tFJT4oBgHgl3EQfqizo/content/2301.11605v1.pdf filter=lfs diff=lfs merge=lfs -text +wNA0T4oBgHgl3EQfMP-b/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +HdE2T4oBgHgl3EQfTwd_/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +rNE3T4oBgHgl3EQf8gvv/content/2301.04809v1.pdf filter=lfs diff=lfs merge=lfs -text +-9FQT4oBgHgl3EQf7Ta5/content/2301.13442v1.pdf filter=lfs diff=lfs merge=lfs -text +dNAyT4oBgHgl3EQf-fq3/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +SNFKT4oBgHgl3EQfjS7T/content/2301.11845v1.pdf filter=lfs diff=lfs merge=lfs -text +gtAzT4oBgHgl3EQfov1j/content/2301.01601v1.pdf filter=lfs diff=lfs merge=lfs -text +EdFRT4oBgHgl3EQfyTjG/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +edFIT4oBgHgl3EQfpCt4/content/2301.11321v1.pdf filter=lfs diff=lfs merge=lfs -text +xtAyT4oBgHgl3EQfa_c9/content/2301.00252v1.pdf filter=lfs diff=lfs merge=lfs -text +h9AzT4oBgHgl3EQfo_2T/content/2301.01606v1.pdf filter=lfs diff=lfs merge=lfs -text +BdFIT4oBgHgl3EQf_ywO/content/2301.11416v1.pdf filter=lfs diff=lfs merge=lfs -text +-NFLT4oBgHgl3EQfuy_h/content/2301.12157v1.pdf filter=lfs diff=lfs merge=lfs -text +Y9AzT4oBgHgl3EQfmv3V/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +vdAyT4oBgHgl3EQfnPg_/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +H9E3T4oBgHgl3EQfWwp_/content/2301.04472v1.pdf filter=lfs diff=lfs merge=lfs -text +s9E3T4oBgHgl3EQf9gsi/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +09E3T4oBgHgl3EQfnArs/content/2301.04622v1.pdf filter=lfs diff=lfs merge=lfs -text +ktE2T4oBgHgl3EQfdwcD/content/2301.03908v1.pdf filter=lfs diff=lfs merge=lfs -text +H9E3T4oBgHgl3EQfWwp_/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +-NFLT4oBgHgl3EQfuy_h/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +c9AzT4oBgHgl3EQf3P6k/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +u9E3T4oBgHgl3EQfkgqO/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +dNAzT4oBgHgl3EQfLvuL/content/2301.01120v1.pdf filter=lfs diff=lfs merge=lfs -text +29E0T4oBgHgl3EQfuwF7/content/2301.02609v1.pdf filter=lfs diff=lfs merge=lfs -text +edFIT4oBgHgl3EQfpCt4/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +UdE3T4oBgHgl3EQfEgk6/content/2301.04296v1.pdf filter=lfs diff=lfs merge=lfs -text +89E4T4oBgHgl3EQfDAsR/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +59E0T4oBgHgl3EQfewCK/content/2301.02395v1.pdf filter=lfs diff=lfs merge=lfs -text +29E0T4oBgHgl3EQfuwF7/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +bdFJT4oBgHgl3EQf9C1W/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text +StE2T4oBgHgl3EQfCAbz/content/2301.03610v1.pdf filter=lfs diff=lfs merge=lfs -text +OdFPT4oBgHgl3EQfmzXU/content/2301.13127v1.pdf filter=lfs diff=lfs merge=lfs -text +sdAyT4oBgHgl3EQf0Pk5/content/2301.00713v1.pdf filter=lfs diff=lfs merge=lfs -text +9NFRT4oBgHgl3EQfqTc6/content/2301.13616v1.pdf filter=lfs diff=lfs merge=lfs -text diff --git a/09E3T4oBgHgl3EQfnArs/content/2301.04622v1.pdf b/09E3T4oBgHgl3EQfnArs/content/2301.04622v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..38e22b9483da4f150bdef29b64366d8ebd772d9f --- /dev/null +++ b/09E3T4oBgHgl3EQfnArs/content/2301.04622v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:09f6928868f17248a68392f32776b1d9772ac7013e40688d7fe5f9ed9bba801c +size 5413203 diff --git a/09E3T4oBgHgl3EQfnArs/vector_store/index.pkl b/09E3T4oBgHgl3EQfnArs/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..f06d4f86a2a8081fe06b9da484764b4ffc6835f0 --- /dev/null +++ b/09E3T4oBgHgl3EQfnArs/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:7958dea947bff8e701a3897fe0ad6e07dffc733f9e019f1cc46194b8b60ac99f +size 122818 diff --git a/09FAT4oBgHgl3EQfChxb/content/tmp_files/2301.08410v1.pdf.txt b/09FAT4oBgHgl3EQfChxb/content/tmp_files/2301.08410v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..eba633a301e9f17a3c532d9a398f7cc744e5bfb5 --- /dev/null +++ b/09FAT4oBgHgl3EQfChxb/content/tmp_files/2301.08410v1.pdf.txt @@ -0,0 +1,3907 @@ +Caustics in the sine-Gordon model from quenches in coupled 1D Bose gases +Aman Agarwal,1, 2, 3, 4, 5, 6, ∗ Manas Kulkarni,3, † and D. H. J. O’Dell1, ‡ +1Department of Physics and Astronomy, McMaster University, +1280 Main St. +W., Hamilton, Ontario, Canada L8S 4M1 +2BITS-Pilani, K. K. Birla Goa Campus, NH17B, Bypass Road, Zuarinagar, Goa 403726, India +3International Centre for Theoretical Sciences, Tata Institute of Fundamental Research, Bengaluru – 560089, India +4Perimeter Institute for Theoretical Physics, Waterloo, Ontario, Canada, N2L 2Y5 +5Department of Physics, University of Guelph, Guelph, Ontario, Canada, N1G 2W1 +6Institute of Physics, University of Greifswald, 17489 Greifswald, Germany +(Dated: January 23, 2023) +Caustics are singularities that occur naturally in optical, hydrodynamic and quantum waves, +giving rise to high amplitude patterns that can be described using catastrophe theory. +In this +paper we study caustics in a statistical field theory setting in the form of the sine-Gordon model +that describes a variety of physical systems including coupled 1D superfluids. Specifically, we use +classical field simulations to study the dynamics of two ultracold 1D Bose gases (quasi-condensates) +that are suddenly coupled to each other and find that the resulting non-equilibrium dynamics are +dominated by caustics. Thermal noise is included by sampling the initial states from a Boltzmann +distribution for phononic excitations. We find that caustics pile up over time in both the number and +phase difference observables leading to a characteristic non-thermal ‘circus tent’ shaped probability +distribution at long times. +I. +INTRODUCTION +Wave focusing is ubiquitous in nature and leads to +localized regions of high amplitude called caustics that +dominate wavefields. +Everyday examples are provided +by rainbows and also the bright lines on the bottom of +water pools which are caused by the focusing of sunlight +by raindrops and surface water waves, respectively [1]. +Caustics also occur in water waves themselves as ship +wakes [2] and more dramatically as tsunamis (focused by +the topography of the seabed [3–5]) and tidal bores (fo- +cused by v-shaped bays [6]). Astrophysical examples in- +clude gravitational lensing by matter and the twinkling of +starlight due to time-dependent fluctuations in the den- +sity of Earth’s atmosphere. Natural focusing also leads +to the phenomenon of branched flow [7] and is speculated +to have given rise to the filamented nature of the large +scale structure of the universe [8–11]. In all these systems +caustics give rise to extreme amplitude fluctuations that +occur more frequently than those predicted by gaussian +statistics [12]. +A remarkable property of caustics is that they com- +monly take on particular characteristic shapes. This is +because caustics are singularities of the ray description, +i.e. they are places where two or more rays coalesce lead- +ing to a diverging intensity in the short wavelength limit +[13]. Such singularities are described by Thom’s catas- +trophe theory which rigorously shows that only certain +shapes of singularity are structurally stable against per- +turbations and hence occur under ‘natural’ or generic +∗ aagarw03@uoguelph.ca +† manas.kulkarni@icts.res.in +‡ dodell@mcmaster.ca +conditions [14–16]. +These special shapes or catastro- +phes form a hierarchy organized by dimension where the +higher ones contain the lower ones. Each member of the +hierarchy represents a class of equivalent shapes that can +be smoothly transformed into each other, but each class +is distinct and cannot be smoothly transformed into any +of the others. In two dimensions the only structurally +stable shape is the cusp and we shall see it appear fre- +quently when we plot quantities such as number fluctu- +ations versus time. +It is worth noting in this context +that the humble point focus that we associate with lens- +ing is structurally unstable and unfolds into an extended +caustic in the presence of perturbations (aberrations). +Natural lenses are of course never perfect and so typi- +cally produce the shapes predicted by catastrophe theory. +The upshot of all this is that caustics represent a form of +universality in nonequilibrium wave dynamics: they fall +into equivalence classes each with their own shapes and +scaling properties analogous to, but a generalization of, +equilibrium phase transitions [13, 17]. +Caustics should equally be present in quantum waves +where, due to the probabilistic interpretation, they cor- +respond to regions of high probability density. Quantum +matter wave caustics have been seen in experiments with +cold neutrons [18, 19], electron microscopes [20], atom op- +tics [21–23], and most recently in atom lasers [24]. The- +oretical works on such matter wave caustics have also +considered their ‘fine structure’ [13] which features a lat- +tice of vortices [25–27]. Quantum fields are another area +where caustics are expected to form naturally during dy- +namics. Early work centred on the electromagnetic field +[28, 29], including an interpretation of Hawking radiation +as a ‘quantum catastrophe’ [30], and more recently this +idea has been extended to quantum many-particle sys- +tems including bosonic Josephson junctions [26, 31, 32], +the XY model with long-range interactions (Hamiltonian +arXiv:2301.08410v1 [cond-mat.quant-gas] 20 Jan 2023 + +2 +Figure 1. Schematic of the setup we consider. The top fig- +ure shows two quasi one-dimensional gases that are prepared +independently and then suddenly coupled together. We call +this process of sudden coupling a “J-quench”. ρ1(z) and ρ2(z) +represent the density (red) in the first and second conden- +sates, respectively. Similarly, φ1(z) and φ2(z) represent the +phases (black) of the two condensates. Prior to the J-quench, +these fields in the two condensates are independent and con- +tain thermal fluctuations. The bottom figure shows how a J- +quench could be implemented by suddenly reducing the tun- +neling barrier height in a double well potential from a higher +to a lower value. +mean field model) [33], quantum spin chains [27] and the +Bose-Hubbard model [34]. +One point to appreciate is +that the caustics in many-body systems can occur in the +wavefunction associated with an entire N-body configu- +ration. Quantum many-particle caustics therefore live in +Fock space which can have a large number of dimensions +and hence lead to very complicated catastrophes [34]. +However, catastrophes obey projection identities which +means that when projected down to lower dimensions one +obtains either the same catastrophe or one lower down +the hierarchy [35]. Thus, low order correlation functions +obtained by integrating out most of the degrees of free- +dom will also generically contain caustics [27]. +In this paper we study caustics in the sine-Gordon (SG) +model. +The (classical) SG model obeys the nonlinear +wave equation +∂2φ +∂t2 − c2 +0 +∂2φ +∂z2 + ω2 +0 sin φ = 0 +(1) +where φ = φ(z, t) is a one dimensional field, and c0 and +ω0 represent a characteristic speed and frequency, respec- +tively. If c0 is taken to be the speed of light then Eq. (1) is +relativistically covariant, being a nonlinear version of the +Klein-Gordon equation and reducing to it when φ ≪ 1 +such that sin φ ≈ φ. The SG model received attention +from the high energy physics community in the 1970s due +its soliton solutions [36–39], but also describes the low en- +ergy physics of a considerable range of condensed matter +systems including crystal dislocations [40], domain walls +in magnetic [41] and binary superfluid [42] systems, the +Heisenberg spin chain with a field induced gap [43–45], +one-dimensional Bose gases in periodic potentials (that +can capture the Mott-insulator to superfluid transition +in one dimension) [46, 47], two-dimensional Bose gases +realizing the XY model [48], trapped ions [49], and two +tunnel-coupled one-dimensional Bose gases [50–57]. The +fact that the SG model is both nonlinear and integrable +means that attention is often focused on its soliton so- +lutions, but part of our mission in this paper is to point +out that these same properties also imply that caustics +(which are associated with the existence of tori in phase +space [58]) are expected to occur generically, and we are +aware of only one previous study of caustics in this model +[59]. +The particular physical realization we have in mind +for this paper is a system composed of two elongated +quasi-one dimensional Bose gases coupled by tunneling +along their length; the field φ(z, t) in Eq. (1) gives the +relative phase between the two quantum gases. +Quasi +one-dimensional Bose gases have been created in a num- +ber of experiments over the last two decades using tightly +trapped ultracold atoms, and the remarkable tunability +of these systems allows the strongly interacting Tonks- +Girardeau regime [60, 61], the weakly interacting quasi- +condensate regime [62–65], and also the crossover be- +tween the two [66, 67], to be reached. It is important to +note that, in accordance with the Mermin-Wagner theo- +rem [68], one-dimensional Bose gases do not undergo true +Bose-Einstein condensation at low temperature, unlike +three dimensional gases. Instead, they can form quasi- +condensates where density fluctuations are suppressed +but phase fluctuations remain [69, 70]. In this paper we +shall work in the weakly interacting regime and assume a +state of the system consisting of a quasi-condensate plus +small thermal fluctuations. +A system comprised of two coupled quasi-one dimen- +sional gases can be made by taking a single gas and +splitting it in two along its long axis by switching on an +elongated double well potential. This is the experimen- +tal protocol typically adopted in a series of experiments +conducted by the Vienna group [63, 71–77]. The com- +bination of almost complete isolation from the environ- +ment, long relaxation times and spatially resolved mea- +surements of phase and number difference make these +experiments ideal for investigating many-particle quan- +tum dynamics, including fundamental questions such as +whether and how closed quantum systems reach equi- +librium. The gas can be split slowly so that it always +remains close to equilibrium leading to number squeezed +states [78, 79] or it can be split rapidly, leading to a so- +called quantum quench which launches the system into a +nonequilibrium state. +In this paper we shall consider the opposite quench + +pi(2) +(2)d +P2(2) +p1(z)3 +where two one-dimensional gases are suddenly connected +together (see schematic representation in Figure 1). This +touches on rather fundamental considerations in quan- +tum mechanics since it describes the build-up of coher- +ence between two initially independent systems, and is +therefore related to the double-slit experiment for many- +particle systems [53, 80–83]. We shall refer to this as a +“J-quench” because J is often used to denote the cou- +pling strength between the two wells. In a simple two- +mode description of a bosonic Josephson junction, i.e. +one that assumes a single mode in each well without the +quasi-continuum of low energy longitudinal modes that +are present in highly elongated traps, such a quench is +predicted to result in a periodic collapse and revival of +the atom number distribution between the two wells [84– +86]. Essentially the same behavior, but π/2 out of phase, +occurs in the relative phase which is the conjugate vari- +able to number difference. In Refs. 26, 31, and 32 these +revivals are shown to be examples of quantum caustics +in a many-particle system. One of our main aims here +is to investigate what happens to these caustics in the +presence of the dispersive longitudinal modes present in +the SG model, and is part of a wider program attempt- +ing to understand the role of caustics in quantum many +particle dynamics [17, 26, 27, 31–34]. +Due to the difficulty of solving the fully quantum SG +model we take a semiclassical-style approach based on +classical field configurations which are solutions of Eq. +(1). +Each configuration is analogous to a single geo- +metric ray in optics and we include fluctuations by sum- +ming many configurations. The initial conditions for each +field configuration are randomly sampled from a Boltz- +mann distribution. +This approach is similar in spirit +to the truncated Wigner approximation (TWA) [87–92] +which includes quantum fluctuations around the classi- +cal field by summing many rays sampled from a quan- +tum probability distribution. The TWA has previously +been applied to one-dimensional Bose gases by Martin +and Ruostekoski [93, 94] who studied dark solitons, and +also to the connection problem of two zero temperature +one-dimensional Bose gases by Dalla Torre, Demler and +Polkovnikov [53], who proposed a universal scaling form +for the phase dynamics after the quench. More recently, +the TWA has been used by Horváth et al. [95] to study +the surprisingly sudden relaxation of the phase seen in +the Vienna BEC splitting experiments [77]. In this paper, +we include both the quantum fluctuations arising from +coupling two independent systems and thermal fluctua- +tions arising from thermal phonons in the longitudinal +modes and compare the time evolution of macroscopic +variables (the total number difference and phase differ- +ence) in the SG system against the simpler two mode +system [17, 26, 31]. +We find that following a quench +caustics dominate the dynamics of the macroscopic vari- +ables of both systems, even in the presence of thermal +fluctuations. Due to the singular nature of caustics, and +combined with their structural stability, we therefore pro- +pose that strong nongaussian fluctuations are a generic +phenomenon following a quench in the SG model (and +indeed, in integrable or moderately chaotic many-body +systems in general). +The caustics we discuss in this paper also have implica- +tions for the question of relaxation towards equilibrium at +long times in many particle systems. While chaotic (non- +integrable) and open quantum systems should thermalize +(although a complete description is still the subject of ac- +tive research [96–103]), closed integrable models do not +reach a conventional Gibbs state. We show here that in +the SG model there is a pile-up of caustics leading to a +singular shape for the long time probability distribution +for the macroscopic variables that resembles the shape of +a circus tent and is quite distinct from the thermal equi- +librium prediction. We find that an analytic approxima- +tion to the singular distribution based on an ergodic pen- +dulum (assuming a microcanonical or ‘equal-probability’ +distribution) provides a good fit to the numerical data. +The plan for the rest of this paper is as follows. We +start in Sec. II by deriving the SG hamiltonian from the +many-body description of two coupled 1D Bose gases. In +Sec. III we describe the natural length and time scales +and use them to write the SG hamiltonian and equa- +tions of motion in convenient dimensionless forms. Sub- +sequently, in Sec. IV we develop a method for finding the +initial conditions for the SG equations of motion. +We +assume that prior to the quench the two Bose gases are +independent and at thermal equilibrium with a bath at +temperature T. The initial conditions are obtained by +stochastically sampling the Fourier modes of a 1D quasi- +condensate obeying the Tomonaga-Luttinger liquid the- +ory. With the initial conditions in hand, in Sec. V we +give the main results of this paper which are the dy- +namics of the macroscopic number and phase difference +variables obtained by solving the equations of motion +numerically. In Sec. VI we consider the bigger picture +and examine the universal aspects of our results includ- +ing the influence of caustics on the coherence as well as +the long time dynamics and the establishment of (non- +thermal / non-Gaussian) equilibrium. +We conclude in +Sec. VII. There are also six appendices where we give +the details of the calculations as well as bench marking +our numerical method. +II. +FROM TWO COUPLED CONDENSATES TO +THE SINE-GORDON PLUS MODEL +We begin by deriving the SG model as an effective low +energy description for two coupled one-dimensional Bose +gases. For the sake of clarity, we list the main simplifica- +tions employed in this work: +• the treatment of a quantum many body problem +by a semiclassical method (TWA). +• the neglect of a weak harmonic trap along the +long axis which would otherwise lead to a non- +uniform longitudinal density (this can be avoided + +4 +in box traps which, although rarer, can be realized +[76, 104]) +• the assumption of a constant value for the tunnel +coupling J along the entire length of the gases +• the neglect of coupling to symmetric and higher +transverse modes. Some more involved theoretical +models do include these effects [56, 57]. +These simplifications are not expected to qualitatively +alter the main results of this work due to the structural +stability of caustics. In other words, caustics are known +to be robust to perturbations in both the Hamiltonian +and initial conditions. +A theoretical description of two ultracold quasi-one di- +mensional gases made up of bosonic atoms of mass m, +and held parallel to each other so that the atoms can +tunnel between them at rate J, can be obtained from the +following microscopic Hamiltonian [50, 51, 74] +ˆH = +� +j=1,2 +� L/2 +−L/2 +dz +� +− ℏ2 +2m +ˆψ† +j(z) ∂2 +∂z2 ˆψj(z) + U(z) ˆψ† +j(z) ˆψj(z) + g1D +2 +ˆψ† +j(z) ˆψ† +j(z) ˆψj(z) ˆψj(z) +� +− +� L/2 +−L/2 +dz ℏJ +� +ˆψ† +1(z) ˆψ2(z) + ˆψ† +2(z) ˆψ1(z) +� +. +(2) +The indices j = 1, 2 label the two gases and each is as- +sumed to be tightly trapped in the x and y directions +so that those degrees of freedom are frozen into their +ground states. Only the longitudinal degree of freedom +z in each gas is taken to be active. In experiments there +will usually be a weak longitudinal trapping potential +U(z), although as mentioned above for simplicity we set +it to zero and hence consider a uniform system of length +L with periodic boundary conditions. The quantum field +operator ˆψj(z) annihilates a particle at point z and to- +gether with its hermitian conjugate obeys bosonic com- +mutation relations [ ˆψj(z), ˆψ† +j′(z′)] = δjj′δ(z − z′). The +interaction constant g1D characterizes the effect of atom- +atom scattering within each gas on the longitudinal de- +gree of freedom and can be controlled both in magnitude +and sign either through Feshbach or confinement-induced +scattering resonances [105]. We note in passing that a +possible alternative physical realization of this problem +could be a spinor Bose gas in a single quasi-one dimen- +sional trap [106]. In fact, bosonic Josephson junctions +where the atoms are held in a single trap and two atomic +spin states are used for the two states have already been +realized experimentally [107]. +A weakly interacting three-dimensional Bose gas at ul- +tracold temperatures will undergo Bose-Einstein conden- +sation and can be described to high accuracy by a clas- +sical field approximation (Gross-Pitaevskii theory [108]). +In a quasi-one dimensional geometry quantum fluctua- +tions can still be small if the density is not too low, and +under these circumstances the gas can be treated as a +quasi-condensate where the quantum field operators are +replaced by classical fields [69, 109, 110] +ˆψj(z) → ψj(z) = +� +n1D + ρj(z) exp[iφj(z)] . +(3) +Here n1D = N/L is the background density where N is +the number of atoms in each gas (for simplicity we as- +sume an equal number of atoms N in each gas; the struc- +tural stability of caustics means that they are stable to +small differences in n1D between the two gases). ρj(z) +and φj(z) are the atom number density and phase fluc- +tuations at each point z, respectively. These are canon- +ically conjugate variables and can even be quantized in +a semiclassical regime such that they obey the commu- +tation relations [ˆρj(z), ˆφj′ (z′)] ≈ δjj′δ(z − z′) in a coarse +grained sense [110]. However, in the present paper ρj(z) +and φj(z) will be purely classical fields subject only to +thermal fluctuations. +We can further decompose the fields into their sym- +metric and antisymmetric components +ρs(z) = ρ1(z) + ρ2(z) +2 +, +ρa(z) = ρ1(z) − ρ2(z) +2 +φs(z) = φ1(z) + φ2(z), +φa(z) = φ1(z) − φ2(z) . (4) +If the fluctuations are small ρa will be small whereas ρs +will be comparatively large. The particle-particle inter- +action energy will then typically cause the dynamics of +the symmetric modes to occur at higher energy than the +antisymmetric ones, and consequently we can ignore the +symmetric degrees of freedom as long as we restrict at- +tention to low energies [50, 55, 72, 75]. The Hamiltonian +purely describing the antisymmetric variables is (see Ap- +pendix A for details) +HSG+ = +� L/2 +−L/2 +dz +� +g1D ρ2 +a(z) + ℏ2n1D +4m +�∂φa +∂z +�2 ++ +ℏ2 +4mn1D +�∂ρa +∂z +�2 +− 2ℏJn1D cos φa(z) +� +. +(5) +We refer to this as the “sine-Gordon plus” (SG+) Hamil- +tonian because it includes an extra term (the third term) +in comparison to the standard SG Hamiltonian. +This +term involves gradients of density fluctuations and results + +5 +in an energy cost which automatically suppresses den- +sity fluctuations at small length scales. It is also worth +noting that including this term means that the density +and phase fluctuations [the second term in Eq. (5)] are +incorporated on an equal footing. +This is also in ac- +cordance with Gross-Pitaevskii theory which suppresses +density fluctuations with wavelengths below the healing +length [95] +ξh = +ℏ +√mg1Dn1D +. +(6) +However, when n1D is relatively large the third term is +naturally suppressed in comparison to the others and can +be dropped as long as the density gradients are small +leading to the SG Hamiltonian [55, 74] +HSG = +� L/2 +−L/2 +dz +� +g1D ρa(z)2 + ℏ2n1D +4m +�∂φa +∂z +�2 +− 2ℏJn1D cos φa(z) +� +. +(7) +The nonlinear piece in both Hamiltonians is the cosine +term which originates from tunneling between the two +wells and occurs in all Josephson junction type prob- +lems. +It provides an effective potential well for phase +configurations φ(z, t) that play the role of rays. In fact, +as we shall see in Section V, it acts as an (imperfect) lens +that focuses rays excited by the quench to form caustics. +For the sake of brevity, and when we deem no confusion +can arise, we will omit the ‘a’ subscript on antisymmet- +ric variables since we will not be dealing with symmetric +degrees of freedom. +The fact that the two fields φ(z) and ρ(z) form a conju- +gate pair means that their equations of motion are given +by Hamilton’s equations +˙φ = 1 +ℏ +δH +δρ(z) +˙ρ = −1 +ℏ +δH +δφ(z) +(8) +where H is the Hamiltonian density defined via +H = +� L/2 +−L/2 +H dz. +(9) +Applying these equations to the SG+ Hamiltonian given +in Eq. (5) we find the following of equations of motion +dφ(z, t) +dt += 2 g1D +ℏ ρ(z, t) + 2 +ℏ +4mn1D +∂2ρ(z, t) +∂z2 +dρ(z, t) +dt += 2 ℏn1D +4m +∂2φ(z, t) +∂z2 +− 2Jn1D sin[φ(z, t)] . +(10) +These are the key equations we use to solve for the dy- +namics of the field configurations. They have the form of +Josephson’s equations [111] augmented by second order +spatial derivatives ∂2φ/∂z2 and ∂2ρ/∂z2 which account +for phase and density fluctuations along the longitudi- +nal direction. Combined with the sine term, they will +cause wavepackets to disperse along z. In the absence of +these terms we have exactly the equations of motion for +a pendulum where φ is the angular displacement from +equilibrium and ρ plays the role of angular momentum. +The dependence on z suggests an interpretation in terms +of a continuous chain of many pendula each coupled to its +neighbors by the spatial derivative terms and is reminis- +cent of the Fermi-Pasta-Ulam-Tsingou problem [50, 112]. +In this paper the coupled equations of motion given in +Eq. (10) will be solved numerically for a system of length +L. To perform the numerical computations we discretize +the system on a spatial grid with NL + 1 points which +makes the grid spacing a = L/NL. The positions of the +grid points are given by z = ra where r is an integer +r = −NL +2 , . . . , NL +2 +(11) +and NL is chosen to be an even integer. +There is in fact a physical limitation on the grid size. +Eq. (10) is classical and valid only on length scales greater +that healing length ξh [51, 95]. Therefore, any numerics +performed on Eq. (10) are meaningful only when the lat- +tice grid size a is greater than ξh. +In particular, NL +should be such that a > ξh which implies +N 2 +L < mg1Dn1DL2 +ℏ2 +. +(12) +We fulfil the condition given in Eq. (12) in our numerics. +III. +NATURAL SCALES +Let us express the SG/SG+ Hamiltonians and equa- +tions of motion in terms of the natural scales for a one- +dimensional quantum fluid. For a length scale we chose +the healing length ξh given in Eq. (6). The ratio of the +healing length to the mean interparticle spacing 1/n1D +motivates the definition of the Luttinger parameter +K = +� +n1D(ℏπ)2 +4g1Dm . +(13) +This dimensionless quantity measures how strongly in- +teracting the system is - when K ≫ 1 the healing length +is much greater than the interparticle spacing and the +system is in the weakly interacting (quasi-condensate) +regime. Another key physical quantity is the speed of +sound +c = +�g1Dn1D +m +. +(14) +This can be used to define a characteristic energy, namely +that associated with phonons (quanta of sound) +E = ℏω = ℏc +ξh +(15) + +6 +where we have set the natural frequency ω to be the ratio +of the speed of sound to the healing length. +We therefore transform to the following dimensionless +variables +z −→ ˜z = z +ξh +, +t −→ ˜t = c +ξh +t +ρ −→ ˜ρ = ρ ξh +, +φ −→ ˜φ = φ +(16) +and defining ˜HSG = HSG/E and likewise for ˜HSG+ we +obtain the two Hamiltonians in dimensionless form +˜HSG = +� L/2 +−L/2 +d˜z +� +Γ ˜ρ2 + ϵ +� +∂ ˜φ +∂˜z +�2 +− 2J cos ˜φ +� +(17) +and +˜HSG+ = +� L/2 +−L/2 +d˜z +� +Γ ˜ρ2 + ϵ +� +∂ ˜φ +∂˜z +�2 ++ Γ +4 +�∂˜ρ +∂˜z +�2 +− 2J cos ˜φ +� +(18) +where the coefficients are given by +Γ = +π +2K , ϵ = K +2π , J = K +2π +ξ2 +h +ξ2s +. +(19) +In the last term we have introduced the spin healing +length +ξs = +� +ℏ +4mJ +(20) +which provides a measure for the distance over which +coherence between the two gases is restored due to the +tunnel coupling J [55]. At finite temperatures another +useful length scale is the thermal phase coherence length +λT = 2ℏ2n1D +mkBT . +(21) +The dimensionless form of the equations of motion can +now be given. For the SG model we find +d˜φ +d˜t = 2Γ˜ρ +d˜ρ +d˜t = 2ϵ∂2 ˜φ +∂˜z2 − 2J sin ˜φ +(22) +and for the SG+ model we obtain +d˜φ +d˜t = 2Γ˜ρ − Γ +2 +∂2˜ρ +∂˜z2 +d˜ρ +d˜t = 2ϵ∂2 ˜φ +∂˜z2 − 2J sin ˜φ . +(23) +IV. +INITIAL CONDITIONS +The dynamics we seek to study in this paper start from +a J-quench where two independent one-dimensional gases +at thermal equilibrium are suddenly coupled. In order +to obtain the initial density and phase fluctuations of +these gases we use the Tomonaga-Luttinger (TL) model +that provides the universal low energy effective theory for +one-dimensional systems (low energy limit of the Lieb- +Lininger theory, for example) [53]. +A. +Tomonaga-Luttinger (TL) liquid +In our notation the TL Hamiltonian reads +HTL = +� L/2 +−L/2 +dz +� +g1Dρj(z)2 + ℏ2n1D +4m +�∂φj +∂z +�2� +(24) +where j labels either of the two gases. We henceforth, +omit this label for the sake of brevity with the under- +standing that in this section the density and phase fields +refer to just one of the two gases. Eq. (24) has the same +mathematical structure as the SG model but without the +tunnelling term. +If we include density fluctuations we +find +HTL+ = +� L/2 +−L/2 +dz +� +g1Dρ(z)2 + ℏ2n1D +4m +�∂φ +∂z +�2 ++ +ℏ2 +4mn1D +�∂ρ +∂z +�2 � +. +(25) +The TL model is quadratic and hence its thermal fluc- +tuations can be treated exactly. To this end it is useful +to work in Fourier space and we apply discrete Fourier +transforms defined on the numerical grid with NL points +as discussed at the end of Section II. The phase field φ +and its Fourier transform ϕ are related by +φr = +1 +√NL + 1 +NL/2 +� +k=−NL/2 +ϕk exp +� +i 2πkr +NL + 1 +� +ϕk = +1 +√NL + 1 +NL/2 +� +r=−NL/2 +φr exp +� +−i 2πkr +NL + 1 +� +. +(26) +The discrete data {φr} = {φ−NL/2, . . . , φ0, . . . , φNL/2} +and its transform are located symmetrically about r = 0 +and k = 0, respectively. Since the value φr of the field +at each coordinate space grid point is a real number the +condition +ϕ−k = ϕ∗ +k must hold. Similarly the density +fluctuation field ρ and its Fourier transform ϱ are related +by +ρr = +1 +√NL + 1 +NL/2 +� +k=−NL/2 +ϱk exp +� +i 2πkr +NL + 1 +� +ϱk = +1 +√NL + 1 +NL/2 +� +r=−NL/2 +ρr exp +� +−i 2πkr +NL + 1 +� +(27) + +7 +where again the reality of the field in coordinate space +requires that ϱ−k = ϱ∗ +k. Inserting these transformations +in Eq. (25) we obtain (see Appendix B for details) +HTL+ = a g1D +NL/2 +� +k=−NL/2 +|ϱk|2 ++ a ℏ n1D +NL/2 +� +k=−NL/2 +ℏπ2k2 +mL2 |ϕk|2 ++ a +ℏ2 +4mn1D +NL/2 +� +k=−NL/2 +4π2k2 +L2 +|ϱk|2 . +(28) +Before proceeding with further analysis of Eq. (28), it is +worth noting that it can be recast in a standard Luttinger +liquid form +HTL+ = acℏ +2 +NL/2 +� +k=−NL/2 +�K +π +4π2k2 +L2 +|ϕk|2 + π +K |ϱk|2 ++ K +π +4π2k2 +N 2 |ϱk|2 +� +(29) +where the strength of the terms depends either on K or +1/K. +Applying the transformations given in Eq. (16), the +Fourier space variables can be written in dimensionless +form as +ϱk −→ ˜ϱk = ξhϱk +, +ϕk −→ ˜ϕk = ϕk +(30) +and the TL+ Hamiltonian given in Eq. (28) scaled by the +energy E = ℏc/ξh is given by +˜HTL+ = +˜L +NL +NL/2 +� +k=−NL/2 +�ϵ 4π2k2 +˜L2 +| ˜ϕk|2 + Γ|˜ϱk|2 ++ Γ π2k2 +˜L2 +|˜ϱk|2 +� +(31) +where ˜L = L/ξh is the ratio of the system size to the +healing length. Comparison with the spatial version of +HTL+ given in Eq. (25) shows where this factor comes +from: as the size is increased the range of the integration +increases linearly and this is accounted for by ˜L in the +Fourier transformed version. Note that all parameters +and variables in Eq. (31) are dimensionless. +B. +Thermal equilibrium +To find the initial conditions on the fields ρj(z) and +φj(z) we assume that each gas is at thermal equilibrium +such that the excitation (phonon) modes of the TL+ +Hamiltonian are populated with a probability given by +the Boltzmann distribution. The range of temperatures +we simulate is listed in Table I along with the values +of all the other key parameters, and is chosen so as to +correspond to realistic experimental conditions (the tem- +perature must be low enough that the quasi-condensate +description is valid). +In the canonical ensemble of statistical mechanics the +probability that a system at thermal equilibrium has +the phase space configuration s = q1, p1, q2, p2...qN, pN +is proportional to the Boltzmann weight exp[−βH(s)], +where β = 1/kBT and H = � +i p2 +i /2m + V (qi). +The +Hamiltonian in Eq. (31) is quadratic and hence the Boltz- +mann weight becomes that of a series of independent har- +monic oscillators +e− ˜β ˜ +HTL+ = +� +k +e−P 2 +k /2σ2 +ρ+ e−Q2 +k/2σ2 +φ+(k) +(32) +where ˜β = (ℏc/ξh)/kBT is the appropriately scaled tem- +perature parameter and we have introduced the real vari- +ables Qk and Pk which are related to the old variables +by +˜ϕk = Qkeiαk, +˜ϱk = Pkeiβk. +(33) +The phases αk and βk allow for the fact that ˜ϕk and ˜ϱk +can be complex numbers. The variances in Eq. (32) are +given by +σ2 +ρ+(k) = NL +2˜β +1 +Γ˜L(1 + π2k2/˜L2) +(34) +σ2 +φ+(k) = NL +2˜β +˜L +4π2k2ϵ . +(35) +The partition function can now be written down as +Z = +� +k +� ∞ +−∞ +e− ˜β ˜ +HTL+ dPkdQk += +� +k +� +σρ+ +√ +2π +� � +σφ+(k) +√ +2π +� +(36) +and hence the probability P of a particular configuration +(Q1, Q2, ...., P1, P2, ....) is +P = +� +k +� +e−P 2 +k /2σ2 +ρ+ +σρ+ +√ +2π +� � +e−Q2 +k/2σ2 +φ+(k) +σφ+(k) +√ +2π +� +. +(37) +This is seen to be the total probability distribution for +independent random variables Pk and Qk drawn from +normal distributions. Thus, the absolute values of the +Fourier coefficients ˜ϱk and ˜ϕk are normally distributed +random variables with zero mean and variances given by +Eqns. (34) and (35). We sample these numerically from +normal distributions to generate the initial system con- +figuration. The phases αk and βk given in Eq. (33) do +not appear in the Boltzmann weight and are chosen ran- +domly from the range [0, 2π). In fact, for both the phases +and the amplitudes we only need to choose the values for + +8 +terms with k ≥ 0 because the reality conditions imply +that we can put +Qk = Q−k , +Pk = P−k, +αk = −α−k , +βk = −β−k . +(38) +So far we have only considered the initial state of a sin- +gle gas. By subtracting the results for two gases we can +obtain the initial values of the antisymmetric variables +ρa(z) and φa(z) defined in Eq. (4). Actually, due to the +fact that the SG+ Hamiltonian with J = 0 and expressed +in terms of antisymmetric variables as given in Eq. (5) +formally has the same structure as the TL+ Hamiltonian +given in Eq. (25), sampling initial data for two gases is +unnecessary and one can obtain ρa(z) and φa(z) directly +by sampling them as though they were from one gas de- +scribed by the TL+ Hamiltonian. However, in doing so, +consideration needs to be given to the average value of +relative phase φa(z) because both the SG+ and TL+ +Hamiltonians only contain the spatial derivative of the +phase but not the phase itself. Its average value is there- +fore not determined by energy considerations and is left +to float freely. This is also apparent in the Fourier trans- +formed version of the TL Hamiltonian given in Eq. (31) +where the k = 0 term involving ˜ϕ0 is absent due to the +vanishing of its coefficient which is proportional to k2. +To take into account the random phase difference be- +tween the two gases one can chose ˜ϕ0 to be a random +number in the range [−π . . . π) but multiplied by a factor +of √NL + 1 in order to respect the normalization in Eq. +(26). This gives values of the average value of φa(z) in +the desired range −π and +π. +The random value of the initial phase difference is ac- +tually a key feature of the J-quench. It populates the +cosine potential landscape in the Hamiltonian with uni- +form probability. As the trajectories roll back and forth +in this potential they form caustics. +In effect, the co- +sine potential acts as an imperfect lens that focuses an +initially flat ‘wavefront’ over time. +C. +Choice of parameters +There are three constraints which must be satisfied in +order to have a quasi-one dimensional condensate [55]. +To ensure minimal scattering into the transverse modes +we need the interaction to be sufficiently weak which im- +plies µ = g1Dn1D ≪ ℏω⊥ where µ is the chemical poten- +tial and ω⊥ is the transverse trapping frequency. More- +over, the temperature needs to be low enough such that +transverse modes are not thermally excited leading to the +inequality kBT ≪ ℏω⊥. Finally, in order to have a quasi- +condensate which permits a semiclassical approach we +need weak interactions in comparison to the zero-point +kinetic energy associated with the density of the parti- +cles. This implies n1Dg1D ≪ ℏ2n2 +1D/m which means the +Symbol +Parameter +Value +ω⊥ +trapping frequency +2π × 3 kHz +m +mass of Rb atom +1.41 × 10−25 kg +as +scattering length +98 × 0.52 Å +N +number of atoms +1200 +L +system length +18 µm +n1D +average density +6.7 × 107m−1 +g1D +2 ℏascatω⊥ +2 × 10−38 Jm +K +Luttinger parameter +25 +T +temperature +2 - 20 nK +J +J-quench +0 - 30 Hz +NL +number of grid points +50 +c +speed of sound +3 × 10−3 m s−1 +a +grid spacing +0.36 µm. +ξh +healing length +0.24 µm +λT +phase coherence length +38 − 380 µm +ξs +spin healing length +2.5 µm +Table I. Table containing important parameters and their val- +ues. The parameters are chosen to be experimentally feasible +and correspond roughly to those reported in references [72– +77]. +Luttinger parameter should obey K ≫ 1. All the param- +eter values we use satisfy these three inequalities. +In quasi-one dimensional gases the interatomic inter- +action parameter g1D is related to the scattering length +as and transverse trapping frequency as g1D = 2ℏasω⊥. +For 87Rb atoms we have as ≈ 98 × 0.52 Å[113] and we +will assume ω⊥ = 2 π×3 kHz [77]. The full list of pa- +rameters used in our simulations is given in Table I and +roughly corresponds to those used in the experiments by +the Vienna group [72–77]. +For our numerical simulations we choose a grid size +that slightly exceeds the healing length because, as ex- +plained above, this cuts off unphysical density fluctua- +tions [51, 95]. This condition is given in Eq. (12) but can +be expressed succinctly in terms of Γ as N 2 +L < ΓN 2. The +magnitudes of ˜ρ and ˜φ also need to be considered. The +phase difference can take the full range +π to −π, but +the number difference is limited by the condition that +the total number difference (integrated over the entire +system) cannot exceed the total number of particles. In +fact, due to the random nature of sampled thermal fluc- +tuations, the integral of ˜ρ is always approximately zero. +However, the validity of the SG/SG+ model requires that +local density fluctuations be small in comparison to the +background density n1D, see Appendix A. Translated +into the scaled variables this means that at any point +˜ρ(˜z) ≪ n1Dξh. In practice we choose ˜ρ(˜z) ≤ 1.6 so that +the fluctuations are an order of magnitude smaller than +the background density. + +9 +D. +Examples of Initial conditions +In Figure 2 we present typical spatial profiles of the +initial number difference field ˜ρ (upper row) and phase +difference field ˜φ (lower row). Each profile provides the +initial conditions for a single classical field trajectory and +is obtained by summing up thermally activated phonons +(Fourier modes) using the Tomonaga-Luttinger model. +The different columns show the effect of changing tem- +perature T or Luttinger parameter K. +As expected, +when T is increased the fluctuations in both ˜ρ and ˜φ +increase. By contrast, if K is increased the maximum +magnitude and jaggedness of ˜ρ increases but the jagged- +ness of ˜φ decreases. Referring to Eq. (19) we can see that +this is because the coefficient multiplying the density fluc- +tuation term in the Hamiltonian is Γ = π/2K which de- +creases as K increases leading to increased variance of ϱk +modes according to Eq. (34). The phase fluctuation term +shows the opposite behavior because its coefficient in the +Hamiltonian (which only appears as the spatial gradient +of ˜φ) is ϵ = K/2π which increases as K increases and +this reduces the variance of the ϕk modes according to +Eq. (35), thereby making the ˜φ profiles smoother. +V. +NUMERICAL SIMULATIONS OF THE +DYNAMICS +In this section we explore the dynamics following a J- +quench. +Our approach is inspired by the TWA where +multiple classical field configurations are propagated in +time using the classical equations of motion, although in +our case the initial conditions are sampled from a ther- +mal distribution as described in Section IV rather than +a quantum distribution as in the standard TWA. +J-quench dynamics have previously been explored for +the simpler case of a two-mode zero temperature bosonic +Josephson junction where it was found that caustics dom- +inate the number and phase difference probability distri- +butions [17, 26, 31]. In the two-mode case it is possible +to compute the exact quantum dynamics for some thou- +sands of particles and compare them against the TWA. +The results (see Figure 1 in [31]) show good qualitative +agreement and give us confidence that the TWA can cap- +ture the main features of the quantum dynamics. Fur- +thermore, the inevitable presence of decoherence due to +the environment will tend to reduce the quantum dy- +namics to their classical limit (this has been investigated +in the two-mode case for a J-quench in [32]) increasing +the relevance of semiclassical calculations. In the present +work we are interested in whether the phonons along the +long axis disrupt or sustain these caustics. We will start +by reproducing the caustics presented in Ref. 31 for the +two-mode case and then add in the longitudinal modes +after that. +A. +Numerical Methods +The initial conditions are generated via random sam- +pling from Gaussian distributions. We then evolve the +equations of motion (Eq. 23 for the case of the full SG+ +model) using a Runge-Kutta solver with a user-defined +time step [114]. The endpoints of our system are treated +by imposing periodic boundary conditions. In Appendix +C we demonstrate the numerical convergence of the solver +by varying the temporal and spatial steps by tracking the +time evolution of the total energy (hamiltonian) which +should be a constant of the motion and obtain the fidu- +cial time and space resolution for all our calculations. +B. +Special case: two-mode approximation +In the two-mode approximation only a single mode in +each well is taken into account. This description is rele- +vant to the SG/SG+ model in the limit where the entire +length of each quasicondensate is perfectly synchronized +so that the fields ˜ρ(˜z) and ˜φ(˜z) do not depend on ˜z. +In this case the spatial derivative terms vanish and the +equations of motion in Eq. (23) reduce to +d˜φ +d˜t = 2Γ˜ρ +, +d˜ρ +d˜t = −2J sin ˜φ . +(39) +These are the standard Josephson equations of motion +and also correspond to those of a classical pendulum +[115]. Such synchronization can occur at very low tem- +peratures or when the coefficients ϵ and Γ are large +enough that they suppress spatial fluctuations in the ini- +tial conditions. +In Figure 3 we display the post-quench dynamics in +the two-mode approximation. +The left hand and cen- +tral panels show the time dependence of 150 indepen- +dent solutions of Eq. (39) which give the trajectories for +the number difference and phase difference, respectively. +Note that in this paper we use the color blue for tra- +jectories calculated within the two mode approximation +and reserve red for the trajectories of the full many mode +model. In accordance with our assumption that the two +wells start with an equal number of atoms, each solution +starts with ˜ρ = 0. +And as discussed in Section IV B, +the initial value of ˜φ is randomly chosen from the range +[−π, π) because the two condensates are independent be- +fore the J-quench. +The most striking feature of Figure 3 is the series of +cusp-shaped caustics that form in both variables. In or- +der to guide eye, we have have outlined the first cusp +caustic in the number difference variable using a black +curve (the calculation for this curve is given in Appendix +D). Like in optics, caustics are regions of high intensity +formed by the envelopes of families of rays (trajectories). +Each caustic is born at the centre of the distribution at +the tip of a cusp before spreading out in two arms that +move towards the edges of the distribution. +The fact + +10 +Figure 2. +Examples of initial spatial profiles of the number difference ˜ρ (top row) and phase difference ˜φ (bottom row). Each +profile is obtained by randomly sampling a thermal distribution using the method described in Section IV B, and each panel +includes ten different profiles. The parameter values common to all panels include the number of computational lattice points +NL = 50, grid spacing a = 0.36µm, and healing length ξh = 0.24 µm (the remaining parameters are listed in Table I). The +difference between the columns is as follows. The left column has the Luttinger parameter K = 25, and temperature T = 2 +nK giving a phase coherence length of λT = 380 µm. In the middle column K = 25, but the temperature is increased to 20 nK, +giving λT = 38 µm. In the right column, the value of K is artificially increased (without changing any other parameters) +to K = 250 and T = 2 nK. Increases in temperature excite stronger fluctuations in the profiles as expected. Increases in +the Luttinger parameter have opposite effects on ˜ρ and ˜φ. The maximum value and jaggedness of ˜ρ is increased whereas the +jaggedness of ˜φ is reduced. An explanation of this behavior is given in the main text. +that they are cusp shaped is in agreement with the pre- +diction of catastrophe theory that in two dimensions the +only structurally stable and hence generic singularities +are cusps. +Each trajectory represents a single experimental run. +The idea behind the TWA is that the number of tra- +jectories reaching a point ˜ρ at time ˜t is proportional to +the probability that a measurement of the true quantum +system would yield that value of ˜ρ. An equivalent inter- +pretation holds for the ˜φ trajectories. The caustics have +the highest probability density and hence give the values +most likely to be observed. Of course, if we only con- +sider the average values of ˜ρ or ˜φ we would get zero in +both cases due to the symmetry of the distributions and +hence miss the caustics. Many experimental runs must +be performed in order to obtain the probability distribu- +tion where these patterns live. +The mechanism underlying caustics can be understood +from a phase space perspective, as shown in the right +hand panel of Figure 3. Each dot gives the number and +phase difference at a particular time for a different ini- +tial condition. The red dots are the initial values which +lie in a horizontal line because at ˜t = 0 all trajectories +have ˜ρ = 0. As time evolves the dots rotate around the +origin: the green and blue dots show two successively +later times. However, the nonlinearity of the Josephson +equations means dots further from the origin rotate more +slowly and this leads to the formation of a spiral or whorl. +At places where the whorl has a vertical segment a range +of different solutions all have the same value of ˜φ and this +stationarity of the distribution with respect to changes in +the initial conditions is what generates a caustic, in this +case a ˜φ-caustic. +Conversely, horizontal segments give +rise to ˜ρ-caustics. +In the absence of nonlinearity the equations reduce to +those of a harmonic oscillator +d˜φ +d˜t = 2Γ˜ρ +, +d˜ρ +d˜t = −2J ˜φ +(40) +giving rise to rigid rotation in phase space and the forma- +tion of perfect focal points in the number and phase dif- +ference variables, as shown in Figure 4. However, these +perfect revivals of the initial state are not stable: any +nonlinearity will cause the focal points to evolve into the +extended cusp caustics shown in Figure 3. +The frequency of the linearized motion is known in +Josephson junction terminology as the plasma frequency. + +3 +2 +1 +Initial +0 +-1 +-2 +-3 +-20 +-10 +0 +10 +20 +Grid points (r)3 +2 +1 +Initial pr +0 +-1 +-2 +-3 +-20 +-10 +0 +10 +20 +Grid points (r)3 +2 +1 +Initial +0 +-1 +-2 +-3 +-20 +-10 +0 +10 +20 +Grid points (r)3 +2 +Initial $r +1 +0 +-1 +-2 +-3 +-20 +-10 +0 +10 +20 +Grid points (r)3 +2 +1 +Initial $r +0 +-1 +-2 +-3 +-20 +-10 +0 +10 +20 +Grid points (r)3 +2 +1 +0 +Initi: +-1 +-2 +-3 +-20 +-10 +10 +10 +20 +Grid points (r)11 +Figure 3. +Dynamics of the number difference ˜ρ (left), phase difference ˜φ (middle), and phase space distribution (right) following +a J-quench from J = 0 to J = 30 Hz in the two mode approximation governed by the Josephson equations given in Eq. (39). +The other parameter values are given in Table I. Each panel contains 150 trajectories: each trajectory starts with ˜ρ = 0 at time +˜t = 0 but has an initial phase randomly sampled from [−π, π). Both number and phase difference variables display a series of +cusp shaped caustics given by the envelopes of families of trajectories; to guide the eye we have outlined the first cusp caustic +in the ˜ρ variable with a black curve. In the right panel three different time slices of the results are plotted in phase space (˜ρ +versus ˜φ). Each dot corresponds to a different initial condition (trajectory) and the colors indicate the time: ˜t=0 (red), ˜t=50 +(green), ˜t=100 (blue). During time evolution the initial horizontal line winds into a whorl and the caustics in the ˜ρ and ˜φ plots +occur due to horizontal and vertical segments of a whorl, respectively. +Figure 4. +Dynamics of the number difference ˜ρ (left), phase difference ˜φ (middle), and the phase space distribution (right) in +the linearized version of the two-mode approximation [Eq. (40)] following a J-quench from J = 0 to J = 30 Hz. Like in Figure +3, there are 150 trajectories shown in each panel corresponding to different values of the initial value of ˜φ. However, in this +linearized case we obtain a series of perfect focus points (revivals of the initial state). This is because linearization gives rise to +rigid rotation in phase space without whorls. Unlike the extended cusp caustics seen in Figure 3 (which will be qualitatively +robust to details of the nonlinearity) perfect focus points are nongeneric because they are unstable to perturbations such as the +effects of nonlinearity. All parameter values and color labels are the same as Figure 3. +In our notation it reads +ωp = +√ +4ΓJ +(41) +and the period of the motion is therefore given by 2π/ωp. +For the case shown in Figure 4 we have Γ = 0.063 and +J = 0.037 giving a period ≈ 65. In fact, the tips of the +cusps in the nonlinear case also occur with this period +since they are formed from small amplitude trajectories +that only experience the quadratic bottom of the cosine +potential. +C. +General case: many-mode SG+ model +Simulations of the full SG+ model are shown in Figure +5, which represents one of the main results of this paper. +The trajectories in the left panel give the spatially av- +eraged number difference ⟨˜ρ(˜t)⟩z as a function of time +obtained by solving the equations of motion given in Eq. +(23) for the many-mode system and then averaging over +its length. The trajectories in the middle panel of Figure +5 give the equivalent spatial average of the phase differ- +ence ⟨˜φ(˜t)⟩z, and the right-hand panel is the phase space +picture. +Each trajectory is evolved from a single ran- +domly sampled field configuration (describing thermally +activated phonons) such as those shown in the top row +of Figure 2 and for the parameters given in Table I. We +observe that despite the inclusion of longitudinal modes +and the randomness of the initial conditions, the caustics +survive and are quite similar to those of the two-mode +approximation shown in Figure 3. +This suggests that +caustics are a generic feature of many particle dynamics + +1.5 +1.0 +0.5 +2Q +0.0 +-0.5 +-1.0 +-1.5 +.3 +-1 +0 +1 +2 +32 +1 +2Q +0 +-1 +-2 +0 +25 +50 +75 +5100 125 150 175 200 +2+3 +2 +1 +20 +0 +-1 +-2 +.3 +0 +25 +50 +75 +100 125 150 175 200 +2+2 +1 +2Q +0 +-1 +-2 +-3 +-1 +0 +1 +2 +w +iΦ2.0 +1.5 +1.0 +0.5 +0.0 +-0.5 +-1.0 +-1.5 +-2.0 +10 +25 +50 +75 +100 125 150 175 2003 +2 +1 +20 +0 +-1 +-2 +-3 +0 +25 +50 +75 +100125 150.175 20012 +Figure 5. +Dynamics of the spatially averaged number difference ⟨˜ρ⟩z (left), phase difference ⟨˜φ⟩z (middle), and phase space +distribution (right) for the full many-mode SG+ model following a J-quench from J = 0 to J = 30 Hz. Each panel contains +150 trajectories which are solutions of Eq. (23). The initial conditions are randomly sampled thermal phonons with the same +parameter values as those shown in the top row of Figure 2 and described in Table I. In particular, the number of numerical +lattice points is NL = 50 separated by a grid spacing of a = 0.36 µm, and the temperature is T = 2 nK. The healing length is +ξh = 0.24 µm, the spin healing length is ξs = 2.5 µm and the phase coherence length is λT = 380 µm. The different colors on +the phase space plot correspond to the same time slices as in the previous phase space plots. +following quenches, at least for systems whose underlying +physics is based on coupled nonlinear oscillators. Each +oscillator starts with a random phase and a noisy momen- +tum but the quench acts so as to give all the oscillators +a momentum kick at the same time ˜t = 0 leading to an +initial partial synchronization. As the system evolves in +time after the kick the different periods of nonlinear os- +cillators leads to cusp catastrophes in the distribution of +trajectories. If we had instead calculated only the expec- +tation values of the number and phase differences then +this underlying structure would not have been visible be- +cause it lives in the probability distribution rather than +the mean values. +A slice at fixed time through the probability distri- +bution for the spatially averaged phase variable ⟨˜φ⟩z is +shown in Figure 6. This is obtained by sorting the ⟨˜φ⟩z(˜t) +trajectories into bins each of which covers a small range +of ⟨˜φ⟩z and counting the number of trajectories in each +bin. The result is noisy due to the thermal fluctuations +but the caustics are clearly visible as strong peaks. These +peaks display the characteristic ‘square root’ divergence +of fold caustics [1] +P(⟨˜φ⟩z) ∝ +1 +� +˜φc − ⟨˜φ⟩z +(42) +where P(⟨˜φ⟩z) is the probability density and ˜φc is the +location of the caustic. The blue dashed lines in Figure 6 +are fits of Eq. (42) to the numerical data and we see that +the agreement is good. Although the height of the singu- +larities predicted by Eq. (42) is infinite at the caustic, this +function is integrable so that a probability distribution +with caustics is still normalizable (of course, the peaks in +the numerical data are of finite height because the num- +ber of trajectories is finite). A very similar pattern of +square root singularities at each caustic is obtained for a +time slice through the probability density for the number +difference variable so we shall not show it here. +Figure 6. +The probability density (red curve) as a func- +tion of ⟨˜φ⟩z obtained from the density of trajectories at time +˜t = 162 for the SG+ model. This corresponds to a slice at +fixed time through the middle panel of Figure 5, although +calculated using 10000 trajectories to improve the statistics +and averaged over a short time window of ∆˜t = 1 to remove +rapid time fluctuations. The red curve has been drawn with +a bin width d˜φ = 0.04 and is normalised such that the area +under the graph is 1. The caustics are clearly visible as di- +verging peaks and are well fitted (blue dashed curves) by the +inverse square root form given in Eq. (42) that is expected +for fold catastrophes [1] (the satellite caustics also have this +shape but the fit is not shown to avoid obscuring the data). +A very similar profile is obtained for the probability density +in the ⟨˜ρ⟩z variable (not shown). +D. +Effect of dispersion on the caustics +The double derivative terms in the SG+ equations of +motion given in Eq. 23 are responsible for transmitting +wave disturbances along the longitudinal axis and are not +present in the simpler two-mode case discussed in Section + +1.5 +1.0 +0.5 +0.0 +-0.5 +-1.0 +-1.5 +0 +25 +50 +75 +1001251501752003 +2 +1 +0 +-1 +-2 +-3 +0 +25 +50 +75 +100 125 150 175 200 +2+1.5 +1.0 +0.5 +0.0 +-0.5 +-1.0 +-1.5 +0 +1 +2 +3 +()z1.0 +0.8 +M 0.4 +0.2 +0.0 +-3 +-1 +0 +1 +2 +3 +(0)z13 +V B. Initial thermal fluctuations in the SG+ model will +therefore disperse in z over time and it is interesting to +see what difference this makes to the caustics; comparison +of Figures 3 and 5 suggests it makes little difference to +spatially averaged variables. However, this observation is +for only one choice of the parameters ϵ and Γ that govern +the size of the derivative terms and also for relatively +short times. In particular, in Figure 5 the parameters +are ϵ ≈ 4 and Γ ≈ 0.06 which were chosen to match +experimental values [72–77]. In Figure 7 we compare the +long time dynamics of the two-mode approximation and +the SG+ model for the case where ϵ in the SG+ model +has been artificially increased by a factor of 10 (without +changing any other parameters), thereby increasing the +effect of spatial dispersion. Apart from this change, the +initial conditions and J-quench are similar to those used +in Figure 5. Note that we only use this increased value +of ϵ for the time propagation and not for the generation +of the thermal initial conditions. This avoids changing +the starting phase fluctuations from those used in Figure +5 which would otherwise be energetically suppressed and +would also lead to significantly different dynamics but is +not the comparison we would like to make here. From +Figure 7 we see that the strong coupling of neighboring +‘pendula’ does seem to largely wash out the caustics at +long times in comparison to the dispersionless two-mode +case, although some faint structure is still present which +underlines the structural stability of caustics. The long +time behavior will be further analyzed in Section VI. +E. +Effect of J on the caustics +Another parameter that affects the dynamics is the +tunnel coupling strength J [or its dimensionless version +J which is defined in Eq. (19)] that becomes non-zero +after the quench. The quench itself creates a strongly +nonequilibrium phase difference where all values of ˜φ are +equally probable independently of the value of J by virtue +of the fact that before the quench there is no phase co- +herence between the two quasicondensates. However, J +does control the post-quench dynamics. One way it does +this is via the frequency of the Josephson oscillations. +The cusps occur with a frequency given by the plasma +frequency in Eq. (41) which goes as +√ +J. +In Figure 8 we examine the effect of quenching to dif- +ferent J values, with the value of J increasing from left +to right. We can see the expected increase in frequency. +The amplitude of the motion also increases with J be- +cause immediately after the quench each trajectory finds +itself at a random point on the cosine potential energy +surface whose depth between valley top and valley bot- +tom is 2J . The initial potential energy of a field config- +uration is therefore −2J ⟨cos ˜φ0⟩z, where ˜φ0 is the phase +field ˜φ(˜z, ˜t) at the initial time. This configuration evolves +under the full Hamiltonian and upon spatial averaging is +seen to execute oscillations about the potential minimum. +The upper row in Figure 8 plots the spatially averaged +Figure 7. +Comparison of the long-time behavior of the phase +difference in the two-mode approximation (upper) and many- +mode SG+ model (lower). Both panels contain 150 different +runs and the initial conditions and J-quench are similar to +those of Figure 5 except that ϵ has been artificially multiplied +by 10 (without changing any other parameters) in the lower +panel. This enhances the effect of the spatial derivative term +in φ in the SG+ model (this term does not appear in the two +mode model). We see that in the upper panel the caustics +are still visible. By contrast, the stronger spatial interaction +causes dispersion and makes the caustics much less visible in +the lower panel. +number difference and according to Eq. (18) the maxi- +mum amplitude this can have is +⟨˜ρ⟩max +z += +� +2J (1 − ⟨cos ˜φ0⟩z) +Γ +(43) +where we have ignored the effects of spatial coupling (sec- +ond order derivative terms). Thus, ⟨˜ρ⟩max +z +also scales as +√ +J, and this is in correspondence with Figure 8. +The lower row of Figure 8 shows the behavior in phase +space. In these figures we have also included the unaver- +aged data, i.e. the ˜ρ and ˜φ values of each grid point at +the three selected times. This gives a sense of the size +of the statistical fluctuations due to the spatial degrees + +3 +2 +1 +0 +-1 +-2 +-3 +600625650675700725 750775800 +2+3 +2 +1 +0 +-1 +-2 +-3 +600 625 650 675 700 725 750 775 800 +2+14 +Figure 8. +Effect of quench strength J for J = 0 Hz, 3 Hz, and 30 Hz (from left to right). The top row shows the dynamics +of ⟨˜ρ⟩z with initial conditions sampled in the same way as in Figure 5. The bottom row plots the corresponding phase space +distributions. Like in previous figures, the different colors give different time instants: ˜t=0 (red), ˜t=50 (green), ˜t=100 (blue). +The dots with intense colors are the spatially averaged values. We have also included the raw data (without spatial averaging) +as faint dots. This gives an idea of the size of the statistical fluctuations due to the thermal initial conditions and is the same +for all values of J. In the left column there is no coupling between the two quasicondensates and hence no time evolution of +the spatially averaged data (the intense red, green, and blue dots sit on top of each other) although there can be evolution +of unaveraged data due to intrawell dynamics, i.e. without the J term in Eq. (10). As we increase the magnitude of J time +evolution leads to whorls with a greater vertical extent because more energy can be extracted from the cosine potential in Eq. +(18) giving larger values of ⟨˜ρ⟩max +z +. +of freedom. In the left hand column J remains zero for +all time and the only dynamics that can occur is along +the long-axis of each quasicondensate individually. The +middle and right hand panels, which have J = 3 and +J = 30 Hz, respectively, have the same initial statistical +fluctuations as the left hand one because, as mentioned +above, the initial distribution is set by the pre-quench +thermal fluctuations in the two quasicondensates and is +independent of J. However, as time evolves the effects of +J described by Eq. (43) become apparent because larger +J allows a greater value of ⟨˜ρ⟩max +z +and this stretches the +distribution along the vertical direction in comparison to +a smaller value of J. For a whorl to become apparent +⟨˜ρ⟩max +z +should at least exceed the width of the statistical +fluctuations and becomes better and better defined as J +is increased. +VI. +UNIVERSALITY AND CAUSTICS +We have already discussed the relationship between +nonlinearity and caustics in the preceding section. +As +motivated earlier, and expounded in Refs. 17, 26, 31, 33, +and 34, caustics also have implications for the universal +dynamics of quantum systems. We explore a few of these +effects in this section. +A. +Long time distribution: the circus tent +The quench generates collective excitations that lead +to caustics as shown in Figures 3 and 5 for the two non- +linear models (two mode and SG+) discussed above. The +caustics are born at the center of the probability distri- +bution (in either the ˜ρ or the ˜φ variable) at intervals of +the plasma period and move out to the edges over time. +Figure 6 plots the probability distribution for the SG+ +model as a function of ⟨˜φ⟩z at an intermediate time where +four pairs of fold caustics are discernible and shows how +they diminish in strength but are still present as they +move to the edges. The question then naturally arises +as to what happens at long times ˜t → ∞ when the dis- +tribution comprises of a large number of caustics and +whether it tends to a characteristic shape? The answer +is yes, and is shown in Figure 9 which is made in the +same way as Figure 6 but this time by calculating the +density of ⟨˜ρ⟩z trajectories and averaging over a time +window extending between ˜t = 800 and ˜t = 980 in order + +2.0 +1.5 +1.0 +0.5 +z(g) +0.0 +-0.5 +-1.0 +-1.5 +-2.0 +0 +25 +50 +75 100 125 150 175 200 +t2.0 +1.5 +1.0 +0.5 +z(d) +0.0 +-0.5 +-1.0 +-1.5 +-2.0 +0 +25 +50 +75 100 125 150 175 200 +t2.0 +1.5 +1.0 +0.5 +0.0 +-0.5 +-1.0 +-1.5 +-2.0 +0 +25 +50 +75 +100 125 150 175 2002.0 +1.5 +1.0 +0.5 +0.0 +-0.5 +-1.0 +-1.5 +-2.0 +-3 +-2 +-1 +0 +1 +2 +3 +(0)z2.0 +1.5 +1.0 +0.5 +0.0 +-0.5 +-1.0 +-1.5 +-2.0 +-3 +-2 +-1 +0 +1 +2 +3 +(0)z2.0 +1.5 +1.0 +0.5 +0.0 +-0.5 +-1.0 +-1.5 +-2.0 +-3 +-2 +-1 +0 +1 +2 +3 +(0)z15 +to remove rapid fluctuations. The probability distribu- +tion takes a shape reminiscent of a ‘circus tent’ or ‘big +top’ and can be understood as follows. +The strongest +singularities present are the cusp tips born at the center +of the distribution which leads to this being the highest +point. Each cusp then splits into two fold arms (which +according to catastrophe theory are lower singularities) +that move outwards, reducing in height as they go, before +accumulating at the edges where there is a sharp drop to +zero. The position of the outer edge is set by the maxi- +mum energy that can be extracted from the quench and +is given by Eq. 43. +An analytic expression for the circus tent distribution +is given by the integral +PCT(˜ρ) = +1 +2πB +� 1 +˜ρ2/B2 +U(m, ˜ρ) +K(m) +dm +(44) +where +U(m, ˜ρ) = +1 +� +m(1 − m)(m − ˜ρ2/B2)(1 + ˜ρ2/B2 − m) +, +(45) +K(m) is the complete elliptic integral of the first kind, +and B = 2 +� +J /Γ. This expression is plotted in Figure +9 as the dashed line and is derived in Appendix E un- +der the assumption that at long times we can model the +system by an ensemble of independent pendulua where +each pendulum is ergodic. In other words, each pendu- +lum obeys a microcanonical distribution where there is +equal probability for it to be found anywhere on its en- +ergy shell. The nature of the J-quench is such that it +leads to an ensemble with an equal probability for any +starting angle (this is different to an equal probability +for each energy due to the dependence of the density of +states on angle). As can be seen from Figure 9, PCT(˜ρ) +gives a good fit to the numerical data generated by both +the SG+ and two-mode models considered in this paper. +In Figure 9 we also include the thermal probability +distribution +PT (˜ρ) = 1 +Z +� ∞ +0 +PE(˜ρ) e−E/T D(E) dE +(46) +describing an ensemble of pendula at thermal equilibrium +at temperature T where PE(˜ρ) is the probability distri- +bution at fixed energy E, D(E) is the density of states +and Z is a normalizing factor. The details of our cal- +culation of PT (˜ρ) are given in Appendix F, where, for +example, PE(˜ρ) is given in Eq. (F2). The temperature +of this distribution is chosen such that the mean energy +of the thermal distribution ⟨E⟩T is equal to the mean +energy of the states excited by the quench. For a quench +to J = 30 Hz we show in Appendix F that the effective +temperature is 5.4 nK. +Clearly, the thermal distribution is very different to the +circus tent distribution: the thermal distribution takes +the form of a smooth gaussian with wings that extend +beyond ⟨˜ρ⟩max +z +because the thermal Boltzmann factor +Figure 9. +The long time probability distribution for the +number difference ˜ρ. The data points are from the different +nonlinear models considered in this paper averaged over the +spatial coordinate z and also over a time window ranging from +˜t = 800 to ˜t = 980 to remove fluctuations. The pink dashed +line is the circus tent distribution PCT given in Eq. (44) and +derived in Appendix E under the assumption of ergodicity; +the circus tent shape is due to the proliferation of caustics +at long times and gives a good fit to the data. +The solid +black curve is the thermal distribution PT with a temperature +chosen so that the expectation value of the energy matches +that provided by the quench. +allows for excitations with any energy (albeit with ex- +ponentially small probability) including those involving +pendula undergoing rotation as well as libration, whereas +the J-quench only excites librational motion. The proba- +bility distribution for a thermal pendulum is in fact quite +delicate to compute because of the singularity in the den- +sity of states between libration and rotation but the com- +bined result is smooth; see Appendix F for more details. +B. +Structural stability of caustics +The defining characteristic of the singularities de- +scribed by catastrophe theory is structural stability +against perturbations and this ensures that they occur +generically. The same is not true of isolated singularities +as can be seen by comparing Figures 3 and 4 where it +is shown that point foci do not survive the introduction +of nonlinearity. In two dimensions cusps are the unique +structurally stable catastrophe and from Figures 3 and 5 +we see that cusp-shaped caustics are indeed stable against +random thermal fluctuations. However, thus far we have +imposed the symmetrical starting condition that the ini- +tial number difference between the two quasicondensates +is zero. One may therefore wonder whether the caustics +we see are a consequence of this symmetry. To check that +this is not the case we show in Figure 10 the dynamics +for the case where the initial background density n1D in +the two quasicondensates differs by 10%. We see that + +1.0 +PcT +Thermal +two-mode +0.8 +many-mode SG+ +t +0.6 +0.4 +0.2 +0.0 +-2.0-1.5-1.0-0.5 +0.0 +0.5 +1.0 +1.5 +2.0 +(p)z,t16 +Figure 10. +Structural stability of caustics: here we investigate the effect of unbalanced densities on caustics by tracking the +same SG+ model dynamics as those shown in Figure 5 except for an initial density imbalance of 0.1 in the background of ˜ρ +at each point z. We see that the cusp caustics in the plots of ⟨˜ρ⟩z and ⟨˜φ⟩z versus time are distorted but still maintain their +basic structure. This is because the whorl in phase space is left intact despite having a displaced centre. Caustics are resilient +against imperfections and perturbations and we expect them to be present under realistic experimental conditions. +although the caustics in both ⟨˜ρ⟩z and ⟨˜φ⟩z are distorted +they maintain their basic cusp shape. Furthermore, the +phase space whorls still occur and this guarantees the +existence of caustics. +C. +Coherence factor and relaxation towards +equilibrium +Cold atom experiments have the ability to measure cor- +relation functions in nonequilibrium many-body states +[74, 116–118]. As a simple example let us consider the +coherence factor +C(˜t) = +� +⟨cos ˜φ⟩z +� +(47) +which depends on the spatial average of the phase dif- +ference field ˜φ(˜z, ˜t) between points along the two qua- +sicondensates. The outer brackets indicate an ensemble +average which means averaging over many trajectories +each sampled from the thermal distribution discussed in +Sec. IV. In the Vienna experiments, where one quasicon- +densate is suddenly split into two, the coherence starts +near unity and decays over time as the two quasiconden- +sates decohere [76, 77]. In the opposite case, where two +independent quasicondensates are suddenly coupled, one +expects the converse where the coherence starts at zero +and grows. This situation has been previously modelled +by Horváth et al. using both the TWA and a truncated +conformal space approach [95]. +They found that C(˜t) +initially grows and then undergoes damped oscillations +as it settles down towards a finite constant value. The +coherence factor therefore provides a measure of how the +system reaches equilibrium. In this context we note that +C(˜t) actually corresponds to an ensemble average of the +cosine term in the SG/SG+ Hamiltonian and thus gives +information on the exchange of energy between the dif- +ferent parts. In other words, since the total energy is a +constant of the motion, if the ‘potential’ part of the en- +ergy settles down to a constant this suggests the ‘kinetic’ +parts of the energy are also constant, at least from an +ensemble averaged point of view. Our aim in this sec- +tion is to see if the dynamics of C(˜t) is connected to the +caustics. +In Figure 11 we plot C(˜t) for two models: the full +SG+ model which is many-mode and nonlinear and a +linearized version which obeys the equations of motion +d˜φ +d˜t = 2Γ˜ρ − Γ +2 +∂2˜ρ +∂˜z2 +d˜ρ +d˜t = 2ϵ∂2 ˜φ +∂˜z2 − 2J ˜φ. +(48) +This differs from the linearized two-mode approximation +defined by Eq. (40) because it describes an elongated +multi-mode system. From Figure 11 we see that C(˜t) for +the SG+ model (dark blue curve) does indeed initially +grow, undergo damped oscillations and settle down to a +non-zero value (the fact that C(˜t) ̸= 0 at ˜t = 0 is due +to random fluctuations in the initial conditions: as we +include more trajectories we find that the initial value +gets smaller). Meanwhile, C(˜t) for the linear model (red +dashed curve) executes undamped oscillations and hence +does not settle down to equilibrium. Both models agree +during the first oscillation but strongly differ after that. +It is clear that nonlinearity is important for reaching +equilibrium at least as far as global quantities such as +C(˜t) are concerned. +We can understand this by inter- +preting the SG+ model as describing a chain of coupled +pendula. The nonlinearity of each pendulum means that +its period depends on the amplitude of its motion and +hence an ensemble of pendula whose motion is initiated +together by the quench, but all with different degrees of +excitation, will dephase from one another over time so +that collective oscillations are damped out. By contrast, +linear oscillators have a period independent of their am- +plitudes of motion and hence remain in phase. +Apart from the ensemble averages shown by the darker +curves in Figure 11, we have also included the individ- +ual trajectories for ⟨cos ˜φ⟩z as fainter curves. The linear + +2.0 +1.5 +1.0 +0.5 +0.0 +-0.5 +-1.0 +-1.5 +-2.0 +0 +25 +50 +75 +100 125 150 175 2003 +2 +1 +0 +-1 +-2 +-3 +0 +25 +50 +75 +100 125 150 175 200 +2t2.0 +1.5 +1.0 +0.5 +0.0 +-0.5 +-1.0 +-1.5 +-2.0 +-3 +-2 +-1 +0 +1 +2 +3 +(0)z17 +Figure 11. +The two dark lines give the time evolution of the +coherence factor C(˜t) defined in Eq. (47) for a linear model +(dashed-dotted red) and the SG+ model (solid blue). Both +models are multi-mode (many longitudinal modes along ˜z) +but the SG+ model is nonlinear. Also included as faint lines +are the raw trajectories ⟨cos ˜φ⟩z from which C(˜t) is composed. +As everywhere in this paper, ⟨. . .⟩z indicates a spatial aver- +age. +This figure highlights that recurrences present in the +linear case are suppressed by nonlinearity in the SG+ sys- +tem. +The ensemble average over trajectories with different +periods causes C(˜t) to relax towards an equilibrium value in +the case of the SG+ model in line with previous experimental +observations [76, 77] and theory [95]. +model displays harmonic motion and hence perfect re- +vivals whereas the trajectories in the nonlinear model +give rise to half-cusp caustics. +These caustics overlap +in time such that averaging over them causes the coher- +ence to strongly relax after a single period. It is not so +much that the caustics cause the relaxation, but rather +that both have a common origin in the nonlinearity of +the model and hence are generic features of dynamics in +complex systems. +VII. +SUMMARY AND CONCLUSIONS +The sine-Gordon (SG) model is a nonlinear integrable +field theory that can be used to describe a wide range +of systems from high energy physics to condensed matter +physics. A series of landmark experiments using two cou- +pled 1D atomic quasicondensates [63, 71–77] have real- +ized the SG model in a controllable quantum many body +environment. The key parameters can be varied in time +allowing the implementation of sudden quenches that ex- +cite many modes leading to nonequilibrium dynamics. +This is the setting we adopt for the current paper where +we use experimentally realistic parameters and compute +the dynamics of the number and phase difference fields. +However, in contrast to the usual experimental protocol +where the tunnel coupling J is suddenly switched off, +we consider quenches where it is suddenly switched on. +While the former case is adapted to studying dephasing, +decay and thermalization between the two subsystems, +the many body dynamics is governed by the Tomonaga- +Luttinger Hamiltonian describing independent 1D quasi- +condensates. If instead J is suddenly switched on then +the dynamics is that of the full SG model. +Our calculations employ a thermal version of the +semiclassical truncated Wigner approximation (TWA) +method. More specifically, we propagate a large num- +ber of classical field configurations over time with initial +conditions sampled from a distribution at thermal equi- +librium. The time evolved configurations (trajectories) +can be summed to obtain the probability distributions +for the observables and we find that these are dominated +by singular caustic patterns. The natural mathematical +description of caustics is catastrophe theory that predicts +a hierarchy of structurally stable singularities with char- +acteristic shapes that depend on dimension. In two di- +mensions (e.g. number or phase difference versus time) +the structurally stable catastrophes are fold lines that +meet at cusps. This is exactly what we find in both the +number and phase differences following a J-quench, see +Figure 5. +The probability distributions develop trains +of caustics that are born periodically as cusp points (lo- +cated at the center of the distribution if there is no tilt) at +each plasma period and evolve into pairs of fold lines that +gradually move out to the wings where they accumulate. +Fold catastrophes manifest as strong non-gaussian fluc- +tuations in the form of inverse square root divergences in +the intensity (probability density), as shown in Figure 6. +A special case is provided by the dynamics of a two +mode system as shown in Figure 3. +Here the equa- +tions of motion are the Josephson equations given in +Eq. (39). The only fluctuations we include in this ex- +ample are the quantum fluctuations in the initial rela- +tive phase between the two condensates as mandated by +the uncertainty principle applied to systems in relative +number eigenstates. +The two-mode case is relevant to +small systems where the higher modes are well above +the temperature scale and so any spatial fluctuations are +suppressed. By contrast, the many-mode case shown in +all the other figures includes both quantum fluctuations +and thermal fluctuations in the longitudinal modes, i.e. +thermal occupation of phonon modes in the 1D quasicon- +densates. Despite the presence of the many longitudinal +modes (typically 50 in our calculations, as set by the pa- +rameter NL) which give rise to highly random looking +phase and density profiles as seen in Figure 2, we find +that number and phase caustics survive for experimen- +tally realistic parameters. Furthermore, the qualitative +features of the caustics are stable against variations in +quench strength and density imbalance, as seen in Fig- +ures 8 and 10, respectively, and also against the details +of the model (in this paper we use the SG+ model which +augments the SG model by including longitudinal den- +sity gradients). All of these different examples confirm +the structural stability of caustics which is the reason why +they occur universally without the need for fine tuning. + +1.00 +0.75 +0.50 +(cos((z))z +0.25 +0.00 +-0.25 +-0.50 +-0.75 +Linearmany-mode +-1.00 +Non-linear many-mode SG+ +0 +50 100 150 200 250 300 350 400 +t18 +The proliferation of caustics over time combined with +their migration to the edge of the probability distribution +has important consequences for the long time probability +distribution. It takes on the shape of a circus tent featur- +ing a strong central peak due to the cusp tips which are +the most singular part of a caustic, flatter intermediate +regions, and rapidly decaying edges where the caustics +pile up, see Figure 9. This shape is quite distinct from a +gaussian thermal distribution and can be derived assum- +ing an ergodic hypothesis in which individual pendula +have equal probability to be anywhere on their energy +shell (see Appendix E). The approach to this equilibrium +distribution can be tracked over time using the coherence +factor (Figure 11) which is a spatial and ensemble average +over the phase field and corresponds to the cosine term in +the Hamiltonian if the latter is ensemble averaged. The +attainment of equilibrium relies on the nonlinearity of the +system to dephase itself when ensemble averaged. The +caustics also rely on the nonlinearity without which they +would reduce to nongeneric perfect revivals (point foci). +In this sense caustics are mutually exclusive to recur- +rences, at least in the statistical sense in which caustics +appear in this paper. +Caustics in the SG model could be observed experi- +mentally by measuring the probability density for either +the phase difference or the number difference. For ex- +ample, the phase difference can be obtained by releasing +the two quasicondensates from their double well potential +and letting them overlap [80–82]. This process must be +repeated many times and for as near identical initial con- +ditions and time evolution as possible in order to build +up a probability distribution, although due to the struc- +tural stability of caustics they will not be particularly +sensitive to differences in the experimental setup from +run to run. If the probability distribution is obtained for +a single time then we expect to see something like that +shown in Figure 6. In order to observe the time evolu- +tion of a caustic, one must then repeat the whole process +for a range of different evolution times. This is laborious +but technically possible, and since the first cusp caustic +appears at half the plasma period the experiment does +not need to run for long. +The singular nature of caustics means that they dom- +inate wave fields and are well known in hydrodynam- +ics and optics through phenomena such as tsunamis and +gravitational lensing. The results of this paper show that +they also occur in the nonequilibrium dynamics of 1D su- +perfluids where a quench plays an analogous role to an +underwater earthquake by generating strong excitations +beyond the linear regime that are focused in this case by +the cosine term in the SG Hamiltonian. The universal +properties of catastrophes imply caustics likely also occur +in the post-quench dynamics of other condensed matter +systems too: systems with more degrees of freedom will +display higher catastrophes beyond folds and cusps such +as hyperbolic and elliptic umbilics [34]. However, a spe- +cial feature of the SG model is that it is integrable and +so one may ask if that property plays a crucial role in +the existence of caustics. In this context, we note that +in classical mechanics caustics are closely associated with +the existence of tori in phase space upon which trajec- +tories live [58]. Tori are broken up by chaos, and thus +caustics are not expected to survive for long in systems +which are deep in the chaotic regime. Despite this, the +Kolmogorov-Arnold-Moser (KAM) theorem shows that +some tori survive in moderately chaotic systems [119], +which suggests caustics may also survive in cases where +the classical phase-space is mixed, which is the typical +case. Indeed, they survive in the three site Bose-Hubbard +model [34] which is known to be chaotic [120]. The im- +portant problem of extending the KAM theorem to quan- +tum mechanics [121] is thus intertwined with the analysis +of caustics in quantum systems and provides an interest- +ing direction for extending the present work. +ACKNOWLEDGEMENTS +We thank Ryan Plestid for contributions on ther- +mal field sampling in the early stages of this project, +Josh Hainge for suggesting the term ‘circus tent’, and +Igor Mazets for correspondence and advice about ex- +periments. +This work was supported by the Mitacs +Globalink research internship, by the Natural Sciences +and Engineering Research Council of Canada (NSERC), +and Research at the Perimeter Institute is supported +in part by the Government of Canada, through the +Department of Innovation, Science and Economic De- +velopment Canada, and by the Province of Ontario, +through the Ministry of Colleges and Universities. M.K. +would like to acknowledge support from the project +6004-1 of the Indo-French Centre for the Promotion of +Advanced Research (IFCPAR), Ramanujan Fellowship +(SB/S2/RJN-114/2016), SERB Early Career Research +Award (ECR/2018/002085) and SERB Matrics Grant +(MTR/2019/001101) from the Science and Engineering +Research Board (SERB), Department of Science and +Technology (DST), Government of India. M.K. acknowl- +edges support from the Infosys Foundation International +Exchange Program at ICTS. M.K acknowledges support +of the Department of Atomic Energy, Government of In- +dia, under Project No. 19P1112R&D. +Appendix A: Derivation of the sine-Gordon +Hamiltonian +In this appendix we derive the Hamiltonian HSG as +the effective low energy description of two cigar shaped +tunnel-coupled quasicondensates [50, 74] within a clas- +sical field description (Gross-Pitaevskii theory). Along +the way we also obtain a slightly enhanced Hamiltonian +HSG+ that includes contributions from the gradient of +density fluctuations that are not included in the sine- +Gordon (SG) Hamiltonian. These contributions are not +very important for our parameters but play an impor- + +19 +tant conceptual role by introducing an energetic price +for a rapidly varying density and hence effectively cut off +these fluctuations. +Assuming tight radial trapping such that each quasi- +condensate is in its radial ground state, meaning that +only longitudinal excitations are taken into account, the +second quantized Hamiltonian for the total system be +written +H = +� ∞ +−∞ +dz +� � +j=1,2 +� +− ℏ2 +2m +ˆψ† +j(z)∂2 ˆψj(z) +∂z2 ++ +U(z) ˆψ† +j(z) ˆψj(z) + g1D +2 +ˆψ† +j(z) ˆψ† +j(z) ˆψj(z) ˆψj(z) +� +− ℏJ +� +ˆψ† +1(z) ˆψ2(z) + ˆψ† +2(z) ˆψ1(z) +�� +. +(A1) +The quantum field operator ˆψj(z) annihilates a particle +at the point z in the jth well, where z is the coordinate +along the longitudinal direction (long axis of the system). +m is the mass of the particles, U(z) is a possible external +potential (in this paper it will be set to zero), g1D con- +trols the interparticle interaction strength, and J is the +tunneling frequency between the two wells. In the classi- +cal field approximation we replace the field operators by +complex functions +ˆψj(z) → ψj(z) = eiφj(z)� +n1D + ρj(z) . +(A2) +Note that φj and ρj are the phase and density variables +for each well rather than their antisymmetric versions +which are used extensively in the main text. +Let us start by manipulating the kinetic energy term +− +� +j=1,2 +� ∞ +−∞ +dz ℏ2 +2m +ˆψ† +j(z)∂2 ˆψj(z) +∂z2 +(A3) += +� ∞ +−∞ +dz +� +j=1,2 +ℏ2 +2m +� � ∂ +∂z e−iφj(z)� +n1D + ρj(z) +� +× +� ∂ +∂z e+iφj(z)� +n1D + ρj(z) +� � += +� ∞ +−∞ +dz +� +j=1,2 +ℏ2 +2m +� +− i∂φj +∂z +ˆψ† +j + +e−iφj ∂ρj +∂z +2√n1D + ρj +� +× +� +i∂φj +∂z +ˆψj + +eiφj ∂ρj +∂z +2√n1D + ρj +� += +� ∞ +−∞ +dz +� +j=1,2 +ℏ2 +2m +� +ˆψ† +j ˆψj +�∂φj +∂z +�2 ++ +( ∂ρj +∂z )2 +4(n1D + ρj) ++ i +∂ρj +∂z +∂φj +∂z +2√n1D + ρj +[ ˆψje−iφj − ˆψ† +jeiφj] +� += +� ∞ +−∞ +dz +� +j=1,2 +ℏ2 +2m +� +ˆψ† +j ˆψj +�∂φj +∂z +�2 ++ +( ∂ρj +∂z )2 +4(n1D + ρj) +� +≈ +� ∞ +−∞ +dz ℏ2 +2m +� +n1D +2 +��∂φs +∂z +�2 ++ +�∂φa +∂z +�2� ++ +1 +2n1D +��∂ρs +∂z +�2 ++ +�∂ρa +∂z +�2� � +(A4) +where +φa = φ1 − φ2, +φs = φ1 + φ2 +(A5) +ρa = ρ1 − ρ2 +2 +, +ρs = ρ1 + ρ2 +2 +, +(A6) +and we assume that n1D ≫ ρj. Next we consider the +interactions +� +j=1,2 +g1D +2 ψ† +jψ† +jψjψj = +� +j=1,2 +g1D +2 [n1D + ρj(z)]2 += +� +j=1,2 +� +g1Dn2 +1D +2 ++ g1Dρ2 +j +2 ++ g1Dn1Dρj +� +=g1Dn2 +1D + g1D(ρ2 +s + ρ2 +a) + 2g1Dn1Dρs . +(A7) +Finally, we consider the tunneling term +−ℏJ +� +ψ† +1(z)ψ2(z) + ψ† +2(z)ψ1(z) +� +(A8) += − ℏJ +� +(e−i(φ1−φ2) + e−i(φ2−φ1))√n1D + ρ1 +√n1D + ρ2 +� += − 2ℏJ cos(φa)√n1D + ρ1 +√n1D + ρ2 += − 2ℏJ cos(φa) +� +n2 +1D + 2n1Dρs + ρ2s − ρ2a +≈ − 2ℏJ cos(φa)(n1D + ρs) ≈ −2ℏn1DJ cos(φa) . +(A9) + +20 +At very low temperatures the symmetric and antisym- +metric components decouple and hence can be treated +separately. The lower energy terms are the antisymmet- +ric ones and we obtain the following Hamiltonian +HSG+ = +� ∞ +−∞ +dz +� +g1D ρa(z)2 + ℏ2n1D +4m +�∂φa +∂z +�2 ++ +ℏ2 +4mn1D +�∂ρa +∂z +�2 � +− +� ∞ +−∞ +dz 2ℏJn1D cos [φa(z)] . +(A10) +When the higher wavelength ρ modes are suppressed this +reduces to the sine-Gordon model +HSG = +� ∞ +−∞ +dz +� +g1D ρa(z)2 + ℏ2n1D +4m +�∂φa +∂z +�2 +− 2ℏJ n1D cos [φa(z)] +� +. +(A11) +Eq. (A11) is the finally obtained SG Hamiltonian HSG +which is the low energy description of two cigar shaped +tunnel-coupled quasicondensates [50, 74]. +Appendix B: Derivation of the Tomonaga-Luttinger +(TL) Hamiltonian in Fourier space +In this appendix we derive the Fourier space version +of the Tomonaga-Luttinger (TL) Hamiltonian. Starting +from Eq. (25), and applying the discrete Fourier decom- +positions given in Eq. (26) and Eq. (27), we have +HTL+(ra) = +� ∞ +−∞ +dz +g1D +NL + 1 +� +� +NL/2 +� +k=−NL/2 +ϱkei 2πkr +NL+1 +� +� × +� +� +NL/2 +� +l=−NL/2 +ϱlei 2πlr +NL+1 +� +� ++ +� ∞ +−∞ +dz +ℏ2n1D +4ma2(NL + 1) +∂ +∂r +� +� +NL/2 +� +k=−NL/2 +ϕkei 2πkr +NL+1 +� +� × ∂ +∂r +� +� +NL/2 +� +l=−NL/2 +ϕlei 2πlr +NL+1 +� +� ++ +� ∞ +−∞ +dz +ℏ2 +4mn1Da2(NL + 1) +∂ +∂r +� +� +NL/2 +� +k=−NL/2 +ϱkei 2πkr +NL+1 +� +� × ∂ +∂r +� +� +NL/2 +� +l=−NL/2 +ϱlei 2πlr +NL+1 +� +� += a +NL/2 +� +r=−NL/2 +NL/2 +� +k=−NL/2 +NL/2 +� +l=−NL/2 +� +�g1Dϱkϱlei 2π(k+l)r +NL+1 +NL + 1 +� +� +− a +NL/2 +� +r=−NL/2 +NL/2 +� +k=−NL/2 +NL/2 +� +l=−NL/2 +ℏ2n1D +4ma2(NL + 1) × +� +2π +NL + 1 +�2 +klϕkϕlei 2π(k+l)r +NL+1 +− a +NL/2 +� +r=−NL/2 +NL/2 +� +k=−NL/2 +NL/2 +� +l=−NL/2 +ℏ2 +4mn1Da2(NL + 1) × +� +2π +NL + 1 +�2 +klϱkϱlei 2π(k+l)r +NL+1 +(B1) +where we have split the z coordinate into NL + 1 grid +points separated by distance a so that z = r a where r +in an integer lying in the range specified by Eq. (11). +Using the fact that NLa = L, and applying the identity +�NL/2 +r=−NL/2 ei 2π(k+l)r +NL+1 += (NL + 1)δk,−l we obtain +HTL+ ≈a +� +k +� +l +g1Dϱkϱlδk,−l +− a +� +k +� +l +�ℏ2n1Dπ2 +mL2 +� +klϕkϕlδk,−l +− a +� +k +� +l +� +ℏ2π2 +mn1DL2 +� +klϱkϱlδk,−l +(B2) +where in the second term we have also replaced a2(NL + +1)2 by L2 which holds when NL ≫ 1. The limits of the +summation in Eq. (B2) has been omitted for the sake of + +21 +brevity. We therefore find +HTL+ ≈ +� +k +� +ag1Dϱkϱ−k+aℏ2n1Dπ2k2 +mL2 +ϕkϕ−k ++ aℏ2π2k2 +mn1DL2 ϱkϱ−k +� += +� +k +� +ag1D|ϱk|2+aℏ2n1Dπ2k2 +mL2 +|ϕk|2 ++ aℏ2π2k2 +mn1DL2 |ϱk|2 +� +(B3) +where we used the property of real fields that +ϕ−k = ϕ⋆ +k, +and +ϱ−k = ϱ⋆ +k . +(B4) +Hence the Hamiltonian takes the form given in Eq. (28) +of the main text. +Appendix C: Bench marking of the numerical +method +The results given in this paper rely on numerically +evolving the equations of motion over time for various +models [e.g. for the full SG+ model the equations of mo- +tion are given in Eq. (22)], which we accomplish using +the Julia package DifferentialEquations.jl [114]. This im- +plements a Runge-Kutta solver with a user-defined time +step. +As a measure of the accuracy of our numerical +method we use the deviation of the Hamiltonian from +its initial value. Since the Hamiltonian should be a con- +stant of motion this gives an indication of the size of the +numerical errors. +In Figures 12 and 13 we plot the relative error in the +SG+ Hamiltonian given in Eq. (18) for different time +and spatial resolutions. More precisely, Figure 12 shows +the effect of varying the time step d˜t, whereas Figure 13 +shows the effect of varying the number of grid points NL +which sets the spatial step d˜z. In both cases we have +evolved the system for a total elapsed time of ˜t = 1000 +which corresponds to the longest times we use in this +paper (for the calculation of the long-term distribution +shown in Figure 9), and also taken an ensemble average +over 100 different trajectories similar to those in Figure 5. +Furthermore, we also performed a moving time average +of 30-time steps around ˜t = 1000 to average out the effect +of fast oscillations. +As expected, the relative error decreases as d˜t and d˜z +decrease. For all the calculations in this paper we chose +d˜t = 0.2 and NL = 50 because this keeps the relative +error below 10 % and does not significantly slow down +the simulations. +Figure 12. +The relative error in the SG+ Hamiltonian is +plotted here as a function of the time step d˜t. The definition +of the SG+ Hamiltonian is given in Eq. 18 and should be +a constant of the motion were it not for numerical errors. +The moving time average of relative error is evaluated after +propagating the equations of motion for a total elapsed time +of ˜t = 1000. All parameter values are the same as in Figure +5 including NL = 50. +Figure 13. +The relative error in the SG+ Hamiltonian is +plotted here as a function of the number of lattice points NL +on the numerical spatial lattice. Like in Figure 12, the Hamil- +tonian is evaluated after evolving the equations of motion for +a total elapsed time of ˜t = 1000. The moving time average +of the relative error fluctuates (at around 10 %) but does de- +crease as d˜z decreases (or NL increases). All other parameter +values are the same as in Figure 5 with d˜t = 0.2 +Appendix D: Caustic curve +In this appendix we use the exact solution for the mo- +tion of a pendulum to calculate the caustic curve plotted +as the solid black line in Figure 3. The caustic is in fact +the envelope of a whole family of trajectories. To begin, +we take the equations of motion for the SG model given in + +0.6 +0.5 +(0) + 9SH (1) +0.4 +0.3 +0.2 +0.1 +10-1 +100 +101 +dt0.16 +0.14 +0.12 +0.10 +0.08 +0.06 +0.04 +20 +40 +60 +80 +100 +NL22 +Eq. (22) and drop the second order derivative term pro- +portional to ϵ which couples the different pendula. Next, +we make the change of variables +˜t = At, +˜ρ = Bp, +˜φ = 2y +(D1) +where +A = 1 +2 +1 +√J Γ +, +B = 2 +� +J +Γ +(D2) +so the equations of motion simplify to +dy +dt = p +(D3) +dp +dt = −1 +2 sin 2y . +(D4) +These equations are Hamilton’s equations obtained from +a standard pendulum hamiltonian of the form +H(y, p) = p2 +2 + 1 +2 sin2 y . +(D5) +The equations of motion given in Eqns. (D3) and (D4) +have exact solutions in terms of the Jacobi elliptic func- +tions sn[u|m] and cn[u|m] [122]. For the case relevant +to us where the pendulum starts at angle y0, with zero +initial angular momentum, they are +y(t, y0) = arcsin{sin y0 sn[t + K(sin y0)| sin y0]}(D6) +p(t, y0) = sin(y0) cn[t + K(sin y0)| sin y0] +(D7) +where K(m) = +� π/2 +0 +dθ/ +� +1 − m2 sin2 θ is the complete +elliptic integral of the first kind [122] (we caution the +reader that some computer packages such as Mathematica +use the syntax K(m2) for this integral). +Caustics occur when trajectories are focused, in other +words they are the places where the trajectory does not +change (to first order) when the initial conditions are +varied. Thus, caustics in the momentum variable p oc- +cur when dp/dy0 = 0 since the initial condition here is +specified by y0. By differentiating Eq. (D7) an implicit +expression for the position of the caustics can be found +[123] +sn(u|m)dn(u|m) +�E(am(−t|m) |m) +cos(y0) ++ t cos(y0) +� +− cos(y0)cn(u|m) = 0 +(D8) +where u = t+K(sin y0), m = sin y0, E(u|m) is an elliptic +integral of the second kind, dn(u|m) is another Jacobi +elliptic function, and am(u|m) = arcsin[sin(φ)/m] is the +Jacobi amplitude [122]. Finding the roots y0 of Eq. (D8) +numerically at each value of the time gives pairs of values +(y0, t) that can then be put back into Eq. (D7) to yield +the black curve for the caustic shown in Figure 3. The +match to the numerics is very good. +Appendix E: Derivation of ergodic (“circus tent”) +probability distribution at long times +In this appendix we outline the derivation of an an- +alytic approximation to the probability distribution for +the number difference at long times, as shown in Figure +9. This derivation is based upon a calculation given in +Ref. 124 and assumes that the average behaviour of a con- +tinuous chain of coupled pendula (the mechanical system +that underlies the sine-Gordon model) can be described +by a suitably ‘ergodized’ single pendulum. +To keep the calculation general we use the pendulum +Hamiltonian in standard form as given in Eq. (D5). With +this hamiltonian we define a microcanonical probability +density in phase space: +dm(y, p; y0) = +δ[H(y, p) − H(y0, p)] +� � +dy dp δ[H(y, p) − H(y0, p)] +(E1) +where y0 is the initial angle of the pendulum which fixes +its total energy to be E = (1/2) sin2 y0 if the the initial +angular momentum is zero (this is the appropriate ini- +tial condition for the tunneling quench considered in this +paper where the initial number difference is taken to be +zero), and the denominator ensures that dm is normalized +to unity. A microcanonical distribution has equal prob- +ability to be anywhere on its energy shell (in this case +a closed curve in y, p phase space) and thus by adopt- +ing Eq. (E1) we are making an ergodic hypothesis. This +does not hold for a single pendulum starting at position +y0 since it will spend the most time at its turning points +y = ±y0, but when averaged over y0 and y (see below) +it gives a very good approximation at long times, as can +be seen in Figure 9. +The normalization integral can be evaluated exactly +by re-expressing the delta function using the relation +δ[g(x)] = � +i δ(x − xi)/|g′(xi)|, where xi are the roots +of g(x). In the present case this gives +δ[(p2 + sin2 y − sin2 y0)/2] =δ[p − p1] +|p1| ++ δ[p − p2] +|p2| +=2δ[p − p1] +|p1| +(E2) +where |p1| = |p2| = +� +sin2 y0 − sin2 y. In obtaining this +expression we have used the fact that for values of y +within the range accessed by the pendulum, there are +two values of p where the integral crosses the energy shell. +The integral over p is now trivial due to the delta func- +tion and the integral over y can be performed by putting +sin y = sin y0 sin ζ so that + +23 +2 +� y0 +−y0 +dy +|p(y, y0)| = 2 +� y0 +−y0 +dy +� +sin2 y0 − sin2 y += 2 +� π/2 +−π/2 +dζ +� +1 − sin2 y0 sin2 ζ += 4 +� π/2 +0 +dζ +� +1 − sin2 y0 sin2 ζ += 4K(sin y0) . +(E3) +Therefore, the normalized microcanonical probability +density can be written as +dm(y, p; y0) = +1 +4K(sin y0)δ[(p2 + sin2 y − sin2 y0)/2] += +1 +2K(sin y0)δ(p2 + sin2 y − sin2 y0) +(E4) +where we have used the property of delta functions that +δ(αx) = (1/α)δ(x). +The initial condition for our dynamics is such that the +number difference is well defined but the phase differ- +ence is completely undefined. We must therefore average +the microcanonical probability density over all y0. This +gives the phase space probability density relevant to J- +quenches as being +W(y, p) = 1 +π +� π/2 +−π/2 +dy0 dm(y, p; y0) +(E5) +where we employ the notation W to indicate that this is +a classical version of the Wigner function. The properties +of the delta function can once more be used to write +δ(p2 + sin2 y − sin2 y0) = +� +i +δ(y0 − y0i)θ(cos y − |p|) +2 +� +p2 + sin2 y +� +cos2 y − p2 +(E6) +where θ(x) is the Heaviside step function. The integral +over y0 can now be evaluated exactly to give +W(y, p) = 2 +4π +θ(cos y − |p|) +K( +� +p2 + sin2 y) +� +p2 + sin2 y +� +cos2 y − p2 . +(E7) +The final step is to integrate out the y coordinate to +obtain the probability distribution PCT(p) for p alone +PCT(p) = +� π/2 +−π/2 +dy W(y, p) , +(E8) +where “CT” stands for circus tent. Although this integral +cannot be done analytically, it can be put in a form which +is convenient to evaluate numerically. +Denoting m = +sin y0 = +� +p2 + sin2 y, one finds that +PCT(˜ρ) = +1 +2πB +� 1 +˜ρ2/B2 +dm +K(m) +� +m(1 − m)(m − ˜ρ2/B2)(1 + ˜ρ2/B2 − m) +(E9) +where we have also converted back from angular momen- +tum p to number difference ˜ρ using Eq. (D1). This equa- +tion is given in the main text as Eq. (44) and is plotted +in Figure 9 where it is compared against the long-time +spatially and temporally averaged numerical data for the +various nonlinear models considered in this paper. +As +can be seen in Figure 9, PCT is characterized by a di- +verging (yet normalizable) peak at the center and then +relatively flat wings until it drops sharply to zero at the +edges. In Ref. 124 it is shown that PCT(˜ρ) diverges log- +arithmically at the origin ˜ρ = 0 and also tends suddenly +to zero with logarithmic singularities at ˜ρ = ±B. Both +these non-thermal features can be attributed to the pres- +ence of caustics. +Appendix F: Pendulum at thermal equilibrium +In Figure 9 the long time probability distribution for +the number difference is compared against the ergodic +prediction derived in Appendix E, and also against the +thermal equilibrium prediction. In this Appendix we ex- +plain how to calculate the latter case. In order to make +the calculation tractable we make the assumption that +the SG+ model can be approximated by a thermal en- +semble of independent pendula. We also adopt the same +notation as Appendix E and hence work with a pendulum +Hamiltonian in the standard form H = (1/2)(p2+sin2 y). +This is related to the two mode Hamiltonian H2M = +Γ˜ρ2 − 2J cos φ by H = H2M/8J + 1/4. +We proceed in two steps: we first calculate the prob- +ability distribution PE(p) for the momentum variable p +(that here plays the role of the number difference) for a +fixed energy E. Secondly, we assume our system is at +thermal equilibrium with a bath at temperature T such +that the relative probability of any energy is given by the +Boltzmann factor exp[−E/T]. Thus the thermal proba- +bility distribution is +PT (p) = 1 +Z +� ∞ +0 +PE(p) e−E/T D(E) dE +(F1) +where Z is a normalizing factor (found numerically) and + +24 +D(E) is the density of states. +The probability distribution PE(p) at fixed E is pro- +portional to 1/ ˙p as this determines how long the pendu- +lum spends at each value of p. According to Hamilton’s +equation ˙p = −∂H/∂x = −(1/2) sin 2y, and using the +fact that sin y = +� +2E − p2, we find that this probability +distribution for a fixed value of E is +PE(p) = +N +(1/2) sin(2 arcsin +� +2E − p2) +, +(F2) +where N is a normalization factor given by the period +of the motion. +Two cases must be distinguished: for +E < 1/2 the energy is less than the separatrix and the +pendulum undergoes vibrational motion (also known as +librational motion in some literature). Conversely, when +E > 1/2 the energy is above the separatrix and the pen- +dulum undergoes rotational motion. +For motion below the separatrix we have |p| < pmax = +√ +2E. We must therefore supplement the expression for +PE(p) with the condition that it is zero if |p| > pmax and +this ensures that PE(p) is real. N is given in this case +by +N = +1 +2 K( +√ +2E) +(F3) +where, as in Appendix E, K is the complete elliptic inte- +gral of the first kind. +For motion above the separatrix we have +√ +2E − 1 < +|p| < +√ +2E and PE(p) is zero outside this range. N is +now given by +N = +√ +2E +4 K(1/ +√ +2E) +. +(F4) +To obtain the total thermal probability distribution +PT (p) given in Eq. (F1) we need the density of states +D(E) ≡ dn/dE, where n is the number of states be- +low energy E. According to the Bohr-Sommerfeld rule +n = S(E)/(2πℏ), where the action S(E) = +� +p dy is the +area in phase space enclosed by the energy contour E. +However, assuming that our Hamiltonian H is in units +ℏω then the 2πℏ factor is absorbed into the definitions of +p and y and we have D(E) = (d/dE) +� +p dy. Below the +separatrix we have +� +p(y)dy = 4 +� arcsin +√ +2E +0 +� +2E − sin2 y dy +(F5) +and putting 2E = sin2 y0 we find +D<(E) = d +dE +� +p(y)dy += 4 +� arcsin +√ +2E +0 +dy +� +sin2 y0 − sin2 y += 4K( +√ +2E) +(F6) +where the integral is performed in a similar fashion to +the one in Eq. (E3) and the subscript “<” indicates that +this is the expression valid below the separatrix. Above +the separatrix we find that the area enclosed in phase +space between two oppositely rotating states of the same +energy is +� +p(y)dy = 2 +� π/2 +−π/2 +� +2E − sin2 y dy +(F7) +and thus +D>(E) = d +dE +� +p(y)dy += 2 +� π/2 +−π/2 +dy +� +2E − sin2 y += +4 +√ +2E +K +� +1 +√ +2E +� +. +(F8) +Due to the fact that above the separatrix 2E > sin2 y we +no longer need to make the substitutions 2E = sin2 y0 +and sin y = sin y0 sin ζ, and the integral is straightfor- +ward. The subscript “>” indicates that this expression +holds above the separatrix. +We now have all the necessary ingredients to perform +the integral for PT (p) which we do numerically. +The +two contributions, one from below the separatrix and one +from above, are added together to get the total. Inter- +estingly, both density of states factors, Eqns. (F6) and +(F8), diverge at the separatrix such that the two con- +tributions individually display singular features but re- +markably these cancel out when the two parts are added +and result in the smooth gaussian curve plotted in Figure +9. +In order to compare the thermal distribution against +the quenched (followed by integrable SG evolution) dis- +tribution derived in Appendix E we need to choose a +temperature T for the thermal distribution PT . We do +this by matching the expectation value of the energy ⟨E⟩ +for both distributions. In the quenched case the initial +state corresponds to an ensemble of pendula with dif- +ferent starting angles y0 and zero kinetic energy. Each +starting angle in the range −π/2 < y0 ≤ π/2 is equally +probable in our J-quench. Therefore +⟨E⟩quench = 1 +π +� π/2 +−π/2 +1 +2 sin2 y0 dy0 = 1 +4 . +(F9) +To calculate ⟨E⟩ in the thermal case we compute +⟨E⟩T = 1 +ζ +� ∞ +0 +E e−E/T D(E) dE +(F10) +numerically for a large number of different values of +T, performing the integrals below and above the sep- +aratrix separately and adding the results. +Here ζ = +� ∞ +0 +e−E/T D(E) dE gives the normalization factor. We +then fit a curve to the results and find the value of T + +25 +that best matches the result given in Eq. (F9). We find +that T = 0.184 gives the best match. Putting back the +units this result is +kBT +8J ℏc/ξh += +kBT +16JℏK/π = 0.184 +(F11) +where c is the speed of sound and K is the Luttinger +parameter and J is the tunnel coupling rate between the +two wells. In this paper we take K = 25 and J = 30 Hz +(see Table I) giving a temperature in SI units of 5.4 nK. +[1] J. F. Nye, Natural Focusing and Fine Structure of Light: +Caustics and Wave Dislocations (Institute of Physics +Publishing: Bristol and Philadelphia, 1999). +[2] Lord Kelvin, Deep water ship-waves, Phil. Mag. 9, 733 +(1905). +[3] V. V. Titov, A. B. Rabinovich, H. O. Mofjeld, and F. I. +Thomson R. E. González, The global reach of the 26 +December 2004 Sumatra tsunami, Science 309, 2045 +(2005). +[4] M. V. Berry, Focused tsunami waves, Proc. R. Soc. Lon- +don A 463, 3055 (2007). +[5] H. Degueldre, J. J. Metzger, T. Geisel, and R. Fleis- +chmann, Random focusing of tsunami waves, Nat. Phys. +12, 259 (2016). +[6] M. V. Berry, Minimal analytical model for undular tidal +bore profile; quantum and hawking effect analogies, New +J. Phys. 20, 053066 (2018). +[7] E. J. Heller, R. Fleischmann, and T. Kramer, Branched +flow, Physics Today 74, 44 (2021). +[8] P. J. E. Peebles, The Large-Scale Structure of the Uni- +verse (Princeton University Press, Princeton, NJ, 1980). +[9] V. I. Arnold, S. F. Shandarin, and Y. B. Zeldovich, The +large scale structure of the universe I. General proper- +ties. One- and two-dimensional models, Geophys. As- +trophys. Fluid Dyn. 20, 111 (1982). +[10] S. N. Gurbatov, A. I. Saichev, and S. F. Shandarin, +Large-scale structure of the universe. The Zeldovich ap- +proximation and the adhesion model, Phys.-Usp. 55, +223 (2012). +[11] J. Feldbrugge, R. van de Weygaert, J. Hidding, and +J. Feldbrugge, Caustic skeleton & cosmic web, J. Cos- +mol. Astropart. Phys. 5, 27. +[12] M. V. Berry, Regular and irregular semiclassical wave- +functions, J. Phys. A: Math. Gen. 10, 2083 (1977). +[13] M. Berry, Singularities in waves and rays, in Physics +of Defects (Les Houches Session XXXV), edited by +R. Balian, M. Kléman, and J.-P. Poirier (North-Holland +Publishing, Amsterdam, 1981). +[14] R. Thom, Structural Stability and Morphogenesis (Ben- +jamin, Reading, MA, 1975). +[15] V. I. Arnol’d, Critical points of smooth functions and +their normal forms, Russ. Math. Survs. 30, 1 (1975). +[16] E. C. Zeeman, Catastrophe Theory: +Selected Papers +1972-1977 (Addison-Wesley, Reading, MA, 1977). +[17] J. Mumford, W. Kirkby, and D. H. J. O’Dell, Catastro- +phes in non-equilibrium many-particle wave functions: +universality and critical scaling, J. Phys. B: At. Mol. +Opt. Phys. 50, 044005 (2017). +[18] V. V. Nesvizhevsky, H. G. Börner, A. K. Petukhov, +H. Abele, S. Baeßler, F. J. Rueß, T. Stöferle, A. West- +phal, A. M. Gagarski, G. A. Petrov, and A. V. Strelkov, +Quantum states of neutrons in the Earth’s gravitational +field, Nature 415, 297 (2002). +[19] T. Jenke, P. Geltenbort, H. Lemmel, and H. Abele, Re- +alization of a gravity-resonance-spectroscopy technique, +Nature Physics 7, 468 (2011). +[20] T. C. Petersen, M. Weyland, D. M. Paganin, T. P. Sim- +ula, S. A. Eastwood, and M. J. Morgan, Electron vortex +production and control using aberration induced diffrac- +tion catastrophes, Phys. Rev. Lett. 110, 033901 (2013). +[21] W. Rooijakkers, S. Wu, P. Striehl, M. Vengalattore, and +M. Prentiss, Observation of caustics in the trajectories +of cold atoms in a linear magnetic potential, Phys. Rev. +A 68, 063412 (2003). +[22] J. H. Huckans, I. B. Spielman, B. L. Tolra, W. D. +Phillips, and J. V. Porto, Quantum and classical dy- +namics of a Bose-Einstein condensate in a large-period +optical lattice, Phys. Rev. A 80, 043609 (2009). +[23] S. Rosenblum, O. Bechler, I. Shomroni, R. Kaner, +T. Arusi-Parpar, O. Raz, and B. Dayan, Demonstra- +tion of fold and cusp catastrophes in an atomic cloud +reflected from an optical barrier in the presence of grav- +ity, Phys. Rev. Lett. 112, 120403 (2014). +[24] M. E. Mossman, T. M. Bersano, M. McNeil Forbes, and +P. Engels, Gravitational caustics in an atom laser, Na- +ture Communications 12, 7226 (2021). +[25] T. P. Simula, T. C. Petersen, and D. M. Paganin, +Diffraction catastrophes threaded by quantized vortex +skeletons caused by atom-optical aberrations induced +in trapped Bose-Einstein condensates, Phys. Rev. A 88, +043626 (2013). +[26] J. Mumford, E. Turner, D. W. L. Sprung, and D. H. J. +O’Dell, Quantum spin dynamics in Fock space following +quenches: Caustics and vortices, Phys. Rev. Lett. 122, +170402 (2019). +[27] W. Kirkby, J. Mumford, and D. H. J. O’Dell, Quantum +caustics and the hierarchy of light cones in quenched +spin chains, Phys. Rev. Research 1, 033135 (2019). +[28] M. V. Berry and M. R. Dennis, Quantum cores of optical +phase singularities, J. Opt. A 6, S178 (2004). +[29] M. V. Berry, Three quantum obsessions, Nonlinearity +21, T19 +(2008), publisher: Institute of Physics Pub- +lishing. +[30] U. Leonhardt, A laboratory analogue of the event hori- +zon using slow light in an atomic medium, Nature (Lon- +don) 415, 406 (2002). +[31] D. H. J. O’Dell, Quantum catastrophes and ergodicity +in the dynamics of bosonic Josephson junctions, Phys. +Rev. Lett. 109, 150406 (2012). +[32] A. Z. Goldberg, A. Al-Qasimi, J. Mumford, and D. H. J. +O’Dell, Emergence of singularities from decoherence: +Quantum catastrophes, Phys. Rev. A 100, 063628 +(2019). +[33] R. Plestid, P. Mahon, and D. H. J. O’Dell, Violent re- +laxation in quantum fluids with long-range interactions, +Phys. Rev. E 98, 012112 (2018). +[34] W. Kirkby, Y. Yee, K. Shi, and D. H. J. O’Dell, Caustics +in quantum many-body dynamics, Phys. Rev. Res. 4, + +26 +013105 (2022). +[35] M. V. Berry and F. J. Wright, Phase-space projection +identities for diffraction catastrophes, J. Phys. A: Math. +Gen. 13, 149 (1980). +[36] S. Coleman, Quantum sine-Gordon equation as the mas- +sive Thirring model, Phys. Rev. D 11, 2088 (1975). +[37] R. Rajaraman, Some non-perturbative semi-classical +methods in quantum field theory (a pedagogical review), +Phys. Rep. 21, 227 (1975). +[38] M. B. Fogel, S. E. Trullinger, A. R. Bishop, and J. A. +Krumhansl, Dynamics of sine-Gordon solitons in the +presence of perturbations, Phys. Rev. B 15, 1578 (1977). +[39] B. A. Malomed, The sine-Gordon model. General back- +ground, physical motivations, inverse scattering, and +solitons, in The sine-Gordon model and its applica- +tions: from pendula and Josephson junctions to gravity +and high-energy physics, edited by J. Cuevas-Maraver, +P. G. Kevrekidis, and F. Williams (Springer Interna- +tional Publishing, Heidelberg, 2014) pp. 1–30. +[40] J. Frenkel and T. Kontorova, On the theory of plas- +tic deformation and twinning, Izvestiya Akademii Nauk +SSSR, Seriya Fizicheskaya 1, 137 (1939). +[41] U. Enz, The motion of Bloch magnetic walls in magnetic +crystals, Helv. Phys. Acta 37, 245 (1964). +[42] A. Gallemí, L. P. Pitaevskii, S. Stringari, and A. Recati, +Decay of the relative phase domain wall into confined +vortex pairs: The case of a coherently coupled bosonic +mixture, Phys. Rev. A 100, 023607 (2019). +[43] M. Oshikawa and I. Affleck, Field-induced gap in s = +1/2 antiferromagnetic chains, Phys. Rev. Lett. 79, 2883 +(1997). +[44] I. Affleck and M. Oshikawa, Field-induced gap in Cu +benzoate and other s = 1/2 antiferromagnetic chains, +Phys. Rev. B 60, 1038 (1999). +[45] A. Cortés Cubero and D. Schuricht, Quantum quench +in the attractive regime of the sine-Gordon model, J. +Stat. Mech. , 103106 (2017). +[46] F. D. M. Haldane, Effective harmonic-fluid approach to +low-energy properties of one-dimensional quantum flu- +ids, Phys. Rev. Lett. 47, 1840 (1981). +[47] T. Giamarchi, Quantum Physics in One Dimension +(Oxford University Press, New York, 2004). +[48] Z. Hadzibabic, P. Kruger, M. Cheneau, B. Battelier, and +J. Dalibard, Berezinskii–Kosterlitz–Thouless crossover +in a trapped atomic gas, Nature 441, 1118 (2006). +[49] O. Chelpanova, S. P. Kelly, G. Morigi, F. Schmidt- +Kaler, and J. Marino, Injection and nucleation of +topological defects in the quench dynamics of the +Frenkel-Kontorova model, (2022), arXiv:2210.14904v2 +[cond.mat]. +[50] I. Bouchoule, Modulational instabilities in Josephson os- +cillations of elongated coupled condensates, Eur. Phys. +J. D 35, 147 (2005). +[51] V. Gritsev, A. Polkovnikov, and E. Demler, Linear re- +sponse theory for a pair of coupled one-dimensional con- +densates of interacting atoms, Phys. Rev. B 75, 174511 +(2007). +[52] A. Iucci and M. A. Cazalilla, Quantum quench dynamics +of the sine-Gordon model in some solvable limits, New +J. Phys. 12, 055019 (2010). +[53] E. G. Dalla Torre, E. Demler, and A. Polkovnikov, Uni- +versal rephasing dynamics after a quantum quench via +sudden coupling of two initially independent conden- +sates, Phys. Rev. Lett. 110, 090404 (2013). +[54] L. Foini and T. Giamarchi, Nonequilibrium dynamics +of coupled luttinger liquids, Phys. Rev. A 91, 023627 +(2015). +[55] J. Schmiedmayer, One-dimensional atomic superfluids +as a model system for quantum thermodynamics, in +Thermodynamics in the Quantum Regime, Vol. 195 +(Springer Nature, 2018) p. 823. +[56] Y. D. van Nieuwkerk, J. Schmiedmayer, and F. H. L. +Essler, Josephson oscillations in split one-dimensional +Bose gases, SciPost Phys. 10, 090 (2021). +[57] J.-F. Mennemann, I. E. Mazets, M. Pigneur, H. P. Stim- +ming, N. J. Mauser, J. Schmiedmayer, and S. Erne, +Relaxation in an extended bosonic Josephson junction, +Phys. Rev. Res. 3, 023197 (2021). +[58] M. Berry, Semiclassical mechanics of regular and irreg- +ular motion, in Chaotic behaviour of deterministic sys- +tems (Les Houches Session XXXVI), edited by G. Iooss, +R. H. G. Helleman, and R. Stora (North-Holland Pub- +lishing, Amsterdam, 1983). +[59] R. B. P. D. Miller, Exact solutions of semiclassical +non-characteristic Cauchy problems for the sine-Gordon +equation, (2007), arXiv:0705.3159 [nlin.SI]. +[60] B. Paredes, A. Widera, V. Murg, O. Mandel, S. Fölling, +I. Cirac, G. V. Shlyapnikov, T. W. Hänsch, and I. Bloch, +Tonks–Girardeau gas of ultracold atoms in an optical +lattice, Nature 429, 277 (2004). +[61] T. Kinoshita, T. Wenger, and D. S. Weiss, Observation +of a one-dimensional Tonks-Girardeau gas, Science 305, +1125 (2004). +[62] J. Esteve, J.-B. Trebbia, T. Schumm, A. Aspect, C. I. +Westbrook, and I. Bouchoule, Observations of density +fluctuations in an elongated Bose gas: Ideal gas and +quasicondensate regimes, Phys. Rev. Lett. 96, 130403 +(2006). +[63] S. Hofferberth, I. Lesanovsky, T. Schumm, A. Imam- +bekov, V. Gritsev, E. Demler, and J. Schmiedmayer, +Probing quantum and thermal noise in an interacting +many-body system, Nature Phys. 4, 489 (2008). +[64] R. Schley, +A. Berkovitz, +S. Rinott, +I. Shammass, +A. Blumkin, and J. Steinhauer, Planck distribution of +phonons in a Bose-Einstein condensate, Phys. Rev. Lett. +111, 055301 (2013). +[65] Momentum-space correlations of a one-dimensional +Bose gas, Phys. Rev. Lett. 116, 050402 (2016). +[66] T. Jacqmin, J. Armijo, T. Berrada, K. V. Kheruntsyan, +and I. Bouchoule, Sub-Poissonian fluctuations in a +1D Bose gas: From the quantum quasicondensate to +the strongly interacting regime, Phys. Rev. Lett. 106, +230405 (2011). +[67] M. Schemmer, I. Bouchoule, B. Doyon, and J. Dubail, +Generalized hydrodynamics on an atom chip, Phys. Rev. +Lett. 122, 090601 (2019). +[68] N. D. Mermin and H. Wagner, Absence of ferro- +magnetism or antiferromagnetism in one- or two- +dimensional isotropic Heisenberg models, Phys. Rev. +Lett. 17, 1133 (1966). +[69] D. S. Petrov, G. V. Shlyapnikov, and J. T. M. Walraven, +Regimes of quantum degeneracy in trapped 1d gases, +Phys. Rev. Lett. 85, 3745–3749 (2000). +[70] K. Kheruntsyan, D. Gangardt, P. Drummond, and +G. Shlyapnikov, Pair correlations in a finite-temperature +1D Bose gas, Phys. Rev. Lett. 91, 040403 (2003). +[71] T. Betz, S. Manz, R. Bücker, T. Berrada, C. Koller, +G. Kazakov, I. E. Mazets, H.-P. Stimming, A. Perrin, + +27 +T. Schumm, and J. Schmiedmayer, Two-point phase cor- +relations of a one-dimensional bosonic Josephson junc- +tion, Phys. Rev. Lett. 106, 020407 (2011). +[72] M. Gring, +M. Kuhnert, +T. Langen, +T. Kitagawa, +B. Rauer, M. Schreitl, I. Mazets, D. A. Smith, E. Dem- +ler, and J. Schmiedmayer, Relaxation and prethermal- +ization in an isolated quantum system, Science 337, +1318–1322 (2012). +[73] T. Langen, R. Geiger, M. Kuhnert, B. Rauer, and +J. Schmiedmayer, Local emergence of thermal correla- +tions in an isolated quantum many-body system, Nature +Physics 9, 640–643 (2013). +[74] T. Schweigler, V. Kasper, S. Erne, I. Mazets, B. Rauer, +F. Cataldini, T. Langen, T. Gasenzer, J. Berges, and +J. Schmiedmayer, Experimental characterization of a +quantum many-body system via higher-order correla- +tions, Nature 545, 323–326 (2017). +[75] T. Langen, T. Schweigler, E. Demler, and J. Schmied- +mayer, Double light-cone dynamics establish thermal +states in integrable 1D Bose gases, New Journal of +Physics 20, 023034 (2018). +[76] B. Rauer, S. Erne, T. Schweigler, F. Cataldini, M. Tajik, +and J. Schmiedmayer, Recurrences in an isolated quan- +tum many-body system, Science 360, 307 (2018). +[77] M. Pigneur, T. Berrada, M. Bonneau, T. Schumm, +E. Demler, and J. Schmiedmayer, Relaxation to a phase- +locked equilibrium state in a one-dimensional bosonic +Josephson junction, Phys. Rev. Lett. 120, 173601 +(2018). +[78] J. Estève, C. Gross, A. Weller, S. Giovanazzi, and +M. K. Oberthaler, Squeezing and entanglement in a +Bose–Einstein condensate, Nature 455, 1216 (2008). +[79] T. Berrada, S. V. Frank, R. Bücker, T. Schumm, J.-F. +Schaff, and J. Schmiedmayer, Integrated Mach–Zehnder +interferometer +for +Bose–Einstein +condensates, +Nat. +Comm. 4 (2013). +[80] M. R. Andrews, C. G. Townsend, H.-J. Miesner, D. M. +Durfee, D. S. Kurn, and W. Ketterle, Observation of in- +terference between two Bose condensates, Science 275, +637 (1997). +[81] Y. Castin and J. Dalibard, Relative phase of two Bose- +Einstein condensates, Phys. Rev. A 55, 4330 (1997). +[82] C. J. Pethick and H. Smith, Bose-Einstein condensa- +tion in dilute gases (Cambridge University Press, Cam- +bridge, UK, 2002) pp. 343–348. +[83] I. Zapata, F. Sols, and A. J. Leggett, Phase dynamics +after connection of two separate Bose-Einstein conden- +sates, Phys. Rev. A 67, 021603(R) (2003). +[84] G. J. Milburn, J. Corney, E. M. Wright, and D. F. Walls, +Quantum dynamics of an atomic Bose-Einstein conden- +sate in a double-well potential, Phys. Rev. A 55, 4318 +(1997). +[85] A. K. Tuchman, C. Orzel, A. Polkovnikov, and M. A. +Kasevich, Nonequilibrium coherence dynamics of a soft +boson lattice, Phys. Rev. A 74, 051601(R) (2006). +[86] M. Chuchem, K. Smith-Mannschott, M. Hiller, T. Kot- +tos, A. Vardi, and D. Cohen, Quantum dynamics in the +bosonic Josephson junction, Phys. Rev. A 82, 053617 +(2010). +[87] P. D. Drummond and A. D. Hardman, Simulation of +quantum effects in Raman-active waveguides, Europhys. +Lett. 21, 279 (1993). +[88] A. Sinatra, C. Lobo, and Y. Castin, The truncated +Wigner method for Bose-condensed gases: limits of va- +lidity and applications, J. Phys. B 35, 3599 (2002). +[89] P. B. Blakie, A. S. Bradley, M. J. Davis, R. J. Ballagh, +and C. W. Gardiner, Dynamics and statistical mechan- +ics of ultra-cold Bose gases using c-field techniques, Adv. +Phys. 57, 363 (2008). +[90] A. Polkovnikov, Phase space representation of quantum +dynamics, Ann. Phys. 325, 1790 (2010). +[91] J. Ruostekoski and L. Isella, Dissipative quantum dy- +namics of bosonic atoms in a shallow 1d optical lattice, +Phys. Rev. Lett. 95, 110403 (2005). +[92] J. Javanainen and J. Ruostekoski, Emergent classicality +in continuous quantum measurements, New J. Phys. 15, +013005 (2013). +[93] A. D. Martin and J. Ruostekoski, Quantum and thermal +effects of dark solitons in a one-dimensional Bose gas, +Phys. Rev. Lett. 104, 194102 (2010). +[94] A. D. Martin and J. Ruostekoski, Nonequilibrium quan- +tum dynamics of atomic dark solitons, New J. Phys. 12, +055018 (2010). +[95] D. X. Horváth, I. Lovas, M. Kormos, G. Takács, and +G. Zaránd, Nonequilibrium time evolution and rephas- +ing in the quantum sine-Gordon model, Phys. Rev. A +100, 013613 (2019). +[96] M. Rigol, V. Dunjko, and M. Olshanii, Thermalization +and its mechanism for generic isolated quantum sys- +tems, Nature 452, 854 (2008). +[97] L. D’Alessio, Y. Kafri, A. Polkovnikov, and M. Rigol, +From quantum chaos and eigenstate thermalization to +statistical mechanics and thermodynamics, Adv.Phys. +65, 239 (2016). +[98] M. Žnidarič, T. Prosen, G. Benenti, G. Casati, and +D. Rossini, Thermalization and ergodicity in one- +dimensional many-body open quantum systems, Physi- +cal Review E 81, 051135 (2010). +[99] A. Purkayastha, A. Dhar, and M. Kulkarni, Out-of- +equilibrium open quantum systems: A comparison of +approximate quantum master equation approaches with +exact results, Physical Review A 93, 062114 (2016). +[100] I. Reichental, A. Klempner, Y. Kafri, and D. Podolsky, +Thermalization in open quantum systems, Physical Re- +view B 97, 134301 (2018). +[101] D. Tupkary, A. Dhar, M. Kulkarni, and A. Purkayastha, +Fundamental limitations in lindblad descriptions of sys- +tems weakly coupled to baths, Physical Review A 105, +032208 (2022). +[102] F. Nathan and M. S. Rudner, Universal lindblad equa- +tion for open quantum systems, Physical Review B 102, +115109 (2020). +[103] D. Tupkary, A. Dhar, M. Kulkarni, and A. Purkayastha, +Searching +for +lindbladians +obeying +local +conserva- +tion laws and showing thermalization, arXiv preprint +arXiv:2301.02146 (2023). +[104] N. Navon, R. P. Smith, and Z. Hadzibabic, Quantum +gases in optical boxes, Nat. Phys. 17, 1334 (2021). +[105] M. Olshanii, Atomic scattering in the presence of an +external confinement and a gas of impenetrable bosons, +Phys. Rev. Lett. 81, 938 (1998). +[106] L. E. Sadler, J. M. Higbie, S. R. Leslie, M. Ven- +galattore, and D. M. Stamper-Kurn, Spontaneous sym- +metry breaking in a quenched ferromagnetic spinor +Bose–Einstein condensate, 443, 312 (2006). +[107] T. Zibold, E. Nicklas, C. Gross, and M. K. Oberthaler, +Classicial bifurcation at the transition from Rabi to +Josephson dynamics, Phys. Rev. Lett. 105, 204101 + +28 +(2010). +[108] F. +Dalfovo, +S. +Giorgini, +L. +P. +Pitaevskii, +and +S. Stringari, Theory of Bose-Einstein condensation in +trapped gases, Rev. Mod. Phys. 71, 463 (1999). +[109] A. Sinatra, C. Lobo, and Y. Castin, Classical-field +method for time dependent Bose-Einstein condensed +gases, Phys. Rev. Lett. 87, 210404 (2001). +[110] C. Mora and Y. Castin, Extension of Bogoliubov theory +to quasicondensates, Phys. Rev. A 67, 053615 (2003). +[111] A. Smerzi, +S. Fantoni, +S. Giovanazzi, and S. R. +Shenoy, Quantum coherent atomic tunneling between +two trapped Bose-Einstein condensates, Phys. Rev. +Lett. 79, 4950 (1997). +[112] E. Fermi, J. Pasta, S. Ulam, and M. Tsingou, Studies +of nonlinear problems (1955), Document LA-1940, Los +Alamos National Laboratory. +[113] M. Egorov, B. Opanchuk, P. Drummond, B. V. Hall, +P. Hannaford, and A. I. Sidorov, Measurement of s-wave +scattering lengths in a two-component Bose-Einstein +condensate, Phys. Rev. A 87, 053614 (2013). +[114] C. Rackauckas and Q. Nie, Differentialequations.jl–a +performant and feature-rich ecosystem for solving dif- +ferential equations in julia, Journal of Open Research +Software 5 (2017). +[115] L. P. Pitaevskii and S. Stringari, Bose-Einstein Conden- +sation (Oxford University, New York, 2003). +[116] M. Cheneau, P. Barmettler, D. Poletti, M. Endres, +P. Schauß, T. Fukuhara, C. Gross, I. Bloch, C. Kollath, +and S. Kuhr, Light-cone-like spreading of correlations in +a quantum many-body system, Nature 481, 484 (2012). +[117] M. Karl, H. Cakir, J. C. Halimeh, M. K. Oberthaler, +M. Kastner, and T. Gasenzer, Universal equilibrium +scaling functions at short times after a quench, Phys. +Rev. E 96, 022110 (2017). +[118] J. R. M. de Nova, K. Golubkov, V. I. Kolobov, and +J. Steinhauer, Observation of thermal Hawking radia- +tion and its temperature in an analogue black hole, Na- +ture 569, 688 (2019). +[119] V. I. Arnold, Mathematical Methods of Classical Me- +chanics (Springer, New York, 1997). +[120] K. Wittmann W., E. R. Castro, A. Foerster, and L. F. +Santos, Interacting bosons in a triple well: Preface of +many-body quantum chaos, Phys. Rev. E 105, 034204 +(2022). +[121] G. P. Brandino, J.-S. Caux, and R. M. Konik, Glim- +mers of a quantum kam theorem: Insights from quan- +tum quenches in one-dimensional bose gases, Phys. Rev. +X 5, 041043 (2015). +[122] Olver et al., ed., NIST Handbook of Mathematical Func- +tions (Cambridge University Press, New York, 2010) +available online at dlmf.nist.gov. +[123] D. H. J. O’Dell, The diffraction of atoms by light, Ph.D. +thesis, University of Bristol (1999). +[124] M. V. Berry and D. H. J. O’Dell, Ergodicity in wave- +wave diffraction, J. Phys. A: Math. 32, 3571 (1999). + diff --git a/09FAT4oBgHgl3EQfChxb/content/tmp_files/load_file.txt b/09FAT4oBgHgl3EQfChxb/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..2c2ed37ba6114f11c52e7a361cffb287e507a8dd --- /dev/null +++ b/09FAT4oBgHgl3EQfChxb/content/tmp_files/load_file.txt @@ -0,0 +1,2046 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf,len=2045 +page_content='Caustics in the sine-Gordon model from quenches in coupled 1D Bose gases Aman Agarwal,1, 2, 3, 4, 5, 6, ∗ Manas Kulkarni,3, † and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' O’Dell1, ‡ 1Department of Physics and Astronomy, McMaster University, 1280 Main St.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=', Hamilton, Ontario, Canada L8S 4M1 2BITS-Pilani, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Birla Goa Campus,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' NH17B,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Bypass Road,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Zuarinagar,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Goa 403726,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' India 3International Centre for Theoretical Sciences,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Tata Institute of Fundamental Research,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Bengaluru – 560089,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' India 4Perimeter Institute for Theoretical Physics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Waterloo,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Ontario,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Canada,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' N2L 2Y5 5Department of Physics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' University of Guelph,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Guelph,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Ontario,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Canada,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' N1G 2W1 6Institute of Physics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' University of Greifswald,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' 17489 Greifswald,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Germany (Dated: January 23,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' 2023) Caustics are singularities that occur naturally in optical,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' hydrodynamic and quantum waves,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' giving rise to high amplitude patterns that can be described using catastrophe theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' In this paper we study caustics in a statistical field theory setting in the form of the sine-Gordon model that describes a variety of physical systems including coupled 1D superfluids.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Specifically, we use classical field simulations to study the dynamics of two ultracold 1D Bose gases (quasi-condensates) that are suddenly coupled to each other and find that the resulting non-equilibrium dynamics are dominated by caustics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Thermal noise is included by sampling the initial states from a Boltzmann distribution for phononic excitations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' We find that caustics pile up over time in both the number and phase difference observables leading to a characteristic non-thermal ‘circus tent’ shaped probability distribution at long times.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' INTRODUCTION Wave focusing is ubiquitous in nature and leads to localized regions of high amplitude called caustics that dominate wavefields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Everyday examples are provided by rainbows and also the bright lines on the bottom of water pools which are caused by the focusing of sunlight by raindrops and surface water waves, respectively [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Caustics also occur in water waves themselves as ship wakes [2] and more dramatically as tsunamis (focused by the topography of the seabed [3–5]) and tidal bores (fo- cused by v-shaped bays [6]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Astrophysical examples in- clude gravitational lensing by matter and the twinkling of starlight due to time-dependent fluctuations in the den- sity of Earth’s atmosphere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Natural focusing also leads to the phenomenon of branched flow [7] and is speculated to have given rise to the filamented nature of the large scale structure of the universe [8–11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' In all these systems caustics give rise to extreme amplitude fluctuations that occur more frequently than those predicted by gaussian statistics [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' A remarkable property of caustics is that they com- monly take on particular characteristic shapes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' This is because caustics are singularities of the ray description, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' they are places where two or more rays coalesce lead- ing to a diverging intensity in the short wavelength limit [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Such singularities are described by Thom’s catas- trophe theory which rigorously shows that only certain shapes of singularity are structurally stable against per- turbations and hence occur under ‘natural’ or generic ∗ aagarw03@uoguelph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='ca † manas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='kulkarni@icts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='in ‡ dodell@mcmaster.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='ca conditions [14–16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' These special shapes or catastro- phes form a hierarchy organized by dimension where the higher ones contain the lower ones.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Each member of the hierarchy represents a class of equivalent shapes that can be smoothly transformed into each other, but each class is distinct and cannot be smoothly transformed into any of the others.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' In two dimensions the only structurally stable shape is the cusp and we shall see it appear fre- quently when we plot quantities such as number fluctu- ations versus time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' It is worth noting in this context that the humble point focus that we associate with lens- ing is structurally unstable and unfolds into an extended caustic in the presence of perturbations (aberrations).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Natural lenses are of course never perfect and so typi- cally produce the shapes predicted by catastrophe theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The upshot of all this is that caustics represent a form of universality in nonequilibrium wave dynamics: they fall into equivalence classes each with their own shapes and scaling properties analogous to, but a generalization of, equilibrium phase transitions [13, 17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Caustics should equally be present in quantum waves where, due to the probabilistic interpretation, they cor- respond to regions of high probability density.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Quantum matter wave caustics have been seen in experiments with cold neutrons [18, 19], electron microscopes [20], atom op- tics [21–23], and most recently in atom lasers [24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The- oretical works on such matter wave caustics have also considered their ‘fine structure’ [13] which features a lat- tice of vortices [25–27].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Quantum fields are another area where caustics are expected to form naturally during dy- namics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Early work centred on the electromagnetic field [28, 29], including an interpretation of Hawking radiation as a ‘quantum catastrophe’ [30], and more recently this idea has been extended to quantum many-particle sys- tems including bosonic Josephson junctions [26, 31, 32], the XY model with long-range interactions (Hamiltonian arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='08410v1 [cond-mat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='quant-gas] 20 Jan 2023 2 Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Schematic of the setup we consider.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The top fig- ure shows two quasi one-dimensional gases that are prepared independently and then suddenly coupled together.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' We call this process of sudden coupling a “J-quench”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' ρ1(z) and ρ2(z) represent the density (red) in the first and second conden- sates, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Similarly, φ1(z) and φ2(z) represent the phases (black) of the two condensates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Prior to the J-quench, these fields in the two condensates are independent and con- tain thermal fluctuations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The bottom figure shows how a J- quench could be implemented by suddenly reducing the tun- neling barrier height in a double well potential from a higher to a lower value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' mean field model) [33], quantum spin chains [27] and the Bose-Hubbard model [34].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' One point to appreciate is that the caustics in many-body systems can occur in the wavefunction associated with an entire N-body configu- ration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Quantum many-particle caustics therefore live in Fock space which can have a large number of dimensions and hence lead to very complicated catastrophes [34].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' However, catastrophes obey projection identities which means that when projected down to lower dimensions one obtains either the same catastrophe or one lower down the hierarchy [35].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Thus, low order correlation functions obtained by integrating out most of the degrees of free- dom will also generically contain caustics [27].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' In this paper we study caustics in the sine-Gordon (SG) model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The (classical) SG model obeys the nonlinear wave equation ∂2φ ∂t2 − c2 0 ∂2φ ∂z2 + ω2 0 sin φ = 0 (1) where φ = φ(z, t) is a one dimensional field, and c0 and ω0 represent a characteristic speed and frequency, respec- tively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' If c0 is taken to be the speed of light then Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (1) is relativistically covariant, being a nonlinear version of the Klein-Gordon equation and reducing to it when φ ≪ 1 such that sin φ ≈ φ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The SG model received attention from the high energy physics community in the 1970s due its soliton solutions [36–39],' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' but also describes the low en- ergy physics of a considerable range of condensed matter systems including crystal dislocations [40],' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' domain walls in magnetic [41] and binary superfluid [42] systems,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' the Heisenberg spin chain with a field induced gap [43–45],' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' one-dimensional Bose gases in periodic potentials (that can capture the Mott-insulator to superfluid transition in one dimension) [46,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' 47],' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' two-dimensional Bose gases realizing the XY model [48],' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' trapped ions [49],' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' and two tunnel-coupled one-dimensional Bose gases [50–57].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The fact that the SG model is both nonlinear and integrable means that attention is often focused on its soliton so- lutions, but part of our mission in this paper is to point out that these same properties also imply that caustics (which are associated with the existence of tori in phase space [58]) are expected to occur generically, and we are aware of only one previous study of caustics in this model [59].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The particular physical realization we have in mind for this paper is a system composed of two elongated quasi-one dimensional Bose gases coupled by tunneling along their length;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' the field φ(z, t) in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (1) gives the relative phase between the two quantum gases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Quasi one-dimensional Bose gases have been created in a num- ber of experiments over the last two decades using tightly trapped ultracold atoms, and the remarkable tunability of these systems allows the strongly interacting Tonks- Girardeau regime [60, 61], the weakly interacting quasi- condensate regime [62–65], and also the crossover be- tween the two [66, 67], to be reached.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' It is important to note that, in accordance with the Mermin-Wagner theo- rem [68], one-dimensional Bose gases do not undergo true Bose-Einstein condensation at low temperature, unlike three dimensional gases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Instead, they can form quasi- condensates where density fluctuations are suppressed but phase fluctuations remain [69, 70].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' In this paper we shall work in the weakly interacting regime and assume a state of the system consisting of a quasi-condensate plus small thermal fluctuations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' A system comprised of two coupled quasi-one dimen- sional gases can be made by taking a single gas and splitting it in two along its long axis by switching on an elongated double well potential.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' This is the experimen- tal protocol typically adopted in a series of experiments conducted by the Vienna group [63, 71–77].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The com- bination of almost complete isolation from the environ- ment, long relaxation times and spatially resolved mea- surements of phase and number difference make these experiments ideal for investigating many-particle quan- tum dynamics, including fundamental questions such as whether and how closed quantum systems reach equi- librium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The gas can be split slowly so that it always remains close to equilibrium leading to number squeezed states [78, 79] or it can be split rapidly, leading to a so- called quantum quench which launches the system into a nonequilibrium state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' In this paper we shall consider the opposite quench pi(2) (2)d P2(2) p1(z)3 where two one-dimensional gases are suddenly connected together (see schematic representation in Figure 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' This touches on rather fundamental considerations in quan- tum mechanics since it describes the build-up of coher- ence between two initially independent systems, and is therefore related to the double-slit experiment for many- particle systems [53, 80–83].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' We shall refer to this as a “J-quench” because J is often used to denote the cou- pling strength between the two wells.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' In a simple two- mode description of a bosonic Josephson junction, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' one that assumes a single mode in each well without the quasi-continuum of low energy longitudinal modes that are present in highly elongated traps, such a quench is predicted to result in a periodic collapse and revival of the atom number distribution between the two wells [84– 86].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Essentially the same behavior, but π/2 out of phase, occurs in the relative phase which is the conjugate vari- able to number difference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' In Refs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' 26, 31, and 32 these revivals are shown to be examples of quantum caustics in a many-particle system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' One of our main aims here is to investigate what happens to these caustics in the presence of the dispersive longitudinal modes present in the SG model, and is part of a wider program attempt- ing to understand the role of caustics in quantum many particle dynamics [17, 26, 27, 31–34].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Due to the difficulty of solving the fully quantum SG model we take a semiclassical-style approach based on classical field configurations which are solutions of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Each configuration is analogous to a single geo- metric ray in optics and we include fluctuations by sum- ming many configurations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The initial conditions for each field configuration are randomly sampled from a Boltz- mann distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' This approach is similar in spirit to the truncated Wigner approximation (TWA) [87–92] which includes quantum fluctuations around the classi- cal field by summing many rays sampled from a quan- tum probability distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The TWA has previously been applied to one-dimensional Bose gases by Martin and Ruostekoski [93, 94] who studied dark solitons, and also to the connection problem of two zero temperature one-dimensional Bose gases by Dalla Torre, Demler and Polkovnikov [53], who proposed a universal scaling form for the phase dynamics after the quench.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' More recently, the TWA has been used by Horváth et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [95] to study the surprisingly sudden relaxation of the phase seen in the Vienna BEC splitting experiments [77].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' In this paper, we include both the quantum fluctuations arising from coupling two independent systems and thermal fluctua- tions arising from thermal phonons in the longitudinal modes and compare the time evolution of macroscopic variables (the total number difference and phase differ- ence) in the SG system against the simpler two mode system [17, 26, 31].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' We find that following a quench caustics dominate the dynamics of the macroscopic vari- ables of both systems, even in the presence of thermal fluctuations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Due to the singular nature of caustics, and combined with their structural stability, we therefore pro- pose that strong nongaussian fluctuations are a generic phenomenon following a quench in the SG model (and indeed, in integrable or moderately chaotic many-body systems in general).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The caustics we discuss in this paper also have implica- tions for the question of relaxation towards equilibrium at long times in many particle systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' While chaotic (non- integrable) and open quantum systems should thermalize (although a complete description is still the subject of ac- tive research [96–103]), closed integrable models do not reach a conventional Gibbs state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' We show here that in the SG model there is a pile-up of caustics leading to a singular shape for the long time probability distribution for the macroscopic variables that resembles the shape of a circus tent and is quite distinct from the thermal equi- librium prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' We find that an analytic approxima- tion to the singular distribution based on an ergodic pen- dulum (assuming a microcanonical or ‘equal-probability’ distribution) provides a good fit to the numerical data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The plan for the rest of this paper is as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' We start in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' II by deriving the SG hamiltonian from the many-body description of two coupled 1D Bose gases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' In Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' III we describe the natural length and time scales and use them to write the SG hamiltonian and equa- tions of motion in convenient dimensionless forms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Sub- sequently, in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' IV we develop a method for finding the initial conditions for the SG equations of motion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' We assume that prior to the quench the two Bose gases are independent and at thermal equilibrium with a bath at temperature T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The initial conditions are obtained by stochastically sampling the Fourier modes of a 1D quasi- condensate obeying the Tomonaga-Luttinger liquid the- ory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' With the initial conditions in hand, in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' V we give the main results of this paper which are the dy- namics of the macroscopic number and phase difference variables obtained by solving the equations of motion numerically.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' In Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' VI we consider the bigger picture and examine the universal aspects of our results includ- ing the influence of caustics on the coherence as well as the long time dynamics and the establishment of (non- thermal / non-Gaussian) equilibrium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' We conclude in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' VII.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' There are also six appendices where we give the details of the calculations as well as bench marking our numerical method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' FROM TWO COUPLED CONDENSATES TO THE SINE-GORDON PLUS MODEL We begin by deriving the SG model as an effective low energy description for two coupled one-dimensional Bose gases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' For the sake of clarity, we list the main simplifica- tions employed in this work: the treatment of a quantum many body problem by a semiclassical method (TWA).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' the neglect of a weak harmonic trap along the long axis which would otherwise lead to a non- uniform longitudinal density (this can be avoided 4 in box traps which, although rarer, can be realized [76, 104]) the assumption of a constant value for the tunnel coupling J along the entire length of the gases the neglect of coupling to symmetric and higher transverse modes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Some more involved theoretical models do include these effects [56, 57].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' These simplifications are not expected to qualitatively alter the main results of this work due to the structural stability of caustics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' In other words, caustics are known to be robust to perturbations in both the Hamiltonian and initial conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' A theoretical description of two ultracold quasi-one di- mensional gases made up of bosonic atoms of mass m, and held parallel to each other so that the atoms can tunnel between them at rate J, can be obtained from the following microscopic Hamiltonian [50, 51, 74] ˆH = � j=1,2 � L/2 −L/2 dz � − ℏ2 2m ˆψ† j(z) ∂2 ∂z2 ˆψj(z) + U(z) ˆψ† j(z) ˆψj(z) + g1D 2 ˆψ† j(z) ˆψ† j(z) ˆψj(z) ˆψj(z) � − � L/2 −L/2 dz ℏJ � ˆψ† 1(z) ˆψ2(z) + ˆψ† 2(z) ˆψ1(z) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (2) The indices j = 1, 2 label the two gases and each is as- sumed to be tightly trapped in the x and y directions so that those degrees of freedom are frozen into their ground states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Only the longitudinal degree of freedom z in each gas is taken to be active.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' In experiments there will usually be a weak longitudinal trapping potential U(z), although as mentioned above for simplicity we set it to zero and hence consider a uniform system of length L with periodic boundary conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The quantum field operator ˆψj(z) annihilates a particle at point z and to- gether with its hermitian conjugate obeys bosonic com- mutation relations [ ˆψj(z), ˆψ† j′(z′)] = δjj′δ(z − z′).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The interaction constant g1D characterizes the effect of atom- atom scattering within each gas on the longitudinal de- gree of freedom and can be controlled both in magnitude and sign either through Feshbach or confinement-induced scattering resonances [105].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' We note in passing that a possible alternative physical realization of this problem could be a spinor Bose gas in a single quasi-one dimen- sional trap [106].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' In fact, bosonic Josephson junctions where the atoms are held in a single trap and two atomic spin states are used for the two states have already been realized experimentally [107].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' A weakly interacting three-dimensional Bose gas at ul- tracold temperatures will undergo Bose-Einstein conden- sation and can be described to high accuracy by a clas- sical field approximation (Gross-Pitaevskii theory [108]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' In a quasi-one dimensional geometry quantum fluctua- tions can still be small if the density is not too low, and under these circumstances the gas can be treated as a quasi-condensate where the quantum field operators are replaced by classical fields [69, 109, 110] ˆψj(z) → ψj(z) = � n1D + ρj(z) exp[iφj(z)] .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (3) Here n1D = N/L is the background density where N is the number of atoms in each gas (for simplicity we as- sume an equal number of atoms N in each gas;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' the struc- tural stability of caustics means that they are stable to small differences in n1D between the two gases).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' ρj(z) and φj(z) are the atom number density and phase fluc- tuations at each point z, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' These are canon- ically conjugate variables and can even be quantized in a semiclassical regime such that they obey the commu- tation relations [ˆρj(z), ˆφj′ (z′)] ≈ δjj′δ(z − z′) in a coarse grained sense [110].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' However, in the present paper ρj(z) and φj(z) will be purely classical fields subject only to thermal fluctuations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' We can further decompose the fields into their sym- metric and antisymmetric components ρs(z) = ρ1(z) + ρ2(z) 2 , ρa(z) = ρ1(z) − ρ2(z) 2 φs(z) = φ1(z) + φ2(z), φa(z) = φ1(z) − φ2(z) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (4) If the fluctuations are small ρa will be small whereas ρs will be comparatively large.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The particle-particle inter- action energy will then typically cause the dynamics of the symmetric modes to occur at higher energy than the antisymmetric ones, and consequently we can ignore the symmetric degrees of freedom as long as we restrict at- tention to low energies [50, 55, 72, 75].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The Hamiltonian purely describing the antisymmetric variables is (see Ap- pendix A for details) HSG+ = � L/2 −L/2 dz � g1D ρ2 a(z) + ℏ2n1D 4m �∂φa ∂z �2 + ℏ2 4mn1D �∂ρa ∂z �2 − 2ℏJn1D cos φa(z) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (5) We refer to this as the “sine-Gordon plus” (SG+) Hamil- tonian because it includes an extra term (the third term) in comparison to the standard SG Hamiltonian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' This term involves gradients of density fluctuations and results 5 in an energy cost which automatically suppresses den- sity fluctuations at small length scales.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' It is also worth noting that including this term means that the density and phase fluctuations [the second term in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (5)] are incorporated on an equal footing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' This is also in ac- cordance with Gross-Pitaevskii theory which suppresses density fluctuations with wavelengths below the healing length [95] ξh = ℏ √mg1Dn1D .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (6) However, when n1D is relatively large the third term is naturally suppressed in comparison to the others and can be dropped as long as the density gradients are small leading to the SG Hamiltonian [55, 74] HSG = � L/2 −L/2 dz � g1D ρa(z)2 + ℏ2n1D 4m �∂φa ∂z �2 − 2ℏJn1D cos φa(z) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (7) The nonlinear piece in both Hamiltonians is the cosine term which originates from tunneling between the two wells and occurs in all Josephson junction type prob- lems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' It provides an effective potential well for phase configurations φ(z, t) that play the role of rays.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' In fact, as we shall see in Section V, it acts as an (imperfect) lens that focuses rays excited by the quench to form caustics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' For the sake of brevity, and when we deem no confusion can arise, we will omit the ‘a’ subscript on antisymmet- ric variables since we will not be dealing with symmetric degrees of freedom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The fact that the two fields φ(z) and ρ(z) form a conju- gate pair means that their equations of motion are given by Hamilton’s equations ˙φ = 1 ℏ δH δρ(z) ˙ρ = −1 ℏ δH δφ(z) (8) where H is the Hamiltonian density defined via H = � L/2 −L/2 H dz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (9) Applying these equations to the SG+ Hamiltonian given in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (5) we find the following of equations of motion dφ(z, t) dt = 2 g1D ℏ ρ(z, t) + 2 ℏ 4mn1D ∂2ρ(z, t) ∂z2 dρ(z, t) dt = 2 ℏn1D 4m ∂2φ(z, t) ∂z2 − 2Jn1D sin[φ(z, t)] .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (10) These are the key equations we use to solve for the dy- namics of the field configurations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' They have the form of Josephson’s equations [111] augmented by second order spatial derivatives ∂2φ/∂z2 and ∂2ρ/∂z2 which account for phase and density fluctuations along the longitudi- nal direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Combined with the sine term, they will cause wavepackets to disperse along z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' In the absence of these terms we have exactly the equations of motion for a pendulum where φ is the angular displacement from equilibrium and ρ plays the role of angular momentum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The dependence on z suggests an interpretation in terms of a continuous chain of many pendula each coupled to its neighbors by the spatial derivative terms and is reminis- cent of the Fermi-Pasta-Ulam-Tsingou problem [50, 112].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' In this paper the coupled equations of motion given in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (10) will be solved numerically for a system of length L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' To perform the numerical computations we discretize the system on a spatial grid with NL + 1 points which makes the grid spacing a = L/NL.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The positions of the grid points are given by z = ra where r is an integer r = −NL 2 , .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' , NL 2 (11) and NL is chosen to be an even integer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' There is in fact a physical limitation on the grid size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (10) is classical and valid only on length scales greater that healing length ξh [51, 95].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Therefore, any numerics performed on Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (10) are meaningful only when the lat- tice grid size a is greater than ξh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' In particular, NL should be such that a > ξh which implies N 2 L < mg1Dn1DL2 ℏ2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (12) We fulfil the condition given in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (12) in our numerics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' NATURAL SCALES Let us express the SG/SG+ Hamiltonians and equa- tions of motion in terms of the natural scales for a one- dimensional quantum fluid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' For a length scale we chose the healing length ξh given in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The ratio of the healing length to the mean interparticle spacing 1/n1D motivates the definition of the Luttinger parameter K = � n1D(ℏπ)2 4g1Dm .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (13) This dimensionless quantity measures how strongly in- teracting the system is - when K ≫ 1 the healing length is much greater than the interparticle spacing and the system is in the weakly interacting (quasi-condensate) regime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Another key physical quantity is the speed of sound c = �g1Dn1D m .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (14) This can be used to define a characteristic energy, namely that associated with phonons (quanta of sound) E = ℏω = ℏc ξh (15) 6 where we have set the natural frequency ω to be the ratio of the speed of sound to the healing length.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' We therefore transform to the following dimensionless variables z −→ ˜z = z ξh ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' t −→ ˜t = c ξh t ρ −→ ˜ρ = ρ ξh ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' φ −→ ˜φ = φ (16) and defining ˜HSG = HSG/E and likewise for ˜HSG+ we obtain the two Hamiltonians in dimensionless form ˜HSG = � L/2 −L/2 d˜z � Γ ˜ρ2 + ϵ � ∂ ˜φ ∂˜z �2 − 2J cos ˜φ � (17) and ˜HSG+ = � L/2 −L/2 d˜z � Γ ˜ρ2 + ϵ � ∂ ˜φ ∂˜z �2 + Γ 4 �∂˜ρ ∂˜z �2 − 2J cos ˜φ � (18) where the coefficients are given by Γ = π 2K ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' ϵ = K 2π ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' J = K 2π ξ2 h ξ2s .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (19) In the last term we have introduced the spin healing length ξs = � ℏ 4mJ (20) which provides a measure for the distance over which coherence between the two gases is restored due to the tunnel coupling J [55].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' At finite temperatures another useful length scale is the thermal phase coherence length λT = 2ℏ2n1D mkBT .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (21) The dimensionless form of the equations of motion can now be given.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' For the SG model we find d˜φ d˜t = 2Γ˜ρ d˜ρ d˜t = 2ϵ∂2 ˜φ ∂˜z2 − 2J sin ˜φ (22) and for the SG+ model we obtain d˜φ d˜t = 2Γ˜ρ − Γ 2 ∂2˜ρ ∂˜z2 d˜ρ d˜t = 2ϵ∂2 ˜φ ∂˜z2 − 2J sin ˜φ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (23) IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' INITIAL CONDITIONS The dynamics we seek to study in this paper start from a J-quench where two independent one-dimensional gases at thermal equilibrium are suddenly coupled.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' In order to obtain the initial density and phase fluctuations of these gases we use the Tomonaga-Luttinger (TL) model that provides the universal low energy effective theory for one-dimensional systems (low energy limit of the Lieb- Lininger theory, for example) [53].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Tomonaga-Luttinger (TL) liquid In our notation the TL Hamiltonian reads HTL = � L/2 −L/2 dz � g1Dρj(z)2 + ℏ2n1D 4m �∂φj ∂z �2� (24) where j labels either of the two gases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' We henceforth, omit this label for the sake of brevity with the under- standing that in this section the density and phase fields refer to just one of the two gases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (24) has the same mathematical structure as the SG model but without the tunnelling term.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' If we include density fluctuations we find HTL+ = � L/2 −L/2 dz � g1Dρ(z)2 + ℏ2n1D 4m �∂φ ∂z �2 + ℏ2 4mn1D �∂ρ ∂z �2 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (25) The TL model is quadratic and hence its thermal fluc- tuations can be treated exactly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' To this end it is useful to work in Fourier space and we apply discrete Fourier transforms defined on the numerical grid with NL points as discussed at the end of Section II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The phase field φ and its Fourier transform ϕ are related by φr = 1 √NL + 1 NL/2 � k=−NL/2 ϕk exp � i 2πkr NL + 1 � ϕk = 1 √NL + 1 NL/2 � r=−NL/2 φr exp � −i 2πkr NL + 1 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (26) The discrete data {φr} = {φ−NL/2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' , φ0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' , φNL/2} and its transform are located symmetrically about r = 0 and k = 0, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Since the value φr of the field at each coordinate space grid point is a real number the condition ϕ−k = ϕ∗ k must hold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Similarly the density fluctuation field ρ and its Fourier transform ϱ are related by ρr = 1 √NL + 1 NL/2 � k=−NL/2 ϱk exp � i 2πkr NL + 1 � ϱk = 1 √NL + 1 NL/2 � r=−NL/2 ρr exp � −i 2πkr NL + 1 � (27) 7 where again the reality of the field in coordinate space requires that ϱ−k = ϱ∗ k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Inserting these transformations in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (25) we obtain (see Appendix B for details) HTL+ = a g1D NL/2 � k=−NL/2 |ϱk|2 + a ℏ n1D NL/2 � k=−NL/2 ℏπ2k2 mL2 |ϕk|2 + a ℏ2 4mn1D NL/2 � k=−NL/2 4π2k2 L2 |ϱk|2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (28) Before proceeding with further analysis of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (28), it is worth noting that it can be recast in a standard Luttinger liquid form HTL+ = acℏ 2 NL/2 � k=−NL/2 �K π 4π2k2 L2 |ϕk|2 + π K |ϱk|2 + K π 4π2k2 N 2 |ϱk|2 � (29) where the strength of the terms depends either on K or 1/K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Applying the transformations given in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (16), the Fourier space variables can be written in dimensionless form as ϱk −→ ˜ϱk = ξhϱk , ϕk −→ ˜ϕk = ϕk (30) and the TL+ Hamiltonian given in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (28) scaled by the energy E = ℏc/ξh is given by ˜HTL+ = ˜L NL NL/2 � k=−NL/2 �ϵ 4π2k2 ˜L2 | ˜ϕk|2 + Γ|˜ϱk|2 + Γ π2k2 ˜L2 |˜ϱk|2 � (31) where ˜L = L/ξh is the ratio of the system size to the healing length.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Comparison with the spatial version of HTL+ given in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (25) shows where this factor comes from: as the size is increased the range of the integration increases linearly and this is accounted for by ˜L in the Fourier transformed version.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Note that all parameters and variables in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (31) are dimensionless.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Thermal equilibrium To find the initial conditions on the fields ρj(z) and φj(z) we assume that each gas is at thermal equilibrium such that the excitation (phonon) modes of the TL+ Hamiltonian are populated with a probability given by the Boltzmann distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The range of temperatures we simulate is listed in Table I along with the values of all the other key parameters, and is chosen so as to correspond to realistic experimental conditions (the tem- perature must be low enough that the quasi-condensate description is valid).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' In the canonical ensemble of statistical mechanics the probability that a system at thermal equilibrium has the phase space configuration s = q1, p1, q2, p2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='qN, pN is proportional to the Boltzmann weight exp[−βH(s)], where β = 1/kBT and H = � i p2 i /2m + V (qi).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The Hamiltonian in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (31) is quadratic and hence the Boltz- mann weight becomes that of a series of independent har- monic oscillators e− ˜β ˜ HTL+ = � k e−P 2 k /2σ2 ρ+ e−Q2 k/2σ2 φ+(k) (32) where ˜β = (ℏc/ξh)/kBT is the appropriately scaled tem- perature parameter and we have introduced the real vari- ables Qk and Pk which are related to the old variables by ˜ϕk = Qkeiαk, ˜ϱk = Pkeiβk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (33) The phases αk and βk allow for the fact that ˜ϕk and ˜ϱk can be complex numbers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The variances in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (32) are given by σ2 ρ+(k) = NL 2˜β 1 Γ˜L(1 + π2k2/˜L2) (34) σ2 φ+(k) = NL 2˜β ˜L 4π2k2ϵ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (35) The partition function can now be written down as Z = � k � ∞ −∞ e− ˜β ˜ HTL+ dPkdQk = � k � σρ+ √ 2π � � σφ+(k) √ 2π � (36) and hence the probability P of a particular configuration (Q1, Q2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='., P1, P2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='.) is P = � k � e−P 2 k /2σ2 ρ+ σρ+ √ 2π � � e−Q2 k/2σ2 φ+(k) σφ+(k) √ 2π � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (37) This is seen to be the total probability distribution for independent random variables Pk and Qk drawn from normal distributions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Thus, the absolute values of the Fourier coefficients ˜ϱk and ˜ϕk are normally distributed random variables with zero mean and variances given by Eqns.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (34) and (35).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' We sample these numerically from normal distributions to generate the initial system con- figuration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The phases αk and βk given in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (33) do not appear in the Boltzmann weight and are chosen ran- domly from the range [0, 2π).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' In fact, for both the phases and the amplitudes we only need to choose the values for 8 terms with k ≥ 0 because the reality conditions imply that we can put Qk = Q−k , Pk = P−k, αk = −α−k , βk = −β−k .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (38) So far we have only considered the initial state of a sin- gle gas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' By subtracting the results for two gases we can obtain the initial values of the antisymmetric variables ρa(z) and φa(z) defined in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Actually, due to the fact that the SG+ Hamiltonian with J = 0 and expressed in terms of antisymmetric variables as given in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (5) formally has the same structure as the TL+ Hamiltonian given in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (25), sampling initial data for two gases is unnecessary and one can obtain ρa(z) and φa(z) directly by sampling them as though they were from one gas de- scribed by the TL+ Hamiltonian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' However, in doing so, consideration needs to be given to the average value of relative phase φa(z) because both the SG+ and TL+ Hamiltonians only contain the spatial derivative of the phase but not the phase itself.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Its average value is there- fore not determined by energy considerations and is left to float freely.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' This is also apparent in the Fourier trans- formed version of the TL Hamiltonian given in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (31) where the k = 0 term involving ˜ϕ0 is absent due to the vanishing of its coefficient which is proportional to k2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' To take into account the random phase difference be- tween the two gases one can chose ˜ϕ0 to be a random number in the range [−π .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' π) but multiplied by a factor of √NL + 1 in order to respect the normalization in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (26).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' This gives values of the average value of φa(z) in the desired range −π and +π.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The random value of the initial phase difference is ac- tually a key feature of the J-quench.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' It populates the cosine potential landscape in the Hamiltonian with uni- form probability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' As the trajectories roll back and forth in this potential they form caustics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' In effect, the co- sine potential acts as an imperfect lens that focuses an initially flat ‘wavefront’ over time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Choice of parameters There are three constraints which must be satisfied in order to have a quasi-one dimensional condensate [55].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' To ensure minimal scattering into the transverse modes we need the interaction to be sufficiently weak which im- plies µ = g1Dn1D ≪ ℏω⊥ where µ is the chemical poten- tial and ω⊥ is the transverse trapping frequency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' More- over, the temperature needs to be low enough such that transverse modes are not thermally excited leading to the inequality kBT ≪ ℏω⊥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Finally, in order to have a quasi- condensate which permits a semiclassical approach we need weak interactions in comparison to the zero-point kinetic energy associated with the density of the parti- cles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' This implies n1Dg1D ≪ ℏ2n2 1D/m which means the Symbol Parameter Value ω⊥ trapping frequency 2π × 3 kHz m mass of Rb atom 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='41 × 10−25 kg as scattering length 98 × 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='52 Å N number of atoms 1200 L system length 18 µm n1D average density 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='7 × 107m−1 g1D 2 ℏascatω⊥ 2 × 10−38 Jm K Luttinger parameter 25 T temperature 2 - 20 nK J J-quench 0 - 30 Hz NL number of grid points 50 c speed of sound 3 × 10−3 m s−1 a grid spacing 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='36 µm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' ξh healing length 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='24 µm λT phase coherence length 38 − 380 µm ξs spin healing length 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='5 µm Table I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Table containing important parameters and their val- ues.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The parameters are chosen to be experimentally feasible and correspond roughly to those reported in references [72– 77].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Luttinger parameter should obey K ≫ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' All the param- eter values we use satisfy these three inequalities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' In quasi-one dimensional gases the interatomic inter- action parameter g1D is related to the scattering length as and transverse trapping frequency as g1D = 2ℏasω⊥.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' For 87Rb atoms we have as ≈ 98 × 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='52 Å[113] and we will assume ω⊥ = 2 π×3 kHz [77].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The full list of pa- rameters used in our simulations is given in Table I and roughly corresponds to those used in the experiments by the Vienna group [72–77].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' For our numerical simulations we choose a grid size that slightly exceeds the healing length because, as ex- plained above, this cuts off unphysical density fluctua- tions [51, 95].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' This condition is given in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (12) but can be expressed succinctly in terms of Γ as N 2 L < ΓN 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The magnitudes of ˜ρ and ˜φ also need to be considered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The phase difference can take the full range +π to −π, but the number difference is limited by the condition that the total number difference (integrated over the entire system) cannot exceed the total number of particles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' In fact, due to the random nature of sampled thermal fluc- tuations, the integral of ˜ρ is always approximately zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' However, the validity of the SG/SG+ model requires that local density fluctuations be small in comparison to the background density n1D, see Appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Translated into the scaled variables this means that at any point ˜ρ(˜z) ≪ n1Dξh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' In practice we choose ˜ρ(˜z) ≤ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='6 so that the fluctuations are an order of magnitude smaller than the background density.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' 9 D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Examples of Initial conditions In Figure 2 we present typical spatial profiles of the initial number difference field ˜ρ (upper row) and phase difference field ˜φ (lower row).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Each profile provides the initial conditions for a single classical field trajectory and is obtained by summing up thermally activated phonons (Fourier modes) using the Tomonaga-Luttinger model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The different columns show the effect of changing tem- perature T or Luttinger parameter K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' As expected, when T is increased the fluctuations in both ˜ρ and ˜φ increase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' By contrast, if K is increased the maximum magnitude and jaggedness of ˜ρ increases but the jagged- ness of ˜φ decreases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Referring to Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (19) we can see that this is because the coefficient multiplying the density fluc- tuation term in the Hamiltonian is Γ = π/2K which de- creases as K increases leading to increased variance of ϱk modes according to Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (34).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The phase fluctuation term shows the opposite behavior because its coefficient in the Hamiltonian (which only appears as the spatial gradient of ˜φ) is ϵ = K/2π which increases as K increases and this reduces the variance of the ϕk modes according to Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (35), thereby making the ˜φ profiles smoother.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' NUMERICAL SIMULATIONS OF THE DYNAMICS In this section we explore the dynamics following a J- quench.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Our approach is inspired by the TWA where multiple classical field configurations are propagated in time using the classical equations of motion, although in our case the initial conditions are sampled from a ther- mal distribution as described in Section IV rather than a quantum distribution as in the standard TWA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' J-quench dynamics have previously been explored for the simpler case of a two-mode zero temperature bosonic Josephson junction where it was found that caustics dom- inate the number and phase difference probability distri- butions [17, 26, 31].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' In the two-mode case it is possible to compute the exact quantum dynamics for some thou- sands of particles and compare them against the TWA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The results (see Figure 1 in [31]) show good qualitative agreement and give us confidence that the TWA can cap- ture the main features of the quantum dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Fur- thermore, the inevitable presence of decoherence due to the environment will tend to reduce the quantum dy- namics to their classical limit (this has been investigated in the two-mode case for a J-quench in [32]) increasing the relevance of semiclassical calculations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' In the present work we are interested in whether the phonons along the long axis disrupt or sustain these caustics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' We will start by reproducing the caustics presented in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' 31 for the two-mode case and then add in the longitudinal modes after that.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Numerical Methods The initial conditions are generated via random sam- pling from Gaussian distributions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' We then evolve the equations of motion (Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' 23 for the case of the full SG+ model) using a Runge-Kutta solver with a user-defined time step [114].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The endpoints of our system are treated by imposing periodic boundary conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' In Appendix C we demonstrate the numerical convergence of the solver by varying the temporal and spatial steps by tracking the time evolution of the total energy (hamiltonian) which should be a constant of the motion and obtain the fidu- cial time and space resolution for all our calculations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Special case: two-mode approximation In the two-mode approximation only a single mode in each well is taken into account.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' This description is rele- vant to the SG/SG+ model in the limit where the entire length of each quasicondensate is perfectly synchronized so that the fields ˜ρ(˜z) and ˜φ(˜z) do not depend on ˜z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' In this case the spatial derivative terms vanish and the equations of motion in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (23) reduce to d˜φ d˜t = 2Γ˜ρ , d˜ρ d˜t = −2J sin ˜φ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (39) These are the standard Josephson equations of motion and also correspond to those of a classical pendulum [115].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Such synchronization can occur at very low tem- peratures or when the coefficients ϵ and Γ are large enough that they suppress spatial fluctuations in the ini- tial conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' In Figure 3 we display the post-quench dynamics in the two-mode approximation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The left hand and cen- tral panels show the time dependence of 150 indepen- dent solutions of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (39) which give the trajectories for the number difference and phase difference, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Note that in this paper we use the color blue for tra- jectories calculated within the two mode approximation and reserve red for the trajectories of the full many mode model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' In accordance with our assumption that the two wells start with an equal number of atoms, each solution starts with ˜ρ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' And as discussed in Section IV B, the initial value of ˜φ is randomly chosen from the range [−π, π) because the two condensates are independent be- fore the J-quench.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The most striking feature of Figure 3 is the series of cusp-shaped caustics that form in both variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' In or- der to guide eye, we have have outlined the first cusp caustic in the number difference variable using a black curve (the calculation for this curve is given in Appendix D).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Like in optics, caustics are regions of high intensity formed by the envelopes of families of rays (trajectories).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Each caustic is born at the centre of the distribution at the tip of a cusp before spreading out in two arms that move towards the edges of the distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The fact 10 Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Examples of initial spatial profiles of the number difference ˜ρ (top row) and phase difference ˜φ (bottom row).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Each profile is obtained by randomly sampling a thermal distribution using the method described in Section IV B, and each panel includes ten different profiles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The parameter values common to all panels include the number of computational lattice points NL = 50, grid spacing a = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='36µm, and healing length ξh = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='24 µm (the remaining parameters are listed in Table I).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The difference between the columns is as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The left column has the Luttinger parameter K = 25, and temperature T = 2 nK giving a phase coherence length of λT = 380 µm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' In the middle column K = 25, but the temperature is increased to 20 nK, giving λT = 38 µm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' In the right column, the value of K is artificially increased (without changing any other parameters) to K = 250 and T = 2 nK.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Increases in temperature excite stronger fluctuations in the profiles as expected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Increases in the Luttinger parameter have opposite effects on ˜ρ and ˜φ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The maximum value and jaggedness of ˜ρ is increased whereas the jaggedness of ˜φ is reduced.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' An explanation of this behavior is given in the main text.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' that they are cusp shaped is in agreement with the pre- diction of catastrophe theory that in two dimensions the only structurally stable and hence generic singularities are cusps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Each trajectory represents a single experimental run.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The idea behind the TWA is that the number of tra- jectories reaching a point ˜ρ at time ˜t is proportional to the probability that a measurement of the true quantum system would yield that value of ˜ρ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' An equivalent inter- pretation holds for the ˜φ trajectories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The caustics have the highest probability density and hence give the values most likely to be observed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Of course, if we only con- sider the average values of ˜ρ or ˜φ we would get zero in both cases due to the symmetry of the distributions and hence miss the caustics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Many experimental runs must be performed in order to obtain the probability distribu- tion where these patterns live.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The mechanism underlying caustics can be understood from a phase space perspective, as shown in the right hand panel of Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Each dot gives the number and phase difference at a particular time for a different ini- tial condition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The red dots are the initial values which lie in a horizontal line because at ˜t = 0 all trajectories have ˜ρ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' As time evolves the dots rotate around the origin: the green and blue dots show two successively later times.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' However, the nonlinearity of the Josephson equations means dots further from the origin rotate more slowly and this leads to the formation of a spiral or whorl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' At places where the whorl has a vertical segment a range of different solutions all have the same value of ˜φ and this stationarity of the distribution with respect to changes in the initial conditions is what generates a caustic, in this case a ˜φ-caustic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Conversely, horizontal segments give rise to ˜ρ-caustics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' In the absence of nonlinearity the equations reduce to those of a harmonic oscillator d˜φ d˜t = 2Γ˜ρ , d˜ρ d˜t = −2J ˜φ (40) giving rise to rigid rotation in phase space and the forma- tion of perfect focal points in the number and phase dif- ference variables, as shown in Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' However, these perfect revivals of the initial state are not stable: any nonlinearity will cause the focal points to evolve into the extended cusp caustics shown in Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The frequency of the linearized motion is known in Josephson junction terminology as the plasma frequency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' 3 2 1 Initial 0 1 2 3 20 10 0 10 20 Grid points (r)3 2 1 Initial pr 0 1 2 3 20 10 0 10 20 Grid points (r)3 2 1 Initial 0 1 2 3 20 10 0 10 20 Grid points (r)3 2 Initial $r 1 0 1 2 3 20 10 0 10 20 Grid points (r)3 2 1 Initial $r 0 1 2 3 20 10 0 10 20 Grid points (r)3 2 1 0 Initi: 1 2 3 20 10 10 10 20 Grid points (r)11 Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Dynamics of the number difference ˜ρ (left), phase difference ˜φ (middle), and phase space distribution (right) following a J-quench from J = 0 to J = 30 Hz in the two mode approximation governed by the Josephson equations given in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (39).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The other parameter values are given in Table I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Each panel contains 150 trajectories: each trajectory starts with ˜ρ = 0 at time ˜t = 0 but has an initial phase randomly sampled from [−π, π).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Both number and phase difference variables display a series of cusp shaped caustics given by the envelopes of families of trajectories;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' to guide the eye we have outlined the first cusp caustic in the ˜ρ variable with a black curve.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' In the right panel three different time slices of the results are plotted in phase space (˜ρ versus ˜φ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Each dot corresponds to a different initial condition (trajectory) and the colors indicate the time: ˜t=0 (red), ˜t=50 (green), ˜t=100 (blue).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' During time evolution the initial horizontal line winds into a whorl and the caustics in the ˜ρ and ˜φ plots occur due to horizontal and vertical segments of a whorl, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Dynamics of the number difference ˜ρ (left), phase difference ˜φ (middle), and the phase space distribution (right) in the linearized version of the two-mode approximation [Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (40)] following a J-quench from J = 0 to J = 30 Hz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Like in Figure 3, there are 150 trajectories shown in each panel corresponding to different values of the initial value of ˜φ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' However, in this linearized case we obtain a series of perfect focus points (revivals of the initial state).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' This is because linearization gives rise to rigid rotation in phase space without whorls.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Unlike the extended cusp caustics seen in Figure 3 (which will be qualitatively robust to details of the nonlinearity) perfect focus points are nongeneric because they are unstable to perturbations such as the effects of nonlinearity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' All parameter values and color labels are the same as Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' In our notation it reads ωp = √ 4ΓJ (41) and the period of the motion is therefore given by 2π/ωp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' For the case shown in Figure 4 we have Γ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='063 and J = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='037 giving a period ≈ 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' In fact, the tips of the cusps in the nonlinear case also occur with this period since they are formed from small amplitude trajectories that only experience the quadratic bottom of the cosine potential.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' General case: many-mode SG+ model Simulations of the full SG+ model are shown in Figure 5, which represents one of the main results of this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The trajectories in the left panel give the spatially av- eraged number difference ⟨˜ρ(˜t)⟩z as a function of time obtained by solving the equations of motion given in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (23) for the many-mode system and then averaging over its length.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The trajectories in the middle panel of Figure 5 give the equivalent spatial average of the phase differ- ence ⟨˜φ(˜t)⟩z, and the right-hand panel is the phase space picture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Each trajectory is evolved from a single ran- domly sampled field configuration (describing thermally activated phonons) such as those shown in the top row of Figure 2 and for the parameters given in Table I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' We observe that despite the inclusion of longitudinal modes and the randomness of the initial conditions, the caustics survive and are quite similar to those of the two-mode approximation shown in Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' This suggests that caustics are a generic feature of many particle dynamics 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='5 2Q 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='5 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='3 1 0 1 2 32 1 2Q 0 1 2 0 25 50 75 5100 125 150 175 200 2+3 2 1 20 0 1 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='3 0 25 50 75 100 125 150 175 200 2+2 1 2Q 0 1 2 3 1 0 1 2 w iΦ2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='0 10 25 50 75 100 125 150 175 2003 2 1 20 0 1 2 3 0 25 50 75 100125 150.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='175 20012 Figure 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Dynamics of the spatially averaged number difference ⟨˜ρ⟩z (left), phase difference ⟨˜φ⟩z (middle), and phase space distribution (right) for the full many-mode SG+ model following a J-quench from J = 0 to J = 30 Hz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Each panel contains 150 trajectories which are solutions of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (23).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The initial conditions are randomly sampled thermal phonons with the same parameter values as those shown in the top row of Figure 2 and described in Table I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' In particular, the number of numerical lattice points is NL = 50 separated by a grid spacing of a = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='36 µm, and the temperature is T = 2 nK.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The healing length is ξh = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='24 µm, the spin healing length is ξs = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='5 µm and the phase coherence length is λT = 380 µm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The different colors on the phase space plot correspond to the same time slices as in the previous phase space plots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' following quenches, at least for systems whose underlying physics is based on coupled nonlinear oscillators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Each oscillator starts with a random phase and a noisy momen- tum but the quench acts so as to give all the oscillators a momentum kick at the same time ˜t = 0 leading to an initial partial synchronization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' As the system evolves in time after the kick the different periods of nonlinear os- cillators leads to cusp catastrophes in the distribution of trajectories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' If we had instead calculated only the expec- tation values of the number and phase differences then this underlying structure would not have been visible be- cause it lives in the probability distribution rather than the mean values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' A slice at fixed time through the probability distri- bution for the spatially averaged phase variable ⟨˜φ⟩z is shown in Figure 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' This is obtained by sorting the ⟨˜φ⟩z(˜t) trajectories into bins each of which covers a small range of ⟨˜φ⟩z and counting the number of trajectories in each bin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The result is noisy due to the thermal fluctuations but the caustics are clearly visible as strong peaks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' These peaks display the characteristic ‘square root’ divergence of fold caustics [1] P(⟨˜φ⟩z) ∝ 1 � ˜φc − ⟨˜φ⟩z (42) where P(⟨˜φ⟩z) is the probability density and ˜φc is the location of the caustic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The blue dashed lines in Figure 6 are fits of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (42) to the numerical data and we see that the agreement is good.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Although the height of the singu- larities predicted by Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (42) is infinite at the caustic, this function is integrable so that a probability distribution with caustics is still normalizable (of course, the peaks in the numerical data are of finite height because the num- ber of trajectories is finite).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' A very similar pattern of square root singularities at each caustic is obtained for a time slice through the probability density for the number difference variable so we shall not show it here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Figure 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The probability density (red curve) as a func- tion of ⟨˜φ⟩z obtained from the density of trajectories at time ˜t = 162 for the SG+ model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' This corresponds to a slice at fixed time through the middle panel of Figure 5, although calculated using 10000 trajectories to improve the statistics and averaged over a short time window of ∆˜t = 1 to remove rapid time fluctuations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The red curve has been drawn with a bin width d˜φ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='04 and is normalised such that the area under the graph is 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The caustics are clearly visible as di- verging peaks and are well fitted (blue dashed curves) by the inverse square root form given in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (42) that is expected for fold catastrophes [1] (the satellite caustics also have this shape but the fit is not shown to avoid obscuring the data).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' A very similar profile is obtained for the probability density in the ⟨˜ρ⟩z variable (not shown).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Effect of dispersion on the caustics The double derivative terms in the SG+ equations of motion given in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' 23 are responsible for transmitting wave disturbances along the longitudinal axis and are not present in the simpler two-mode case discussed in Section 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='5 0 25 50 75 1001251501752003 2 1 0 1 2 3 0 25 50 75 100 125 150 175 200 2+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='5 0 1 2 3 ()z1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='8 M 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='0 3 1 0 1 2 3 (0)z13 V B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Initial thermal fluctuations in the SG+ model will therefore disperse in z over time and it is interesting to see what difference this makes to the caustics;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' comparison of Figures 3 and 5 suggests it makes little difference to spatially averaged variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' However, this observation is for only one choice of the parameters ϵ and Γ that govern the size of the derivative terms and also for relatively short times.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' In particular, in Figure 5 the parameters are ϵ ≈ 4 and Γ ≈ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='06 which were chosen to match experimental values [72–77].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' In Figure 7 we compare the long time dynamics of the two-mode approximation and the SG+ model for the case where ϵ in the SG+ model has been artificially increased by a factor of 10 (without changing any other parameters), thereby increasing the effect of spatial dispersion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Apart from this change, the initial conditions and J-quench are similar to those used in Figure 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Note that we only use this increased value of ϵ for the time propagation and not for the generation of the thermal initial conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' This avoids changing the starting phase fluctuations from those used in Figure 5 which would otherwise be energetically suppressed and would also lead to significantly different dynamics but is not the comparison we would like to make here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' From Figure 7 we see that the strong coupling of neighboring ‘pendula’ does seem to largely wash out the caustics at long times in comparison to the dispersionless two-mode case, although some faint structure is still present which underlines the structural stability of caustics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The long time behavior will be further analyzed in Section VI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Effect of J on the caustics Another parameter that affects the dynamics is the tunnel coupling strength J [or its dimensionless version J which is defined in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (19)] that becomes non-zero after the quench.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The quench itself creates a strongly nonequilibrium phase difference where all values of ˜φ are equally probable independently of the value of J by virtue of the fact that before the quench there is no phase co- herence between the two quasicondensates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' However, J does control the post-quench dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' One way it does this is via the frequency of the Josephson oscillations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The cusps occur with a frequency given by the plasma frequency in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (41) which goes as √ J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' In Figure 8 we examine the effect of quenching to dif- ferent J values, with the value of J increasing from left to right.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' We can see the expected increase in frequency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The amplitude of the motion also increases with J be- cause immediately after the quench each trajectory finds itself at a random point on the cosine potential energy surface whose depth between valley top and valley bot- tom is 2J .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The initial potential energy of a field config- uration is therefore −2J ⟨cos ˜φ0⟩z, where ˜φ0 is the phase field ˜φ(˜z, ˜t) at the initial time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' This configuration evolves under the full Hamiltonian and upon spatial averaging is seen to execute oscillations about the potential minimum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The upper row in Figure 8 plots the spatially averaged Figure 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Comparison of the long-time behavior of the phase difference in the two-mode approximation (upper) and many- mode SG+ model (lower).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Both panels contain 150 different runs and the initial conditions and J-quench are similar to those of Figure 5 except that ϵ has been artificially multiplied by 10 (without changing any other parameters) in the lower panel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' This enhances the effect of the spatial derivative term in φ in the SG+ model (this term does not appear in the two mode model).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' We see that in the upper panel the caustics are still visible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' By contrast, the stronger spatial interaction causes dispersion and makes the caustics much less visible in the lower panel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' number difference and according to Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (18) the maxi- mum amplitude this can have is ⟨˜ρ⟩max z = � 2J (1 − ⟨cos ˜φ0⟩z) Γ (43) where we have ignored the effects of spatial coupling (sec- ond order derivative terms).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Thus, ⟨˜ρ⟩max z also scales as √ J, and this is in correspondence with Figure 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The lower row of Figure 8 shows the behavior in phase space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' In these figures we have also included the unaver- aged data, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' the ˜ρ and ˜φ values of each grid point at the three selected times.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' This gives a sense of the size of the statistical fluctuations due to the spatial degrees 3 2 1 0 1 2 3 600625650675700725 750775800 2+3 2 1 0 1 2 3 600 625 650 675 700 725 750 775 800 2+14 Figure 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Effect of quench strength J for J = 0 Hz, 3 Hz, and 30 Hz (from left to right).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The top row shows the dynamics of ⟨˜ρ⟩z with initial conditions sampled in the same way as in Figure 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The bottom row plots the corresponding phase space distributions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Like in previous figures, the different colors give different time instants: ˜t=0 (red), ˜t=50 (green), ˜t=100 (blue).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The dots with intense colors are the spatially averaged values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' We have also included the raw data (without spatial averaging) as faint dots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' This gives an idea of the size of the statistical fluctuations due to the thermal initial conditions and is the same for all values of J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' In the left column there is no coupling between the two quasicondensates and hence no time evolution of the spatially averaged data (the intense red, green, and blue dots sit on top of each other) although there can be evolution of unaveraged data due to intrawell dynamics, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' without the J term in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (10).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' As we increase the magnitude of J time evolution leads to whorls with a greater vertical extent because more energy can be extracted from the cosine potential in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (18) giving larger values of ⟨˜ρ⟩max z .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' of freedom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' In the left hand column J remains zero for all time and the only dynamics that can occur is along the long-axis of each quasicondensate individually.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The middle and right hand panels, which have J = 3 and J = 30 Hz, respectively, have the same initial statistical fluctuations as the left hand one because, as mentioned above, the initial distribution is set by the pre-quench thermal fluctuations in the two quasicondensates and is independent of J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' However, as time evolves the effects of J described by Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (43) become apparent because larger J allows a greater value of ⟨˜ρ⟩max z and this stretches the distribution along the vertical direction in comparison to a smaller value of J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' For a whorl to become apparent ⟨˜ρ⟩max z should at least exceed the width of the statistical fluctuations and becomes better and better defined as J is increased.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' VI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' UNIVERSALITY AND CAUSTICS We have already discussed the relationship between nonlinearity and caustics in the preceding section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' As motivated earlier, and expounded in Refs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' 17, 26, 31, 33, and 34, caustics also have implications for the universal dynamics of quantum systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' We explore a few of these effects in this section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Long time distribution: the circus tent The quench generates collective excitations that lead to caustics as shown in Figures 3 and 5 for the two non- linear models (two mode and SG+) discussed above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The caustics are born at the center of the probability distri- bution (in either the ˜ρ or the ˜φ variable) at intervals of the plasma period and move out to the edges over time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Figure 6 plots the probability distribution for the SG+ model as a function of ⟨˜φ⟩z at an intermediate time where four pairs of fold caustics are discernible and shows how they diminish in strength but are still present as they move to the edges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The question then naturally arises as to what happens at long times ˜t → ∞ when the dis- tribution comprises of a large number of caustics and whether it tends to a characteristic shape?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The answer is yes, and is shown in Figure 9 which is made in the same way as Figure 6 but this time by calculating the density of ⟨˜ρ⟩z trajectories and averaging over a time window extending between ˜t = 800 and ˜t = 980 in order 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='5 z(g) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='0 0 25 50 75 100 125 150 175 200 t2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='5 z(d) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='0 0 25 50 75 100 125 150 175 200 t2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='0 0 25 50 75 100 125 150 175 2002.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='0 3 2 1 0 1 2 3 (0)z2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='0 3 2 1 0 1 2 3 (0)z2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='0 3 2 1 0 1 2 3 (0)z15 to remove rapid fluctuations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The probability distribu- tion takes a shape reminiscent of a ‘circus tent’ or ‘big top’ and can be understood as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The strongest singularities present are the cusp tips born at the center of the distribution which leads to this being the highest point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Each cusp then splits into two fold arms (which according to catastrophe theory are lower singularities) that move outwards, reducing in height as they go, before accumulating at the edges where there is a sharp drop to zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The position of the outer edge is set by the maxi- mum energy that can be extracted from the quench and is given by Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' An analytic expression for the circus tent distribution is given by the integral PCT(˜ρ) = 1 2πB � 1 ˜ρ2/B2 U(m, ˜ρ) K(m) dm (44) where U(m, ˜ρ) = 1 � m(1 − m)(m − ˜ρ2/B2)(1 + ˜ρ2/B2 − m) , (45) K(m) is the complete elliptic integral of the first kind, and B = 2 � J /Γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' This expression is plotted in Figure 9 as the dashed line and is derived in Appendix E un- der the assumption that at long times we can model the system by an ensemble of independent pendulua where each pendulum is ergodic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' In other words, each pendu- lum obeys a microcanonical distribution where there is equal probability for it to be found anywhere on its en- ergy shell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The nature of the J-quench is such that it leads to an ensemble with an equal probability for any starting angle (this is different to an equal probability for each energy due to the dependence of the density of states on angle).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' As can be seen from Figure 9, PCT(˜ρ) gives a good fit to the numerical data generated by both the SG+ and two-mode models considered in this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' In Figure 9 we also include the thermal probability distribution PT (˜ρ) = 1 Z � ∞ 0 PE(˜ρ) e−E/T D(E) dE (46) describing an ensemble of pendula at thermal equilibrium at temperature T where PE(˜ρ) is the probability distri- bution at fixed energy E, D(E) is the density of states and Z is a normalizing factor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The details of our cal- culation of PT (˜ρ) are given in Appendix F, where, for example, PE(˜ρ) is given in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (F2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The temperature of this distribution is chosen such that the mean energy of the thermal distribution ⟨E⟩T is equal to the mean energy of the states excited by the quench.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' For a quench to J = 30 Hz we show in Appendix F that the effective temperature is 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='4 nK.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Clearly, the thermal distribution is very different to the circus tent distribution: the thermal distribution takes the form of a smooth gaussian with wings that extend beyond ⟨˜ρ⟩max z because the thermal Boltzmann factor Figure 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The long time probability distribution for the number difference ˜ρ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The data points are from the different nonlinear models considered in this paper averaged over the spatial coordinate z and also over a time window ranging from ˜t = 800 to ˜t = 980 to remove fluctuations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The pink dashed line is the circus tent distribution PCT given in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (44) and derived in Appendix E under the assumption of ergodicity;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' the circus tent shape is due to the proliferation of caustics at long times and gives a good fit to the data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The solid black curve is the thermal distribution PT with a temperature chosen so that the expectation value of the energy matches that provided by the quench.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' allows for excitations with any energy (albeit with ex- ponentially small probability) including those involving pendula undergoing rotation as well as libration, whereas the J-quench only excites librational motion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The proba- bility distribution for a thermal pendulum is in fact quite delicate to compute because of the singularity in the den- sity of states between libration and rotation but the com- bined result is smooth;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' see Appendix F for more details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Structural stability of caustics The defining characteristic of the singularities de- scribed by catastrophe theory is structural stability against perturbations and this ensures that they occur generically.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The same is not true of isolated singularities as can be seen by comparing Figures 3 and 4 where it is shown that point foci do not survive the introduction of nonlinearity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' In two dimensions cusps are the unique structurally stable catastrophe and from Figures 3 and 5 we see that cusp-shaped caustics are indeed stable against random thermal fluctuations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' However, thus far we have imposed the symmetrical starting condition that the ini- tial number difference between the two quasicondensates is zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' One may therefore wonder whether the caustics we see are a consequence of this symmetry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' To check that this is not the case we show in Figure 10 the dynamics for the case where the initial background density n1D in the two quasicondensates differs by 10%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' We see that 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='0 PcT Thermal two-mode 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='8 many-mode SG+ t 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='0-1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='5-1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='0-0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='0 (p)z,t16 Figure 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Structural stability of caustics: here we investigate the effect of unbalanced densities on caustics by tracking the same SG+ model dynamics as those shown in Figure 5 except for an initial density imbalance of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='1 in the background of ˜ρ at each point z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' We see that the cusp caustics in the plots of ⟨˜ρ⟩z and ⟨˜φ⟩z versus time are distorted but still maintain their basic structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' This is because the whorl in phase space is left intact despite having a displaced centre.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Caustics are resilient against imperfections and perturbations and we expect them to be present under realistic experimental conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' although the caustics in both ⟨˜ρ⟩z and ⟨˜φ⟩z are distorted they maintain their basic cusp shape.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Furthermore, the phase space whorls still occur and this guarantees the existence of caustics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Coherence factor and relaxation towards equilibrium Cold atom experiments have the ability to measure cor- relation functions in nonequilibrium many-body states [74, 116–118].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' As a simple example let us consider the coherence factor C(˜t) = � ⟨cos ˜φ⟩z � (47) which depends on the spatial average of the phase dif- ference field ˜φ(˜z, ˜t) between points along the two qua- sicondensates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The outer brackets indicate an ensemble average which means averaging over many trajectories each sampled from the thermal distribution discussed in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' In the Vienna experiments, where one quasicon- densate is suddenly split into two, the coherence starts near unity and decays over time as the two quasiconden- sates decohere [76, 77].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' In the opposite case, where two independent quasicondensates are suddenly coupled, one expects the converse where the coherence starts at zero and grows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' This situation has been previously modelled by Horváth et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' using both the TWA and a truncated conformal space approach [95].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' They found that C(˜t) initially grows and then undergoes damped oscillations as it settles down towards a finite constant value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The coherence factor therefore provides a measure of how the system reaches equilibrium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' In this context we note that C(˜t) actually corresponds to an ensemble average of the cosine term in the SG/SG+ Hamiltonian and thus gives information on the exchange of energy between the dif- ferent parts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' In other words, since the total energy is a constant of the motion, if the ‘potential’ part of the en- ergy settles down to a constant this suggests the ‘kinetic’ parts of the energy are also constant, at least from an ensemble averaged point of view.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Our aim in this sec- tion is to see if the dynamics of C(˜t) is connected to the caustics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' In Figure 11 we plot C(˜t) for two models: the full SG+ model which is many-mode and nonlinear and a linearized version which obeys the equations of motion d˜φ d˜t = 2Γ˜ρ − Γ 2 ∂2˜ρ ∂˜z2 d˜ρ d˜t = 2ϵ∂2 ˜φ ∂˜z2 − 2J ˜φ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (48) This differs from the linearized two-mode approximation defined by Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (40) because it describes an elongated multi-mode system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' From Figure 11 we see that C(˜t) for the SG+ model (dark blue curve) does indeed initially grow, undergo damped oscillations and settle down to a non-zero value (the fact that C(˜t) ̸= 0 at ˜t = 0 is due to random fluctuations in the initial conditions: as we include more trajectories we find that the initial value gets smaller).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Meanwhile, C(˜t) for the linear model (red dashed curve) executes undamped oscillations and hence does not settle down to equilibrium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Both models agree during the first oscillation but strongly differ after that.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' It is clear that nonlinearity is important for reaching equilibrium at least as far as global quantities such as C(˜t) are concerned.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' We can understand this by inter- preting the SG+ model as describing a chain of coupled pendula.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The nonlinearity of each pendulum means that its period depends on the amplitude of its motion and hence an ensemble of pendula whose motion is initiated together by the quench, but all with different degrees of excitation, will dephase from one another over time so that collective oscillations are damped out.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' By contrast, linear oscillators have a period independent of their am- plitudes of motion and hence remain in phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Apart from the ensemble averages shown by the darker curves in Figure 11, we have also included the individ- ual trajectories for ⟨cos ˜φ⟩z as fainter curves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The linear 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='0 0 25 50 75 100 125 150 175 2003 2 1 0 1 2 3 0 25 50 75 100 125 150 175 200 2t2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='0 3 2 1 0 1 2 3 (0)z17 Figure 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The two dark lines give the time evolution of the coherence factor C(˜t) defined in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (47) for a linear model (dashed-dotted red) and the SG+ model (solid blue).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Both models are multi-mode (many longitudinal modes along ˜z) but the SG+ model is nonlinear.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Also included as faint lines are the raw trajectories ⟨cos ˜φ⟩z from which C(˜t) is composed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' As everywhere in this paper, ⟨.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='⟩z indicates a spatial aver- age.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' This figure highlights that recurrences present in the linear case are suppressed by nonlinearity in the SG+ sys- tem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The ensemble average over trajectories with different periods causes C(˜t) to relax towards an equilibrium value in the case of the SG+ model in line with previous experimental observations [76, 77] and theory [95].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' model displays harmonic motion and hence perfect re- vivals whereas the trajectories in the nonlinear model give rise to half-cusp caustics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' These caustics overlap in time such that averaging over them causes the coher- ence to strongly relax after a single period.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' It is not so much that the caustics cause the relaxation, but rather that both have a common origin in the nonlinearity of the model and hence are generic features of dynamics in complex systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' VII.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' SUMMARY AND CONCLUSIONS The sine-Gordon (SG) model is a nonlinear integrable field theory that can be used to describe a wide range of systems from high energy physics to condensed matter physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' A series of landmark experiments using two cou- pled 1D atomic quasicondensates [63, 71–77] have real- ized the SG model in a controllable quantum many body environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The key parameters can be varied in time allowing the implementation of sudden quenches that ex- cite many modes leading to nonequilibrium dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' This is the setting we adopt for the current paper where we use experimentally realistic parameters and compute the dynamics of the number and phase difference fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' However, in contrast to the usual experimental protocol where the tunnel coupling J is suddenly switched off, we consider quenches where it is suddenly switched on.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' While the former case is adapted to studying dephasing, decay and thermalization between the two subsystems, the many body dynamics is governed by the Tomonaga- Luttinger Hamiltonian describing independent 1D quasi- condensates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' If instead J is suddenly switched on then the dynamics is that of the full SG model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Our calculations employ a thermal version of the semiclassical truncated Wigner approximation (TWA) method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' More specifically, we propagate a large num- ber of classical field configurations over time with initial conditions sampled from a distribution at thermal equi- librium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The time evolved configurations (trajectories) can be summed to obtain the probability distributions for the observables and we find that these are dominated by singular caustic patterns.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The natural mathematical description of caustics is catastrophe theory that predicts a hierarchy of structurally stable singularities with char- acteristic shapes that depend on dimension.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' In two di- mensions (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' number or phase difference versus time) the structurally stable catastrophes are fold lines that meet at cusps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' This is exactly what we find in both the number and phase differences following a J-quench, see Figure 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The probability distributions develop trains of caustics that are born periodically as cusp points (lo- cated at the center of the distribution if there is no tilt) at each plasma period and evolve into pairs of fold lines that gradually move out to the wings where they accumulate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Fold catastrophes manifest as strong non-gaussian fluc- tuations in the form of inverse square root divergences in the intensity (probability density), as shown in Figure 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' A special case is provided by the dynamics of a two mode system as shown in Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Here the equa- tions of motion are the Josephson equations given in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (39).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The only fluctuations we include in this ex- ample are the quantum fluctuations in the initial rela- tive phase between the two condensates as mandated by the uncertainty principle applied to systems in relative number eigenstates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The two-mode case is relevant to small systems where the higher modes are well above the temperature scale and so any spatial fluctuations are suppressed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' By contrast, the many-mode case shown in all the other figures includes both quantum fluctuations and thermal fluctuations in the longitudinal modes, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' thermal occupation of phonon modes in the 1D quasicon- densates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Despite the presence of the many longitudinal modes (typically 50 in our calculations, as set by the pa- rameter NL) which give rise to highly random looking phase and density profiles as seen in Figure 2, we find that number and phase caustics survive for experimen- tally realistic parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Furthermore, the qualitative features of the caustics are stable against variations in quench strength and density imbalance, as seen in Fig- ures 8 and 10, respectively, and also against the details of the model (in this paper we use the SG+ model which augments the SG model by including longitudinal den- sity gradients).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' All of these different examples confirm the structural stability of caustics which is the reason why they occur universally without the need for fine tuning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='75 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='50 (cos((z))z 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='75 Linearmany-mode 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='00 Non-linear many-mode SG+ 0 50 100 150 200 250 300 350 400 t18 The proliferation of caustics over time combined with their migration to the edge of the probability distribution has important consequences for the long time probability distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' It takes on the shape of a circus tent featur- ing a strong central peak due to the cusp tips which are the most singular part of a caustic, flatter intermediate regions, and rapidly decaying edges where the caustics pile up, see Figure 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' This shape is quite distinct from a gaussian thermal distribution and can be derived assum- ing an ergodic hypothesis in which individual pendula have equal probability to be anywhere on their energy shell (see Appendix E).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The approach to this equilibrium distribution can be tracked over time using the coherence factor (Figure 11) which is a spatial and ensemble average over the phase field and corresponds to the cosine term in the Hamiltonian if the latter is ensemble averaged.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The attainment of equilibrium relies on the nonlinearity of the system to dephase itself when ensemble averaged.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The caustics also rely on the nonlinearity without which they would reduce to nongeneric perfect revivals (point foci).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' In this sense caustics are mutually exclusive to recur- rences, at least in the statistical sense in which caustics appear in this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Caustics in the SG model could be observed experi- mentally by measuring the probability density for either the phase difference or the number difference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' For ex- ample, the phase difference can be obtained by releasing the two quasicondensates from their double well potential and letting them overlap [80–82].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' This process must be repeated many times and for as near identical initial con- ditions and time evolution as possible in order to build up a probability distribution, although due to the struc- tural stability of caustics they will not be particularly sensitive to differences in the experimental setup from run to run.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' If the probability distribution is obtained for a single time then we expect to see something like that shown in Figure 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' In order to observe the time evolu- tion of a caustic, one must then repeat the whole process for a range of different evolution times.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' This is laborious but technically possible, and since the first cusp caustic appears at half the plasma period the experiment does not need to run for long.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The singular nature of caustics means that they dom- inate wave fields and are well known in hydrodynam- ics and optics through phenomena such as tsunamis and gravitational lensing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The results of this paper show that they also occur in the nonequilibrium dynamics of 1D su- perfluids where a quench plays an analogous role to an underwater earthquake by generating strong excitations beyond the linear regime that are focused in this case by the cosine term in the SG Hamiltonian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The universal properties of catastrophes imply caustics likely also occur in the post-quench dynamics of other condensed matter systems too: systems with more degrees of freedom will display higher catastrophes beyond folds and cusps such as hyperbolic and elliptic umbilics [34].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' However, a spe- cial feature of the SG model is that it is integrable and so one may ask if that property plays a crucial role in the existence of caustics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' In this context, we note that in classical mechanics caustics are closely associated with the existence of tori in phase space upon which trajec- tories live [58].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Tori are broken up by chaos, and thus caustics are not expected to survive for long in systems which are deep in the chaotic regime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Despite this, the Kolmogorov-Arnold-Moser (KAM) theorem shows that some tori survive in moderately chaotic systems [119], which suggests caustics may also survive in cases where the classical phase-space is mixed, which is the typical case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Indeed, they survive in the three site Bose-Hubbard model [34] which is known to be chaotic [120].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The im- portant problem of extending the KAM theorem to quan- tum mechanics [121] is thus intertwined with the analysis of caustics in quantum systems and provides an interest- ing direction for extending the present work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' ACKNOWLEDGEMENTS We thank Ryan Plestid for contributions on ther- mal field sampling in the early stages of this project, Josh Hainge for suggesting the term ‘circus tent’, and Igor Mazets for correspondence and advice about ex- periments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' This work was supported by the Mitacs Globalink research internship, by the Natural Sciences and Engineering Research Council of Canada (NSERC), and Research at the Perimeter Institute is supported in part by the Government of Canada, through the Department of Innovation, Science and Economic De- velopment Canada, and by the Province of Ontario, through the Ministry of Colleges and Universities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' would like to acknowledge support from the project 6004-1 of the Indo-French Centre for the Promotion of Advanced Research (IFCPAR), Ramanujan Fellowship (SB/S2/RJN-114/2016), SERB Early Career Research Award (ECR/2018/002085) and SERB Matrics Grant (MTR/2019/001101) from the Science and Engineering Research Board (SERB), Department of Science and Technology (DST), Government of India.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' acknowl- edges support from the Infosys Foundation International Exchange Program at ICTS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='K acknowledges support of the Department of Atomic Energy, Government of In- dia, under Project No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' 19P1112R&D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Appendix A: Derivation of the sine-Gordon Hamiltonian In this appendix we derive the Hamiltonian HSG as the effective low energy description of two cigar shaped tunnel-coupled quasicondensates [50, 74] within a clas- sical field description (Gross-Pitaevskii theory).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Along the way we also obtain a slightly enhanced Hamiltonian HSG+ that includes contributions from the gradient of density fluctuations that are not included in the sine- Gordon (SG) Hamiltonian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' These contributions are not very important for our parameters but play an impor- 19 tant conceptual role by introducing an energetic price for a rapidly varying density and hence effectively cut off these fluctuations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Assuming tight radial trapping such that each quasi- condensate is in its radial ground state, meaning that only longitudinal excitations are taken into account, the second quantized Hamiltonian for the total system be written H = � ∞ −∞ dz � � j=1,2 � − ℏ2 2m ˆψ† j(z)∂2 ˆψj(z) ∂z2 + U(z) ˆψ† j(z) ˆψj(z) + g1D 2 ˆψ† j(z) ˆψ† j(z) ˆψj(z) ˆψj(z) � − ℏJ � ˆψ† 1(z) ˆψ2(z) + ˆψ† 2(z) ˆψ1(z) �� .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (A1) The quantum field operator ˆψj(z) annihilates a particle at the point z in the jth well, where z is the coordinate along the longitudinal direction (long axis of the system).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' m is the mass of the particles, U(z) is a possible external potential (in this paper it will be set to zero), g1D con- trols the interparticle interaction strength, and J is the tunneling frequency between the two wells.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' In the classi- cal field approximation we replace the field operators by complex functions ˆψj(z) → ψj(z) = eiφj(z)� n1D + ρj(z) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (A2) Note that φj and ρj are the phase and density variables for each well rather than their antisymmetric versions which are used extensively in the main text.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Let us start by manipulating the kinetic energy term − � j=1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='2 � ∞ −∞ dz ℏ2 2m ˆψ† j(z)∂2 ˆψj(z) ∂z2 (A3) = � ∞ −∞ dz � j=1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='2 ℏ2 2m � � ∂ ∂z e−iφj(z)� n1D + ρj(z) � × � ∂ ∂z e+iφj(z)� n1D + ρj(z) � � = � ∞ −∞ dz � j=1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='2 ℏ2 2m � − i∂φj ∂z ˆψ† j + e−iφj ∂ρj ∂z 2√n1D + ρj � × � i∂φj ∂z ˆψj + eiφj ∂ρj ∂z 2√n1D + ρj � = � ∞ −∞ dz � j=1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='2 ℏ2 2m � ˆψ† j ˆψj �∂φj ∂z �2 + ( ∂ρj ∂z )2 4(n1D + ρj) + i ∂ρj ∂z ∂φj ∂z 2√n1D + ρj [ ˆψje−iφj − ˆψ† jeiφj] � = � ∞ −∞ dz � j=1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='2 ℏ2 2m � ˆψ† j ˆψj �∂φj ∂z �2 + ( ∂ρj ∂z )2 4(n1D + ρj) � ≈ � ∞ −∞ dz ℏ2 2m � n1D 2 ��∂φs ∂z �2 + �∂φa ∂z �2� + 1 2n1D ��∂ρs ∂z �2 + �∂ρa ∂z �2� � (A4) where φa = φ1 − φ2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' φs = φ1 + φ2 (A5) ρa = ρ1 − ρ2 2 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' ρs = ρ1 + ρ2 2 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (A6) and we assume that n1D ≫ ρj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Next we consider the interactions � j=1,2 g1D 2 ψ† jψ† jψjψj = � j=1,2 g1D 2 [n1D + ρj(z)]2 = � j=1,2 � g1Dn2 1D 2 + g1Dρ2 j 2 + g1Dn1Dρj � =g1Dn2 1D + g1D(ρ2 s + ρ2 a) + 2g1Dn1Dρs .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (A7) Finally, we consider the tunneling term −ℏJ � ψ† 1(z)ψ2(z) + ψ† 2(z)ψ1(z) � (A8) = − ℏJ � (e−i(φ1−φ2) + e−i(φ2−φ1))√n1D + ρ1 √n1D + ρ2 � = − 2ℏJ cos(φa)√n1D + ρ1 √n1D + ρ2 = − 2ℏJ cos(φa) � n2 1D + 2n1Dρs + ρ2s − ρ2a ≈ − 2ℏJ cos(φa)(n1D + ρs) ≈ −2ℏn1DJ cos(φa) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (A9) 20 At very low temperatures the symmetric and antisym- metric components decouple and hence can be treated separately.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The lower energy terms are the antisymmet- ric ones and we obtain the following Hamiltonian HSG+ = � ∞ −∞ dz � g1D ρa(z)2 + ℏ2n1D 4m �∂φa ∂z �2 + ℏ2 4mn1D �∂ρa ∂z �2 � − � ∞ −∞ dz 2ℏJn1D cos [φa(z)] .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (A10) When the higher wavelength ρ modes are suppressed this reduces to the sine-Gordon model HSG = � ∞ −∞ dz � g1D ρa(z)2 + ℏ2n1D 4m �∂φa ∂z �2 − 2ℏJ n1D cos [φa(z)] � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (A11) Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (A11) is the finally obtained SG Hamiltonian HSG which is the low energy description of two cigar shaped tunnel-coupled quasicondensates [50, 74].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Appendix B: Derivation of the Tomonaga-Luttinger (TL) Hamiltonian in Fourier space In this appendix we derive the Fourier space version of the Tomonaga-Luttinger (TL) Hamiltonian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Starting from Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (25), and applying the discrete Fourier decom- positions given in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (26) and Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (27),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' we have ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='HTL+(ra) = ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='� ∞ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='−∞ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='dz ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='g1D ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='NL + 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='NL/2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='k=−NL/2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='ϱkei 2πkr ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='NL+1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='� × ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='NL/2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='l=−NL/2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='ϱlei 2πlr ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='NL+1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='+ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='� ∞ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='−∞ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='dz ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='ℏ2n1D ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='4ma2(NL + 1) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='∂ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='∂r ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='NL/2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='k=−NL/2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='ϕkei 2πkr ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='NL+1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='� × ∂ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='∂r ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='NL/2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='l=−NL/2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='ϕlei 2πlr ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='NL+1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='+ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='� ∞ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='−∞ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='dz ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='ℏ2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='4mn1Da2(NL + 1) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='∂ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='∂r ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='NL/2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='k=−NL/2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='ϱkei 2πkr ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='NL+1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='� × ∂ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='∂r ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='NL/2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='l=−NL/2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='ϱlei 2πlr ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='NL+1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='= a ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='NL/2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='r=−NL/2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='NL/2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='k=−NL/2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='NL/2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='l=−NL/2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='�g1Dϱkϱlei 2π(k+l)r ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='NL+1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='NL + 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='− a ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='NL/2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='r=−NL/2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='NL/2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='k=−NL/2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='NL/2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='l=−NL/2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='ℏ2n1D ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='4ma2(NL + 1) × ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='2π ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='NL + 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='�2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='klϕkϕlei 2π(k+l)r ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='NL+1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='− a ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='NL/2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='r=−NL/2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='NL/2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='k=−NL/2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='NL/2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='l=−NL/2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='ℏ2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='4mn1Da2(NL + 1) × ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='2π ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='NL + 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='�2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='klϱkϱlei 2π(k+l)r ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='NL+1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='(B1) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='where we have split the z coordinate into NL + 1 grid ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='points separated by distance a so that z = r a where r ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='in an integer lying in the range specified by Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (11).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Using the fact that NLa = L, and applying the identity �NL/2 r=−NL/2 ei 2π(k+l)r NL+1 = (NL + 1)δk,−l we obtain HTL+ ≈a � k � l g1Dϱkϱlδk,−l − a � k � l �ℏ2n1Dπ2 mL2 � klϕkϕlδk,−l − a � k � l � ℏ2π2 mn1DL2 � klϱkϱlδk,−l (B2) where in the second term we have also replaced a2(NL + 1)2 by L2 which holds when NL ≫ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The limits of the summation in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (B2) has been omitted for the sake of 21 brevity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' We therefore find HTL+ ≈ � k � ag1Dϱkϱ−k+aℏ2n1Dπ2k2 mL2 ϕkϕ−k + aℏ2π2k2 mn1DL2 ϱkϱ−k � = � k � ag1D|ϱk|2+aℏ2n1Dπ2k2 mL2 |ϕk|2 + aℏ2π2k2 mn1DL2 |ϱk|2 � (B3) where we used the property of real fields that ϕ−k = ϕ⋆ k, and ϱ−k = ϱ⋆ k .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (B4) Hence the Hamiltonian takes the form given in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (28) of the main text.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Appendix C: Bench marking of the numerical method The results given in this paper rely on numerically evolving the equations of motion over time for various models [e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' for the full SG+ model the equations of mo- tion are given in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (22)], which we accomplish using the Julia package DifferentialEquations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='jl [114].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' This im- plements a Runge-Kutta solver with a user-defined time step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' As a measure of the accuracy of our numerical method we use the deviation of the Hamiltonian from its initial value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Since the Hamiltonian should be a con- stant of motion this gives an indication of the size of the numerical errors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' In Figures 12 and 13 we plot the relative error in the SG+ Hamiltonian given in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (18) for different time and spatial resolutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' More precisely, Figure 12 shows the effect of varying the time step d˜t, whereas Figure 13 shows the effect of varying the number of grid points NL which sets the spatial step d˜z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' In both cases we have evolved the system for a total elapsed time of ˜t = 1000 which corresponds to the longest times we use in this paper (for the calculation of the long-term distribution shown in Figure 9), and also taken an ensemble average over 100 different trajectories similar to those in Figure 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Furthermore, we also performed a moving time average of 30-time steps around ˜t = 1000 to average out the effect of fast oscillations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' As expected, the relative error decreases as d˜t and d˜z decrease.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' For all the calculations in this paper we chose d˜t = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='2 and NL = 50 because this keeps the relative error below 10 % and does not significantly slow down the simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Figure 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The relative error in the SG+ Hamiltonian is plotted here as a function of the time step d˜t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The definition of the SG+ Hamiltonian is given in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' 18 and should be a constant of the motion were it not for numerical errors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The moving time average of relative error is evaluated after propagating the equations of motion for a total elapsed time of ˜t = 1000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' All parameter values are the same as in Figure 5 including NL = 50.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Figure 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The relative error in the SG+ Hamiltonian is plotted here as a function of the number of lattice points NL on the numerical spatial lattice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Like in Figure 12, the Hamil- tonian is evaluated after evolving the equations of motion for a total elapsed time of ˜t = 1000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The moving time average of the relative error fluctuates (at around 10 %) but does de- crease as d˜z decreases (or NL increases).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' All other parameter values are the same as in Figure 5 with d˜t = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='2 Appendix D: Caustic curve In this appendix we use the exact solution for the mo- tion of a pendulum to calculate the caustic curve plotted as the solid black line in Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The caustic is in fact the envelope of a whole family of trajectories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' To begin, we take the equations of motion for the SG model given in 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='5 (0) + 9SH (1) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='1 10-1 100 101 dt0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='16 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='14 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='12 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='08 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='04 20 40 60 80 100 NL22 Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (22) and drop the second order derivative term pro- portional to ϵ which couples the different pendula.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Next, we make the change of variables ˜t = At, ˜ρ = Bp, ˜φ = 2y (D1) where A = 1 2 1 √J Γ , B = 2 � J Γ (D2) so the equations of motion simplify to dy dt = p (D3) dp dt = −1 2 sin 2y .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (D4) These equations are Hamilton’s equations obtained from a standard pendulum hamiltonian of the form H(y, p) = p2 2 + 1 2 sin2 y .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (D5) The equations of motion given in Eqns.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (D3) and (D4) have exact solutions in terms of the Jacobi elliptic func- tions sn[u|m] and cn[u|m] [122].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' For the case relevant to us where the pendulum starts at angle y0, with zero initial angular momentum, they are y(t, y0) = arcsin{sin y0 sn[t + K(sin y0)| sin y0]}(D6) p(t, y0) = sin(y0) cn[t + K(sin y0)| sin y0] (D7) where K(m) = � π/2 0 dθ/ � 1 − m2 sin2 θ is the complete elliptic integral of the first kind [122] (we caution the reader that some computer packages such as Mathematica use the syntax K(m2) for this integral).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Caustics occur when trajectories are focused, in other words they are the places where the trajectory does not change (to first order) when the initial conditions are varied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Thus, caustics in the momentum variable p oc- cur when dp/dy0 = 0 since the initial condition here is specified by y0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' By differentiating Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (D7) an implicit expression for the position of the caustics can be found [123] sn(u|m)dn(u|m) �E(am(−t|m) |m) cos(y0) + t cos(y0) � − cos(y0)cn(u|m) = 0 (D8) where u = t+K(sin y0), m = sin y0, E(u|m) is an elliptic integral of the second kind, dn(u|m) is another Jacobi elliptic function, and am(u|m) = arcsin[sin(φ)/m] is the Jacobi amplitude [122].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Finding the roots y0 of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (D8) numerically at each value of the time gives pairs of values (y0, t) that can then be put back into Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (D7) to yield the black curve for the caustic shown in Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The match to the numerics is very good.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Appendix E: Derivation of ergodic (“circus tent”) probability distribution at long times In this appendix we outline the derivation of an an- alytic approximation to the probability distribution for the number difference at long times, as shown in Figure 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' This derivation is based upon a calculation given in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' 124 and assumes that the average behaviour of a con- tinuous chain of coupled pendula (the mechanical system that underlies the sine-Gordon model) can be described by a suitably ‘ergodized’ single pendulum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' To keep the calculation general we use the pendulum Hamiltonian in standard form as given in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (D5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' With this hamiltonian we define a microcanonical probability density in phase space: dm(y, p;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' y0) = δ[H(y, p) − H(y0, p)] � � dy dp δ[H(y, p) − H(y0, p)] (E1) where y0 is the initial angle of the pendulum which fixes its total energy to be E = (1/2) sin2 y0 if the the initial angular momentum is zero (this is the appropriate ini- tial condition for the tunneling quench considered in this paper where the initial number difference is taken to be zero), and the denominator ensures that dm is normalized to unity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' A microcanonical distribution has equal prob- ability to be anywhere on its energy shell (in this case a closed curve in y, p phase space) and thus by adopt- ing Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (E1) we are making an ergodic hypothesis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' This does not hold for a single pendulum starting at position y0 since it will spend the most time at its turning points y = ±y0, but when averaged over y0 and y (see below) it gives a very good approximation at long times, as can be seen in Figure 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The normalization integral can be evaluated exactly by re-expressing the delta function using the relation δ[g(x)] = � i δ(x − xi)/|g′(xi)|, where xi are the roots of g(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' In the present case this gives δ[(p2 + sin2 y − sin2 y0)/2] =δ[p − p1] |p1| + δ[p − p2] |p2| =2δ[p − p1] |p1| (E2) where |p1| = |p2| = � sin2 y0 − sin2 y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' In obtaining this expression we have used the fact that for values of y within the range accessed by the pendulum, there are two values of p where the integral crosses the energy shell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The integral over p is now trivial due to the delta func- tion and the integral over y can be performed by putting sin y = sin y0 sin ζ so that 23 2 � y0 −y0 dy |p(y, y0)| = 2 � y0 −y0 dy � sin2 y0 − sin2 y = 2 � π/2 −π/2 dζ � 1 − sin2 y0 sin2 ζ = 4 � π/2 0 dζ � 1 − sin2 y0 sin2 ζ = 4K(sin y0) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (E3) Therefore, the normalized microcanonical probability density can be written as dm(y, p;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' y0) = 1 4K(sin y0)δ[(p2 + sin2 y − sin2 y0)/2] = 1 2K(sin y0)δ(p2 + sin2 y − sin2 y0) (E4) where we have used the property of delta functions that δ(αx) = (1/α)δ(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The initial condition for our dynamics is such that the number difference is well defined but the phase differ- ence is completely undefined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' We must therefore average the microcanonical probability density over all y0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' This gives the phase space probability density relevant to J- quenches as being W(y, p) = 1 π � π/2 −π/2 dy0 dm(y, p;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' y0) (E5) where we employ the notation W to indicate that this is a classical version of the Wigner function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The properties of the delta function can once more be used to write δ(p2 + sin2 y − sin2 y0) = � i δ(y0 − y0i)θ(cos y − |p|) 2 � p2 + sin2 y � cos2 y − p2 (E6) where θ(x) is the Heaviside step function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The integral over y0 can now be evaluated exactly to give W(y, p) = 2 4π θ(cos y − |p|) K( � p2 + sin2 y) � p2 + sin2 y � cos2 y − p2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (E7) The final step is to integrate out the y coordinate to obtain the probability distribution PCT(p) for p alone PCT(p) = � π/2 −π/2 dy W(y, p) , (E8) where “CT” stands for circus tent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Although this integral cannot be done analytically, it can be put in a form which is convenient to evaluate numerically.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Denoting m = sin y0 = � p2 + sin2 y, one finds that PCT(˜ρ) = 1 2πB � 1 ˜ρ2/B2 dm K(m) � m(1 − m)(m − ˜ρ2/B2)(1 + ˜ρ2/B2 − m) (E9) where we have also converted back from angular momen- tum p to number difference ˜ρ using Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (D1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' This equa- tion is given in the main text as Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (44) and is plotted in Figure 9 where it is compared against the long-time spatially and temporally averaged numerical data for the various nonlinear models considered in this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' As can be seen in Figure 9, PCT is characterized by a di- verging (yet normalizable) peak at the center and then relatively flat wings until it drops sharply to zero at the edges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' In Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' 124 it is shown that PCT(˜ρ) diverges log- arithmically at the origin ˜ρ = 0 and also tends suddenly to zero with logarithmic singularities at ˜ρ = ±B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Both these non-thermal features can be attributed to the pres- ence of caustics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Appendix F: Pendulum at thermal equilibrium In Figure 9 the long time probability distribution for the number difference is compared against the ergodic prediction derived in Appendix E, and also against the thermal equilibrium prediction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' In this Appendix we ex- plain how to calculate the latter case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' In order to make the calculation tractable we make the assumption that the SG+ model can be approximated by a thermal en- semble of independent pendula.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' We also adopt the same notation as Appendix E and hence work with a pendulum Hamiltonian in the standard form H = (1/2)(p2+sin2 y).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' This is related to the two mode Hamiltonian H2M = Γ˜ρ2 − 2J cos φ by H = H2M/8J + 1/4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' We proceed in two steps: we first calculate the prob- ability distribution PE(p) for the momentum variable p (that here plays the role of the number difference) for a fixed energy E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Secondly, we assume our system is at thermal equilibrium with a bath at temperature T such that the relative probability of any energy is given by the Boltzmann factor exp[−E/T].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Thus the thermal proba- bility distribution is PT (p) = 1 Z � ∞ 0 PE(p) e−E/T D(E) dE (F1) where Z is a normalizing factor (found numerically) and 24 D(E) is the density of states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The probability distribution PE(p) at fixed E is pro- portional to 1/ ˙p as this determines how long the pendu- lum spends at each value of p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' According to Hamilton’s equation ˙p = −∂H/∂x = −(1/2) sin 2y, and using the fact that sin y = � 2E − p2, we find that this probability distribution for a fixed value of E is PE(p) = N (1/2) sin(2 arcsin � 2E − p2) , (F2) where N is a normalization factor given by the period of the motion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Two cases must be distinguished: for E < 1/2 the energy is less than the separatrix and the pendulum undergoes vibrational motion (also known as librational motion in some literature).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Conversely, when E > 1/2 the energy is above the separatrix and the pen- dulum undergoes rotational motion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' For motion below the separatrix we have |p| < pmax = √ 2E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' We must therefore supplement the expression for PE(p) with the condition that it is zero if |p| > pmax and this ensures that PE(p) is real.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' N is given in this case by N = 1 2 K( √ 2E) (F3) where, as in Appendix E, K is the complete elliptic inte- gral of the first kind.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' For motion above the separatrix we have √ 2E − 1 < |p| < √ 2E and PE(p) is zero outside this range.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' N is now given by N = √ 2E 4 K(1/ √ 2E) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (F4) To obtain the total thermal probability distribution PT (p) given in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (F1) we need the density of states D(E) ≡ dn/dE, where n is the number of states be- low energy E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' According to the Bohr-Sommerfeld rule n = S(E)/(2πℏ), where the action S(E) = � p dy is the area in phase space enclosed by the energy contour E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' However, assuming that our Hamiltonian H is in units ℏω then the 2πℏ factor is absorbed into the definitions of p and y and we have D(E) = (d/dE) � p dy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Below the separatrix we have � p(y)dy = 4 � arcsin √ 2E 0 � 2E − sin2 y dy (F5) and putting 2E = sin2 y0 we find D<(E) = d dE � p(y)dy = 4 � arcsin √ 2E 0 dy � sin2 y0 − sin2 y = 4K( √ 2E) (F6) where the integral is performed in a similar fashion to the one in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (E3) and the subscript “<” indicates that this is the expression valid below the separatrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Above the separatrix we find that the area enclosed in phase space between two oppositely rotating states of the same energy is � p(y)dy = 2 � π/2 −π/2 � 2E − sin2 y dy (F7) and thus D>(E) = d dE � p(y)dy = 2 � π/2 −π/2 dy � 2E − sin2 y = 4 √ 2E K � 1 √ 2E � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (F8) Due to the fact that above the separatrix 2E > sin2 y we no longer need to make the substitutions 2E = sin2 y0 and sin y = sin y0 sin ζ, and the integral is straightfor- ward.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The subscript “>” indicates that this expression holds above the separatrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' We now have all the necessary ingredients to perform the integral for PT (p) which we do numerically.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The two contributions, one from below the separatrix and one from above, are added together to get the total.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Inter- estingly, both density of states factors, Eqns.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (F6) and (F8), diverge at the separatrix such that the two con- tributions individually display singular features but re- markably these cancel out when the two parts are added and result in the smooth gaussian curve plotted in Figure 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' In order to compare the thermal distribution against the quenched (followed by integrable SG evolution) dis- tribution derived in Appendix E we need to choose a temperature T for the thermal distribution PT .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' We do this by matching the expectation value of the energy ⟨E⟩ for both distributions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' In the quenched case the initial state corresponds to an ensemble of pendula with dif- ferent starting angles y0 and zero kinetic energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Each starting angle in the range −π/2 < y0 ≤ π/2 is equally probable in our J-quench.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Therefore ⟨E⟩quench = 1 π � π/2 −π/2 1 2 sin2 y0 dy0 = 1 4 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (F9) To calculate ⟨E⟩ in the thermal case we compute ⟨E⟩T = 1 ζ � ∞ 0 E e−E/T D(E) dE (F10) numerically for a large number of different values of T, performing the integrals below and above the sep- aratrix separately and adding the results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Here ζ = � ∞ 0 e−E/T D(E) dE gives the normalization factor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' We then fit a curve to the results and find the value of T 25 that best matches the result given in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' (F9).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' We find that T = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='184 gives the best match.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Putting back the units this result is kBT 8J ℏc/ξh = kBT 16JℏK/π = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='184 (F11) where c is the speed of sound and K is the Luttinger parameter and J is the tunnel coupling rate between the two wells.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' In this paper we take K = 25 and J = 30 Hz (see Table I) giving a temperature in SI units of 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='4 nK.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [1] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Nye, Natural Focusing and Fine Structure of Light: Caustics and Wave Dislocations (Institute of Physics Publishing: Bristol and Philadelphia, 1999).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [2] Lord Kelvin, Deep water ship-waves, Phil.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Mag.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' 9, 733 (1905).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [3] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Titov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Rabinovich, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Mofjeld, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Thomson R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' González, The global reach of the 26 December 2004 Sumatra tsunami, Science 309, 2045 (2005).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [4] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Berry, Focused tsunami waves, Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Lon- don A 463, 3055 (2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [5] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Degueldre, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Metzger, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Geisel, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Fleis- chmann, Random focusing of tsunami waves, Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' 12, 259 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [6] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Berry, Minimal analytical model for undular tidal bore profile;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' quantum and hawking effect analogies, New J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' 20, 053066 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [7] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Heller, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Fleischmann, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Kramer, Branched flow, Physics Today 74, 44 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [8] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Peebles, The Large-Scale Structure of the Uni- verse (Princeton University Press, Princeton, NJ, 1980).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [9] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Arnold, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Shandarin, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Zeldovich, The large scale structure of the universe I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' General proper- ties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' One- and two-dimensional models, Geophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' As- trophys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Fluid Dyn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' 20, 111 (1982).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [10] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Gurbatov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Saichev, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Shandarin, Large-scale structure of the universe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' The Zeldovich ap- proximation and the adhesion model, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='-Usp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' 55, 223 (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [11] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Feldbrugge, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' van de Weygaert, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Hidding, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Feldbrugge, Caustic skeleton & cosmic web, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Cos- mol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Astropart.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' 5, 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [12] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Berry, Regular and irregular semiclassical wave- functions, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' A: Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Gen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' 10, 2083 (1977).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [13] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Berry, Singularities in waves and rays, in Physics of Defects (Les Houches Session XXXV), edited by R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Balian, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Kléman, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='-P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Poirier (North-Holland Publishing, Amsterdam, 1981).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [14] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Thom, Structural Stability and Morphogenesis (Ben- jamin, Reading, MA, 1975).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [15] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Arnol’d, Critical points of smooth functions and their normal forms, Russ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Survs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' 30, 1 (1975).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [16] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Zeeman, Catastrophe Theory: Selected Papers 1972-1977 (Addison-Wesley, Reading, MA, 1977).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [17] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Mumford, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Kirkby, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' O’Dell, Catastro- phes in non-equilibrium many-particle wave functions: universality and critical scaling, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' B: At.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Mol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Opt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' 50, 044005 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [18] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Nesvizhevsky, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Börner, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Petukhov, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Abele, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Baeßler, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Rueß, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Stöferle, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' West- phal, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Gagarski, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Petrov, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Strelkov, Quantum states of neutrons in the Earth’s gravitational field, Nature 415, 297 (2002).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [19] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Jenke, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Geltenbort, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Lemmel, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Abele, Re- alization of a gravity-resonance-spectroscopy technique, Nature Physics 7, 468 (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [20] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Petersen, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Weyland, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Paganin, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Sim- ula, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Eastwood, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Morgan, Electron vortex production and control using aberration induced diffrac- tion catastrophes, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' 110, 033901 (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [21] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Rooijakkers, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Wu, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Striehl, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Vengalattore, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Prentiss, Observation of caustics in the trajectories of cold atoms in a linear magnetic potential, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' A 68, 063412 (2003).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [22] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Huckans, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Spielman, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Tolra, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Phillips, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Porto, Quantum and classical dy- namics of a Bose-Einstein condensate in a large-period optical lattice, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' A 80, 043609 (2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [23] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Rosenblum, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Bechler, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Shomroni, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Kaner, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Arusi-Parpar, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Raz, and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Dayan, Demonstra- tion of fold and cusp catastrophes in an atomic cloud reflected from an optical barrier in the presence of grav- ity, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' 112, 120403 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [24] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Mossman, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Bersano, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' McNeil Forbes, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Engels, Gravitational caustics in an atom laser, Na- ture Communications 12, 7226 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [25] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Simula, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Petersen, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Paganin, Diffraction catastrophes threaded by quantized vortex skeletons caused by atom-optical aberrations induced in trapped Bose-Einstein condensates, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' A 88, 043626 (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [26] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Mumford, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Turner, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Sprung, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' O’Dell, Quantum spin dynamics in Fock space following quenches: Caustics and vortices, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' 122, 170402 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [27] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Kirkby, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Mumford, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' O’Dell, Quantum caustics and the hierarchy of light cones in quenched spin chains, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Research 1, 033135 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [28] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Berry and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Dennis, Quantum cores of optical phase singularities, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Opt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' A 6, S178 (2004).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [29] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Berry, Three quantum obsessions, Nonlinearity 21, T19 (2008), publisher: Institute of Physics Pub- lishing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [30] U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Leonhardt, A laboratory analogue of the event hori- zon using slow light in an atomic medium, Nature (Lon- don) 415, 406 (2002).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [31] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' O’Dell, Quantum catastrophes and ergodicity in the dynamics of bosonic Josephson junctions, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' 109, 150406 (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [32] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Goldberg, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Al-Qasimi, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Mumford, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' O’Dell, Emergence of singularities from decoherence: Quantum catastrophes, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' A 100, 063628 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [33] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Plestid, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Mahon, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' O’Dell, Violent re- laxation in quantum fluids with long-range interactions, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' E 98, 012112 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [34] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Kirkby, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Yee, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Shi, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' O’Dell, Caustics in quantum many-body dynamics, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' 4, 26 013105 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [35] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Berry and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Wright, Phase-space projection identities for diffraction catastrophes, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' A: Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Gen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' 13, 149 (1980).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [36] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Coleman, Quantum sine-Gordon equation as the mas- sive Thirring model, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' D 11, 2088 (1975).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [37] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Rajaraman, Some non-perturbative semi-classical methods in quantum field theory (a pedagogical review), Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Rep.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' 21, 227 (1975).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [38] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Fogel, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Trullinger, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Bishop, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Krumhansl, Dynamics of sine-Gordon solitons in the presence of perturbations, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' B 15, 1578 (1977).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [39] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Malomed, The sine-Gordon model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' General back- ground, physical motivations, inverse scattering, and solitons, in The sine-Gordon model and its applica- tions: from pendula and Josephson junctions to gravity and high-energy physics, edited by J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Cuevas-Maraver, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Kevrekidis, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Williams (Springer Interna- tional Publishing, Heidelberg, 2014) pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' 1–30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [40] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Frenkel and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Kontorova, On the theory of plas- tic deformation and twinning, Izvestiya Akademii Nauk SSSR, Seriya Fizicheskaya 1, 137 (1939).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [41] U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Enz, The motion of Bloch magnetic walls in magnetic crystals, Helv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Acta 37, 245 (1964).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [42] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Gallemí, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Pitaevskii, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Stringari, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Recati, Decay of the relative phase domain wall into confined vortex pairs: The case of a coherently coupled bosonic mixture, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' A 100, 023607 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [43] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Oshikawa and I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Affleck, Field-induced gap in s = 1/2 antiferromagnetic chains, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' 79, 2883 (1997).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [44] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Affleck and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Oshikawa, Field-induced gap in Cu benzoate and other s = 1/2 antiferromagnetic chains, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' B 60, 1038 (1999).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [45] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Cortés Cubero and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Schuricht, Quantum quench in the attractive regime of the sine-Gordon model, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Stat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Mech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' , 103106 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [46] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Haldane, Effective harmonic-fluid approach to low-energy properties of one-dimensional quantum flu- ids, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' 47, 1840 (1981).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [47] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Giamarchi, Quantum Physics in One Dimension (Oxford University Press, New York, 2004).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [48] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Hadzibabic, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Kruger, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Cheneau, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Battelier, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Dalibard, Berezinskii–Kosterlitz–Thouless crossover in a trapped atomic gas, Nature 441, 1118 (2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [49] O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Chelpanova, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Kelly, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Morigi, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Schmidt- Kaler, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Marino, Injection and nucleation of topological defects in the quench dynamics of the Frenkel-Kontorova model, (2022), arXiv:2210.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='14904v2 [cond.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='mat].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [50] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Bouchoule, Modulational instabilities in Josephson os- cillations of elongated coupled condensates, Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' D 35, 147 (2005).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [51] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Gritsev, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Polkovnikov, and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Demler, Linear re- sponse theory for a pair of coupled one-dimensional con- densates of interacting atoms, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' B 75, 174511 (2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [52] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Iucci and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Cazalilla, Quantum quench dynamics of the sine-Gordon model in some solvable limits, New J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' 12, 055019 (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [53] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Dalla Torre, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Demler, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Polkovnikov, Uni- versal rephasing dynamics after a quantum quench via sudden coupling of two initially independent conden- sates, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' 110, 090404 (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [54] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Foini and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Giamarchi, Nonequilibrium dynamics of coupled luttinger liquids, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' A 91, 023627 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [55] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Schmiedmayer, One-dimensional atomic superfluids as a model system for quantum thermodynamics, in Thermodynamics in the Quantum Regime, Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' 195 (Springer Nature, 2018) p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' 823.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [56] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' van Nieuwkerk, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Schmiedmayer, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Essler, Josephson oscillations in split one-dimensional Bose gases, SciPost Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' 10, 090 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [57] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='-F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Mennemann, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Mazets, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Pigneur, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Stim- ming, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Mauser, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Schmiedmayer, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Erne, Relaxation in an extended bosonic Josephson junction, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' 3, 023197 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [58] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Berry, Semiclassical mechanics of regular and irreg- ular motion, in Chaotic behaviour of deterministic sys- tems (Les Houches Session XXXVI), edited by G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Iooss, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Helleman, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Stora (North-Holland Pub- lishing, Amsterdam, 1983).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [59] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Miller, Exact solutions of semiclassical non-characteristic Cauchy problems for the sine-Gordon equation, (2007), arXiv:0705.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='3159 [nlin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='SI].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [60] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Paredes, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Widera, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Murg, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Mandel, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Fölling, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Cirac, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Shlyapnikov, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Hänsch, and I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Bloch, Tonks–Girardeau gas of ultracold atoms in an optical lattice, Nature 429, 277 (2004).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [61] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Kinoshita, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Wenger, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Weiss, Observation of a one-dimensional Tonks-Girardeau gas, Science 305, 1125 (2004).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [62] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Esteve, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='-B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Trebbia, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Schumm, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Aspect, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Westbrook, and I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Bouchoule, Observations of density fluctuations in an elongated Bose gas: Ideal gas and quasicondensate regimes, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' 96, 130403 (2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [63] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Hofferberth, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Lesanovsky, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Schumm, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Imam- bekov, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Gritsev, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Demler, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Schmiedmayer, Probing quantum and thermal noise in an interacting many-body system, Nature Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' 4, 489 (2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [64] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Schley, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Berkovitz, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Rinott, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Shammass, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Blumkin, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Steinhauer, Planck distribution of phonons in a Bose-Einstein condensate, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' 111, 055301 (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [65] Momentum-space correlations of a one-dimensional Bose gas, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' 116, 050402 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [66] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Jacqmin, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Armijo, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Berrada, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Kheruntsyan, and I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Bouchoule, Sub-Poissonian fluctuations in a 1D Bose gas: From the quantum quasicondensate to the strongly interacting regime, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' 106, 230405 (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [67] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Schemmer, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Bouchoule, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Doyon, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Dubail, Generalized hydrodynamics on an atom chip, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' 122, 090601 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [68] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Mermin and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Wagner, Absence of ferro- magnetism or antiferromagnetism in one- or two- dimensional isotropic Heisenberg models, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' 17, 1133 (1966).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [69] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Petrov, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Shlyapnikov, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Walraven, Regimes of quantum degeneracy in trapped 1d gases, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' 85, 3745–3749 (2000).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [70] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Kheruntsyan, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Gangardt, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Drummond, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Shlyapnikov, Pair correlations in a finite-temperature 1D Bose gas, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' 91, 040403 (2003).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [71] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Betz, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Manz, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Bücker, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Berrada, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Koller, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Kazakov, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Mazets, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='-P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Stimming, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Perrin, 27 T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Schumm, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Schmiedmayer, Two-point phase cor- relations of a one-dimensional bosonic Josephson junc- tion, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' 106, 020407 (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [72] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Gring, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Kuhnert, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Langen, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Kitagawa, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Rauer, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Schreitl, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Mazets, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Smith, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Dem- ler, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Schmiedmayer, Relaxation and prethermal- ization in an isolated quantum system, Science 337, 1318–1322 (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [73] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Langen, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Geiger, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Kuhnert, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Rauer, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Schmiedmayer, Local emergence of thermal correla- tions in an isolated quantum many-body system, Nature Physics 9, 640–643 (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [74] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Schweigler, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Kasper, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Erne, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Mazets, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Rauer, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Cataldini, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Langen, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Gasenzer, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Berges, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Schmiedmayer, Experimental characterization of a quantum many-body system via higher-order correla- tions, Nature 545, 323–326 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [75] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Langen, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Schweigler, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Demler, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Schmied- mayer, Double light-cone dynamics establish thermal states in integrable 1D Bose gases, New Journal of Physics 20, 023034 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [76] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Rauer, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Erne, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Schweigler, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Cataldini, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Tajik, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Schmiedmayer, Recurrences in an isolated quan- tum many-body system, Science 360, 307 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [77] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Pigneur, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Berrada, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Bonneau, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Schumm, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Demler, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Schmiedmayer, Relaxation to a phase- locked equilibrium state in a one-dimensional bosonic Josephson junction, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' 120, 173601 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [78] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Estève, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Gross, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Weller, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Giovanazzi, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Oberthaler, Squeezing and entanglement in a Bose–Einstein condensate, Nature 455, 1216 (2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [79] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Berrada, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Frank, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Bücker, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Schumm, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='-F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Schaff, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Schmiedmayer, Integrated Mach–Zehnder interferometer for Bose–Einstein condensates, Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Comm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' 4 (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [80] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Andrews, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Townsend, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='-J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Miesner, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Durfee, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Kurn, and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Ketterle, Observation of in- terference between two Bose condensates, Science 275, 637 (1997).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [81] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Castin and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Dalibard, Relative phase of two Bose- Einstein condensates, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' A 55, 4330 (1997).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [82] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Pethick and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Smith, Bose-Einstein condensa- tion in dilute gases (Cambridge University Press, Cam- bridge, UK, 2002) pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' 343–348.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [83] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Zapata, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Sols, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Leggett, Phase dynamics after connection of two separate Bose-Einstein conden- sates, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' A 67, 021603(R) (2003).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [84] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Milburn, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Corney, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Wright, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Walls, Quantum dynamics of an atomic Bose-Einstein conden- sate in a double-well potential, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' A 55, 4318 (1997).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [85] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Tuchman, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Orzel, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Polkovnikov, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Kasevich, Nonequilibrium coherence dynamics of a soft boson lattice, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' A 74, 051601(R) (2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [86] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Chuchem, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Smith-Mannschott, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Hiller, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Kot- tos, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Vardi, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Cohen, Quantum dynamics in the bosonic Josephson junction, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' A 82, 053617 (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [87] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Drummond and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Hardman, Simulation of quantum effects in Raman-active waveguides, Europhys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' 21, 279 (1993).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [88] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Sinatra, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Lobo, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Castin, The truncated Wigner method for Bose-condensed gases: limits of va- lidity and applications, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' B 35, 3599 (2002).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [89] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Blakie, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Bradley, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Davis, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Ballagh, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Gardiner, Dynamics and statistical mechan- ics of ultra-cold Bose gases using c-field techniques, Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' 57, 363 (2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [90] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Polkovnikov, Phase space representation of quantum dynamics, Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' 325, 1790 (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [91] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Ruostekoski and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Isella, Dissipative quantum dy- namics of bosonic atoms in a shallow 1d optical lattice, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' 95, 110403 (2005).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [92] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Javanainen and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Ruostekoski, Emergent classicality in continuous quantum measurements, New J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' 15, 013005 (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [93] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Martin and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Ruostekoski, Quantum and thermal effects of dark solitons in a one-dimensional Bose gas, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' 104, 194102 (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [94] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Martin and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Ruostekoski, Nonequilibrium quan- tum dynamics of atomic dark solitons, New J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' 12, 055018 (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [95] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Horváth, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Lovas, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Kormos, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Takács, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Zaránd, Nonequilibrium time evolution and rephas- ing in the quantum sine-Gordon model, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' A 100, 013613 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [96] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Rigol, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Dunjko, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Olshanii, Thermalization and its mechanism for generic isolated quantum sys- tems, Nature 452, 854 (2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [97] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' D’Alessio, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Kafri, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Polkovnikov, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Rigol, From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics, Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' 65, 239 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [98] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Žnidarič, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Prosen, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Benenti, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Casati, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Rossini, Thermalization and ergodicity in one- dimensional many-body open quantum systems, Physi- cal Review E 81, 051135 (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [99] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Purkayastha, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Dhar, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Kulkarni, Out-of- equilibrium open quantum systems: A comparison of approximate quantum master equation approaches with exact results, Physical Review A 93, 062114 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [100] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Reichental, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Klempner, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Kafri, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Podolsky, Thermalization in open quantum systems, Physical Re- view B 97, 134301 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [101] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Tupkary, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Dhar, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Kulkarni, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Purkayastha, Fundamental limitations in lindblad descriptions of sys- tems weakly coupled to baths, Physical Review A 105, 032208 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [102] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Nathan and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Rudner, Universal lindblad equa- tion for open quantum systems, Physical Review B 102, 115109 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [103] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Tupkary, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Dhar, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Kulkarni, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Purkayastha, Searching for lindbladians obeying local conserva- tion laws and showing thermalization, arXiv preprint arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='02146 (2023).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [104] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Navon, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Smith, and Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Hadzibabic, Quantum gases in optical boxes, Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' 17, 1334 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [105] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Olshanii, Atomic scattering in the presence of an external confinement and a gas of impenetrable bosons, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' 81, 938 (1998).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [106] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Sadler, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Higbie, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Leslie, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Ven- galattore, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Stamper-Kurn, Spontaneous sym- metry breaking in a quenched ferromagnetic spinor Bose–Einstein condensate, 443, 312 (2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [107] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Zibold, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Nicklas, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Gross, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Oberthaler, Classicial bifurcation at the transition from Rabi to Josephson dynamics, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' 105, 204101 28 (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [108] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Dalfovo, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Giorgini, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Pitaevskii, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Stringari, Theory of Bose-Einstein condensation in trapped gases, Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' 71, 463 (1999).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [109] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Sinatra, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Lobo, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Castin, Classical-field method for time dependent Bose-Einstein condensed gases, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' 87, 210404 (2001).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [110] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Mora and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Castin, Extension of Bogoliubov theory to quasicondensates, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' A 67, 053615 (2003).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [111] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Smerzi, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Fantoni, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Giovanazzi, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Shenoy, Quantum coherent atomic tunneling between two trapped Bose-Einstein condensates, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' 79, 4950 (1997).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [112] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Fermi, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Pasta, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Ulam, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Tsingou, Studies of nonlinear problems (1955), Document LA-1940, Los Alamos National Laboratory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [113] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Egorov, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Opanchuk, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Drummond, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Hall, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Hannaford, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Sidorov, Measurement of s-wave scattering lengths in a two-component Bose-Einstein condensate, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' A 87, 053614 (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [114] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Rackauckas and Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Nie, Differentialequations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='jl–a performant and feature-rich ecosystem for solving dif- ferential equations in julia, Journal of Open Research Software 5 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [115] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Pitaevskii and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Stringari, Bose-Einstein Conden- sation (Oxford University, New York, 2003).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [116] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Cheneau, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Barmettler, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Poletti, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Endres, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Schauß, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Fukuhara, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Gross, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Bloch, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Kollath, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Kuhr, Light-cone-like spreading of correlations in a quantum many-body system, Nature 481, 484 (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [117] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Karl, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Cakir, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Halimeh, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Oberthaler, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Kastner, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Gasenzer, Universal equilibrium scaling functions at short times after a quench, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' E 96, 022110 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [118] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' de Nova, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Golubkov, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Kolobov, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Steinhauer, Observation of thermal Hawking radia- tion and its temperature in an analogue black hole, Na- ture 569, 688 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [119] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Arnold, Mathematical Methods of Classical Me- chanics (Springer, New York, 1997).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [120] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Wittmann W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=', E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Castro, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Foerster, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Santos, Interacting bosons in a triple well: Preface of many-body quantum chaos, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' E 105, 034204 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [121] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Brandino, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='-S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Caux, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Konik, Glim- mers of a quantum kam theorem: Insights from quan- tum quenches in one-dimensional bose gases, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' X 5, 041043 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [122] Olver et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=', ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=', NIST Handbook of Mathematical Func- tions (Cambridge University Press, New York, 2010) available online at dlmf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='nist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='gov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [123] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' O’Dell, The diffraction of atoms by light, Ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' thesis, University of Bristol (1999).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' [124] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Berry and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' O’Dell, Ergodicity in wave- wave diffraction, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' A: Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} +page_content=' 32, 3571 (1999).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/09FAT4oBgHgl3EQfChxb/content/2301.08410v1.pdf'} diff --git a/0NAyT4oBgHgl3EQfbfc0/vector_store/index.pkl b/0NAyT4oBgHgl3EQfbfc0/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..d12cc4cf93da8a50b19fde6463d60c44b1514397 --- /dev/null +++ b/0NAyT4oBgHgl3EQfbfc0/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:207f40c9b5aac4792de6086facfe723156eb5355e36e5cd6442a40e4b99f968a +size 196890 diff --git a/0NE2T4oBgHgl3EQf4gjD/content/2301.04182v1.pdf b/0NE2T4oBgHgl3EQf4gjD/content/2301.04182v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..4d4338d3752f8893aa8013338d544a3472e0c1e1 --- /dev/null +++ b/0NE2T4oBgHgl3EQf4gjD/content/2301.04182v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:964044bcd017ec31beb7ad9482d41c6604b945648e688c7332be9ebddf06cc12 +size 903226 diff --git a/0NE2T4oBgHgl3EQf4gjD/vector_store/index.faiss b/0NE2T4oBgHgl3EQf4gjD/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..fd04b57f4f50da2a90e4fe395568df2d2af43c7b --- /dev/null +++ b/0NE2T4oBgHgl3EQf4gjD/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:f6a6a62949d1b61db417000f27aa822619163c7fe05889df24c797f7e2eb615a +size 3145773 diff --git a/29E0T4oBgHgl3EQfuwF7/content/2301.02609v1.pdf b/29E0T4oBgHgl3EQfuwF7/content/2301.02609v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..383feec265fdf2baf8da3ea7064266dc814aa9d2 --- /dev/null +++ b/29E0T4oBgHgl3EQfuwF7/content/2301.02609v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:05f4fa3387649f0491f1ec37ffb117e1c39d7b1ade26471746e47c3ab9ddc58d +size 676520 diff --git a/29E0T4oBgHgl3EQfuwF7/vector_store/index.faiss b/29E0T4oBgHgl3EQfuwF7/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..13da4fafb7659c9451600ac4f4e900817d765cf0 --- /dev/null +++ b/29E0T4oBgHgl3EQfuwF7/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:fbbab9e5433198fc603d3de2e4970e86c5c973c224b753477b325750443b95b9 +size 2424877 diff --git a/29E0T4oBgHgl3EQfuwF7/vector_store/index.pkl b/29E0T4oBgHgl3EQfuwF7/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..fffe01b2a0812bd2602834fa5c283eedd095be99 --- /dev/null +++ b/29E0T4oBgHgl3EQfuwF7/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:30ba7babb9aa922201ad3ddc8cac75a0c7b2c87033eba3cd134fb17cb716f79e +size 83982 diff --git a/3NE2T4oBgHgl3EQfjQer/content/tmp_files/2301.03967v1.pdf.txt b/3NE2T4oBgHgl3EQfjQer/content/tmp_files/2301.03967v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..7c6dafad4e94830af78d6133f99c281e5969f8b9 --- /dev/null +++ b/3NE2T4oBgHgl3EQfjQer/content/tmp_files/2301.03967v1.pdf.txt @@ -0,0 +1,1984 @@ +Subgap states and quantum phase transitions in one-dimensional +superconductor-ferromagnetic insulator heterostructures +Javier Feijoo,1, 2 An´ıbal Iucci,1, 2 and Alejandro M. Lobos3, 4 +1Instituto de F´ısica La Plata - CONICET, Diag 113 y 64 (1900) La Plata, Argentina +2Departamento de F´ısica, Universidad Nacional de La Plata, cc 67, 1900 La Plata, Argentina. +3Instituto Interdisciplinario de Ciencias B´asicas (CONICET-UNCuyo) +4Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina +We +theoretically +study +the +spectral +properties +of +a +one +dimensional +semiconductor- +superconductor-ferromagnetic insulator (SE-SU-FMI) hybrid nanostructure, motivated by recents +experiments where such devices have been fabricated using epitaxial growing techniques. We model +the hybrid structure as a one-dimensional single-channel semiconductor nanowire under the si- +multaneous effect of two proximity-induced interactions: superconducting pairing and a (spatially +inhomogeneous) Zeeman exchange field. The coexistence of these competing interactions generates +a rich quantum phase diagram and a complex subgap Andreev bound state (ABS) spectrum. By +exploiting the symmetries of the problem, we classify the solutions of the Bogoliubov-de Gennes +equations into even and odd ABS with respect to the spatial inversion symmetry x → −x. We +find the ABS spectrum of the device as a function of the different parameters of the model: the +length L of the coexisting SU-FMI region, the induced Zeeman exchange field h0, and the induced +superconducting coherence length ξ. In particular we analyze the evolution of the subgap spectrum +as a function of the length L. Interestingly, we have found that depending on the ratio h0/∆, the +emerging ABS can eventually cross below the Fermi energy at certain critical values Lc, and induce +spin-and fermion parity-changing quantum phase transitions. We argue that this type of device +constitute a promising highly-tunable platform to engineer subgap ABS. +I. +INTRODUCTION +The interplay of superconductivity and magnetism at +the microscopic scale has attracted a great deal of at- +tention in recent years [1–4]. +For instance, the Yu- +Shiba-Rusinov (YSR) states [5–7] arising from the ex- +change interaction of an atomic magnetic moment in con- +tact with a superconductor, have been proposed as fun- +damental building blocks to engineer quantum devices +with topologically non-trivial ground states. In partic- +ular, the so-called “Shiba chains” (i.e., one-dimensional +arrays of magnetic atoms deposited on top of a clean +superconductor) are systems predicted to support Ma- +jorana zero-modes at the ends of the chain [8–10], and +could be used in topologically-protected quantum com- +putation schemes. Low-temperature scanning-tunneling +microscopy (STM) experiments have confirmed the pres- +ence of intruiguing zero-energy end-modes [11–17]. +Other systems where the competition of superconduc- +tivity and magnetism at the nanoscale generates ex- +otic subgap states are superconductor (SU)- ferromag- +net (FM) heterostructures, such as SU-FM-SU Josephson +junctions and SU-FM proximity devices [18, 19]. Subgap +states generated in these structures are usually referred +to as Andreev bound states (ABS). More recently, a novel +class of hybrid device, i.e., semiconductor (SE) nanowire +systems combined with superconductors and ferromag- +netic insulator (FMI) materials have been fabricated us- +ing molecular-beam epitaxy techniques [20, 21]. These +SE-SU-FMI hybrid structures allow to build nanostruc- +tures with specific tailored properties which are impossi- +ble to obtain with the isolated individual components. +Despite the evident differences between the abovemen- +x +z +SC Bulk +FMI +Semiconductor +L +x +z +L +h0 +Magnetic profile +FIG. 1. Schematic representation of the SC-FMI heterostruc- +ture. +tioned physical systems, from the theoretical perspective +they can be described within the same unified theoretical +model combining superconductivity and local exchange +fields at the microscopic scale. +The emerging subgap +states (which can be referred to as either YSR states or +ABS, depending on the context) appear symmetrically +around the Fermi level EF , and localize spatially around +the impurity or the FM region. +Their energy-position +within the gap depend on the value of the exchange +field and on other experimental parameters. +Interest- +ingly, whenever one of these states crosses EF , a spin- +and parity-changing quantum phase transition, usually +arXiv:2301.03967v1 [cond-mat.supr-con] 10 Jan 2023 + +2 +known as the “0 − π” phase transition, occurs [1, 22]. +In the case of atomic “Shiba impurities” or ultra-short +SU-FM-SU junctions (i.e., junctions in which the length +L of the FM region is much smaller than λF , the Fermi +wavelength of the superconductor [23]), it is customary +to consider the magnetic scatterer as a point-like classical +spin S located at the point R0, interacting via a contact +s-d exchange interaction HZ = J(r) S·s(r) with the host +superconducting electrons [6]. Here J(r) = J0δ(r − R0) +is the local exchange potential and s(r) is the spin den- +sity vector of the electronic fluid. Subsequent theoretical +works considered atomic-sized systems with finite- (al- +beit short-ranged) exchange interactions with spherical +symmetry [7, 24–26]. In that case, theory predicts the +existence of multiple YSR states labelled by their orbital +momentum ℓ, a prediction that has been recently ob- +served in STM experiments [27–29]. +The behavior of subgap states and the associated 0−π +quantum phase transitions has also been studied in the +opposite limit L ≫ λF in the context of ballistic SU- +FM-SU Josephson junctions with generic spin-dependent +fields in the sandwiched region [30–32]. In this case the +results differ from the well-known results of YSR states +due to the finite extension of the magnetic profile. In +particular, the subgap spectrum of long SU-FM-SU junc- +tions with zero phase difference is known to be double +degenerate [19, 31], showing the inherent complexity of +these hybrid heterostructures. On the experimental side, +the possibility to engineer and control the position of the +subgap states by a modification of the fabrication para- +maters (e.g., the length L or exchange field h0 via dif- +ferent FM materials) opens interesting perspectives for +potential electronic devices, where the precise knowledge +of the subgap spectrum is crucial to control their trans- +port properties. +Motivated by the experimental developments men- +tioned above, in this work we study the subgap states +emerging in one-dimensional (1D) SE-SU-FMI het- +erostructures where the SU and the FMI layers simul- +taneously generate coexisting proximity-induced pairing +and exchange interactions over a finite and arbitrary +length L in the SE nanowire, as schematically shown in +Fig. 1. This coexistence is a crucial aspect of this device, +which makes it unique and different from the abovemen- +tioned SU-FM-SU junctions, where such overlap occurs +only at the SU-FM interface. Our main goal in this work +is to study and understand the behavior of the subgap +ABS in this device as a function of the experimentally rel- +evant parameters of the model, i.e., the length L of the +FMI region and the magnitude of the induced exchange +field h0. As mentioned above, a device similar to that +shown in Fig. 1 has been recently experimentally real- +ized in SE nanowires with epitaxially-grown SU and FMI +layers [20, 21]. While the main interest of that work was +the fabrication of a device with non-trivial topological SU +ground state hosting Majorana zero modes, here we will +study the regime of parameters favoring a topologically- +trivial ground state. +As we will show below (see Sec. +II), this case is already very complex and rich as a result +of the antagonistic SU and FM interactions and, to the +best of our knowledge, the detailed behavior of subgap +states and the quantum phase diagram emerging in such +a system have not been explicitly studied before. +The article is organized as follows. In Section II, we +introduce the model representing a 1D SE-SU-FMI hy- +brid nanowire, discuss the solution to the Bogoliubov- +de Gennes equations for the subgap states, and derive +a generic equation for the subgap spectrum. +In Sec- +tion III, we analyze the results in two specific limits, +where we recover well-known results: a) the semiclassical +limit, where the superconducting coherence length ξ is +much larger than the Fermi wavelength λF , and b) the +atomic YSR limit, in which the exchange-field induced +by the FMI region becomes a delta-function potential: +i.e., infinitesimally narrow (L ≪ λF ), and infinitely deep +(h0 ≫ EF ), in such a way that the product h0.L = J +is kept constant. +In both cases, well-known analytical +solutions to the subgap spectrum can be recovered. In +addition, we numerically solve the characteristic equation +for the subgap states and provide a generic description +of the subgap spectrum, not restricted to any of these +limits. +We find a rich behaviour of the subgap ABS, +where the competing FM exchange and SU pairing inter- +actions give rise to parity- and spin-changing quantum +phase transitions. Finally, in Section IV, we present a +summary and our conclusions. +II. +THEORETICAL MODEL +We focus on the system schematically depicted in Fig. +1, which represents a 1D SE-SU-FMI hybrid nanostruc- +ture of total length Lw, similar to those fabricated in +Refs. 20 and 21. We model this system with the Hamil- +tonian H = Hw + H∆ + HZ, where +Hw = +� +σ +� +Lw +2 +− Lw +2 +dx ψ† +σ(x) +� +−ℏ2∂2 +x +2m∗ − µ +� +ψ† +σ(x), +(1) +H ∆ = ∆ +� +Lw +2 +− Lw +2 +dx +� +ψ† +↑(x)ψ† +↓(x) + H.c. +� +, +(2) +HZ = +� +Lw +2 +− Lw +2 +dx h(x) +� +ψ† +↑(x)ψ↑(x) − ψ† +↓(x)ψ↓(x) +� +. (3) +Here Hw is the Hamiltonian of a single-channel SE +nanowire of length Lw, in which the fermionic operator +ψσ(x) creates an electron at position x with spin projec- +tion σ =↑, ↓ and effective mass m∗. The parameter µ is +the chemical potential, which can be experimentally var- +ied applying external gates beneath the nanostructure. +The terms H∆ and HZ represent, respectively, the +proximity-induced pairing interaction encoded by the pa- +rameter ∆, and the Zeeman exchange interaction intro- +duced by the FMI and described by a space-dependent +exchange field h(x), which we assume oriented along the + +3 +z direction (see Fig. 1). Moreover, since these interac- +tions are externally induced into the semiconductor, we +make the additional assumption that ∆ is unaffected by +the presence of h(x) (a renormalized value of ∆ does not +change qualitatively our results). As mentioned before, +these two terms can be effectively induced by the pres- +ence of epitaxially-grown SU and FMI shells in contact +with the SE nanowire [20, 21]. It has been experimen- +tally confirmed [21] that the FMI shell (EuS in that case) +consists of a single magnetic monodomain, and there- +fore modelling this layer by the Hamiltonian HZ is a +reasonable approximation. In addition, the epitaxially- +generated interfaces are essentially disorder-free, a neces- +sary condition to produce a proximity-induced hard-gap +[33]. This feature allows to neglect the effects of disorder +and considerably simplifies the theoretical description. +The presence of both, a hard proximity-induced super- +conductor gap and an effectively induced Zeeman field, +in these nanowires have been reported in transport mea- +surements in Refs. +20 and 21. +In addition, note that +in the above model we have neglected the effect of the +Rashba spin-orbit interaction. While this interaction is +crucial for the emergence of a topologically non-trivial +(i.e., D class) superconducting phase supporting Majo- +rana zero-modes [34], here we will focus strictly on the +topologically-trivial ground state. As we will show be- +low, the competition of SU and FM interactions make +this system already very complex and interesting in it- +self. +We note that since the total single-particle fermionic +spin along z +sz = 1 +2 +� +Lw +2 +− Lw +2 +dx +� +ψ† +↑(x)ψ↑(x) − ψ† +↓(x)ψ↓(x) +� +, +(4) +is a conserved quantity which verifies [sz, H] = 0, we +can label the electronic eigenstates of H with σ = {↑, ↓}. +Therefore, we introduce the following Nambu spinors +Ψ↑(x) = +� ψ↑(x) +ψ† +↓(x) +� +, +Ψ↓(x) = +� ψ↓(x) +ψ† +↑(x) +� +, +(5) +related to each other via the charge-conjugation transfor- +mation Ψ¯σ(x) = KτxΨσ(x), where τx is the 2 × 2 Pauli +matrix, and K is the complex conjugation operator. In +terms of these spinors the Hamiltonian writes +H = 1 +2 +� +σ +� +Lw +2 +− Lw +2 +dx Ψ† +σ(x)HBdG,σ(x)Ψσ(x), +(6) +where the Bogoliubov-de Gennes (BdG) Hamiltonian is +defined as +HBdG,σ = +� +− ℏ2∂2 +x +2m − µ + σh(x) +σ∆ +σ∆ +ℏ2∂2 +x +2m + µ + σh(x) +� +. +(7) +In this expression, the spin projection σ =↑ (↓) on +the left-hand side corresponds to the + (−) sign in +the definition of the BdG matrix. +Using the above +charge-conjugation transformation, we note that the +BdG Hamiltonian Eq. (7) verifies the following symme- +try transformation +KτxHBdG,σ = −H∗ +BdG,¯σKτx, +(8) +and therefore, provided χσ(x) is a solution of the BdG +eigenvalue equation +HBdG,σ(x)χσ(x) = Eσχσ(x), +(9) +with eigenenergy Eσ, the transformed spinor χ¯σ(x) = +Kτxχσ(x), is also a solution with eigenenergy E¯σ = −Eσ. +In what follows, we assume for simplicity the thermo- +dynamic limit Lw → ∞, and we focus on the features +introduced by the magnitude and spatial dependence of +h (x), which is crucial for the rest of this work. In addi- +tion, we assume the following step-like spatial profile for +the exchange field +h(x) = +� +−h0 +if |x| < L +2 , +0 +if |x| ⩾ L +2 , +(10) +which models a uniform FMI shell of length L in contact +with the SE nanowire (see Fig. 1). This choice for h(x) +allows to split the problem into regions with either |x| < +L +2 or |x| > L +2 , with generic exponential solutions +χσ(x) ∼ +� +ασ +βσ +� +eikx. +(11) +Linear combinations of Eq. (11), with appropriate coeffi- +cients and with allowed values of k for each region, must +be built so that continuity of the total wavefunction and +its derivative at the interfaces is satisfied. With this re- +quirement, the solution of Eq.(9) is finally obtained. +Note that the BdG Hamiltonian (7) is even under space +inversion x → −x, and therefore its eigenstates must be +even or odd under this transformation of coordinates. +This symmetry allows to reduce the number of unknowns +of the problem (i.e., coefficients of the linear combinta- +tion). Replacing the above ansatz Eq. (11) into the BdG +eigenvalue Eq. +(9), and looking for localized solutions +with energy within the gap |Eσ| < ∆, we obtain the fol- +lowing expressions for the eigenstates belonging to the +even-symmetry subspace: + +4 +χe,σ +� +x > L +2 +� += Ae +1σ +� +1 +σe−iϕσ +� +e−κσx + Ae +2σ +� +1 +σeiϕσ +� +e−κ∗ +σx, +(12) +χe,σ +� +−L +2 ≤ x ≤ L +2 +� += Be +1σ +� +1 +σe−ησ +� +cos kσx + Be +2σ +� +1 +σeησ +� +cos ¯kσx, +(13) +and the following expressions for the odd-symmetry eigenfunctions +χo,σ +� +x > L +2 +� += Ao +1σ +� +1 +σe−iϕσ +� +e−κσx + Ao +2σ +� +1 +σeiϕσ +� +e−κ∗ +σx, +(14) +χo,σ +� +−L +2 ≤ x ≤ L +2 +� += Bo +1σ +� +1 +σe−ησ +� +sin kσx + Bo +2σ +� +1 +σeησ +� +sin ¯kσx, +(15) +where the coefficients {Aν +1σ, Aν +2σ, Bν +1σ, Bν +2σ}, with ν = +{e, o}, are unknowns to be fixed. +In addition, in the +above expressions we have introduced the parametriza- +tion +cos ϕσ = Eσ +∆ , +(16) +cosh ησ = Eσ + σh0 +∆ +, +(17) +where we fix the definition of ϕσ to the interval ϕσ ∈ +(0, π]. The phase variable ϕσ is associated to the An- +dreev reflection taking place at the interface xb = L/2. +Note that the parametrization in Eq. (17) makes sense +whenever the right-hand side is positive. If this condi- +tion is not satisfied, one can always use the symmetry +Eq.(8) to send Eσ → −E¯σ and σ → ¯σ. In addition, note +that whenever 1 ≤ (Eσ + σh0) /∆ the parameter ησ is +purely real, while for 0 < (Eσ + σh0) /∆ < 1 it is purely +imaginary. Finally, we have introduced the quantities +κσ ≡ −ikF +� +1 + 2i +kF ξ sin ϕσ, +(18) +kσ ≡ kF +� +1 + +2 +kF ξ sinh ησ, +(19) +¯kσ ≡ kF +� +1 − +2 +kF ξ sinh ησ, +(20) +and the definition of the coherence length of the +(proximity-induced) 1D superconductor ξ = ℏvF /∆. No- +tice also that the spatial dependence of the wavefunc- +tions in the region x < −L/2 can be readily obtained by +symmetry from the relations χe,σ (x) = χe,σ (−x), and +χo,σ (x) = −χo,σ (−x). +We can intuitively understand the form of the scatter- +ing solutions in the regions x > L/2 and x < −L/2 in the +limit kF ξ ≫ 1 (i.e., the semiclassical limit, see Sec.III A), +where the momentum κσ in Eq. (18) can be expanded +as κσ ≃ −ikF + sin ϕσ/kF ξ, and the eigenfunctions Eqs. +(12) and (14) take the form +χν,σ +� +x > L +2 +� +≈ +� +Aν +1σ +� +1 +σe−iϕσ +� +eikF x+ ++Aν +2σ +� +1 +σeiϕσ +� +e−ikF x +� +e− sin ϕσx +ξ +, (21) +with ν = {e, o}. In this way, it becomes evident that the +component proportional to Aν +1σ corresponds to a right- +moving particle ∼ eikF x while Aν +2σ corresponds to a left- +moving particle ∼ e−ikF x. In addition, the wavefunctions +exponentially decay into the superconductor within a lo- +calization length λloc = ξ/ sin ϕσ = ξ/ +� +1 − (Eσ/∆)2. +These results are in complete agreement with Ref. [32], +where the spectrum of SU-FM-SU Josephson junctions +has been recently studied as a function of the length L +of the FM region. However, in our case, the presence of +a finite pairing gap ∆ in the region −L/2 < x < L/2 (as +opposed to the assumption ∆ = 0 in the FM region in +that work), gives rise to important differences which we +analyze below in Sec. III. +A. +Continuity conditions at the interface +We now impose the continuity conditions on the wave- +function and its derivative at the boundary xb = L/2: +χν,σ +� +x− +b +� += χν,σ +� +x+ +b +� +(22) +∂xχν,σ +� +x− +b +� += ∂xχν,σ +� +x+ +b +� +. +(23) +Note that the same equations are obtained by symme- +try at the other boundary −xb. Inserting the solutions +Eqs. (12)-(15), we can express the continuity equations +in matrix form as + +5 +� +1 +σe−iϕσ +σe−iϕσ +1 +� � +aν +1σ +aν +2σ +� += +� +1 +σe−ησ +σe−ησ +1 +� � +Fν +� kσL +2 +� +0 +0 +Fν +� ¯kσL +2 +� +� � +bν +1σ +bν +2σ +� +, +(24) +− +� +1 +σe−iϕσ +σe−iϕσ +1 +� � +κσ +0 +0 +κ∗ +σ +� � +aν +1σ +aν +2σ +� += −s(ν) +� +1 +σe−ησ +σe−ησ +1 +� � +kσGν +� kσL +2 +� +0 +0 +¯kσGν +� ¯kσL +2 +� +� � +bν +1σ +bν +2σ +� +, +(25) +where we have conveniently redefined the unknown coef- +ficients as +Aν +1σ → eκσL/2aν +1σ +Bν +1σ → bν +1σ +(26) +Aν +2σ → σeκ∗ +σL/2e−iϕσaν +2σ +Bν +2σ → σe−ησbν +2σ, +(27) +in order to give these equations a more symmetric form. +In addition, we have used the notation s(ν) = +1(−1) for +ν = e(o), and Fe(x) = Go(x) ≡ cos(x), Ge(x) = Fo(x) ≡ +sin(x) for compactness. +In each subspace (even or odd) we have four equa- +tions and four unknowns. +Eliminating the variables +(bν +1σ, bν +2σ)T , and writing the equation for (aν +1σ, aν +2σ)T , we +find from the nullification of the corresponding determi- +nant the following equations: +cosh ησ cos ϕσ − 1 +sinh ησ sin ϕσ += +� +� +� +� +� +� +� +� +� +� +� +� +� +|κσ|2 − +� +Kσ + ¯Kσ +� +Re κσ + Kσ ¯Kσ +� ¯Kσ − Kσ +� +Im κσ +(even-symmetry subspace), +|κσ|2 + +� +Qσ + ¯Qσ +� +Re κσ + Qσ ¯Qσ +� +Qσ − ¯Qσ +� +Im κσ +(odd-symmetry subspace), +(28) +where we have defined the quantities +Kσ = kσ tan +�kσL +2 +� +, +(29) +¯Kσ = ¯kσ tan +�¯kσL +2 +� +, +(30) +Qσ = kσ cot +�kσL +2 +� +, +(31) +¯Qσ = ¯kσ cot +�¯kσL +2 +� +. +(32) +From Eq. (28), the eigenvalue Eσ for each subspace is +finally obtained. This equation summarizes our main the- +oretical results. In the next Sec. III we analyze the nu- +merical solution and different important limits. +B. +Spin-changing quantum phase transitions +We now focus on the quantum phase transitions which +occur whenever one of the subgap states crosses EF . To +that end, let us analyze the spinors defined in Eq. (5), +and consider the norm of the “up” spinor +q↑ = +� Lw/2 +−Lw/2 +dx +� +ψ† +↑ (x) ψ↑ (x) + ψ↓ (x) ψ† +↓ (x) +� +. +Recalling the definition of the single-particle sz operator +[see Eq. (4)], it is straightforward to associate these two +quantities through the relation q↑ = 2sz − 1. Since sz +is a conserved quantity, so is the norm q↑ of the “up” +Nambu spinors. This connection allows to interpret q↑ as +an effective “conserved charge”. Similar considerations +allow to write the relation q↓ = −2sz − 1. Due to the +particle-hole relation Eq.(8), the information about sz +can be obtained with either q↑ or q↓. A more symmetric +form involving both conserved charges is +sz = q↑ − q↓ +4 +. +(33) +While redundant, this expression makes explicit that in +the spin-symmetric case q↑ = q↓, the net spin sz must +vanish (sz = 0). +We now return to Hamiltonian Eq. +(7), and let us +separate the effect of the proximity-induced Zeeman field, +by writing it as HBdG,σ = H0,σ + Vσ, where +H0,σ = +� +− ℏ2∂2 +x +2m − µ +σ∆ +σ∆ +ℏ2∂2 +x +2m + µ +� +, +(34) +Vσ = +� +σh(x) +0 +0 +σh(x) +� +. +(35) +In this form, we can interpret the effect of the exchange +field as a “perturbation” on an otherwise homogeneous + +6 +1D superconductor represented by H0,σ. Therefore, the +full and the unperturbed single-particle Green’s functions +in this problem are respectively defined as +Gσ (z) = [z − H0,σ − Vσ]−1 , +(36) +G0,σ (z) = [z − H0,σ]−1 , +(37) +From here, the total number of effective “up” charges +Q↑ induced in the ground state due to the potential Vσ, +compared to the unperturbed homogeneous SU wire, can +be computed as +∆Q↑ = − 1 +π Im Tr +� ∞ +−∞ +dϵ nF (ϵ) ∆G↑ (ϵ + iδ) . +(38) +where ∆Gσ (z) ≡ Gσ (z) − G0,σ (z). At T = 0, Eq. (38) +can be easily computed from the well-known expression +of the Friedel sum rule [35] +∆Q↑ = 1 +π +� 0 +−∞ +dϵ +�∂η↑ (ϵ) +∂ϵ +− ∂η0,↑ (ϵ) +∂ϵ +� +(39) += η↑ (0) − η0,↑ (0) +π +(40) +where we have defined the phase shifts [32, 35] +ησ (ϵ) = Im ln det Gσ (ϵ + iδ) , +(41) +η0,σ (ϵ) = Im ln det G0,σ (ϵ + iδ) , +(42) +and where we have used that the phase shifts vanish in +the limit ϵ → ±∞. +Since the system is non-interacting, the Green’s func- +tion Eq. (36) can be written in terms of single-particle +eigenstates |α, σ⟩, with α a generic label, as +Gσ (z) = +� +α +|α, σ⟩ ⟨α, σ| +z − Eα,σ +. +(43) +Therefore, after simple algebra, and using the above re- +lations and the fact that in the absence of magnetic field +sz = 0 [see Eq. (33)], the total Sz of the ground state is +Sz = ∆Q↑ +2 += 1 +2 +�� +α +Θ (−Eα,↑) − +� +α′ +Θ +� +−E0 +α′,↑ +� +� +, +(44) +where Θ(ϵ) is the unit-step function. The above expres- +sion allows to interpret the total Sz of the ground state +as a function of the “up” Nambu spinors with energy be- +low EF = 0, as compared to the (unperturbed) situation +h0 = 0. Since the effective charges are quantized in inte- +ger numbers, the total spin Sz can only change in discrete +“jumps” of 1/2 whenever a subgap state with projection +up crosses below EF (note that we have defined dimen- +sionless spin operators). This interpretation makes sense +since the ground state becomes spin-polarized when the +exchange field h0 becomes large enough [i.e., the Zeeman +energy of up-spin electron is decreased, see Eqs. (3) and +(10)]. While the result of Eq. (44) has been obtained re- +cently by the authors of Ref. [32], we note that here we +have rederived it in a different physical situation which +allows a more generic regime of parameters. +III. +RESULTS +We start this section by analyzing different limits of +the general result given in Eq. (28). In particular, in +Sec. III A we focus on the semiclassical limit, and in Sec. +III B we study the atomic limit, where we recover the +YSR results. In both cases, Eq. (28) reduces to well- +known analytical results. Finally in Sec. III C we show +results corresponding to intermediate regimes, obtained +by solving numerically Eq. (28). +A. +Semiclassical limit +Generally speaking, the semiclassical limit is verified +when EF is the largest scale of the problem [36]. In par- +ticular, the condition EF ≫ ∆ (which is very well satis- +fied in most experimental systems) can be expressed as +kF ξ ≫ 1, recalling that after linearization of the normal +quasiparticle dispersion, i.e., ϵk,σ ≃ ±ℏvF k, where the ++(−) sign corresponds to right-(left-)movers, the Fermi +energy can be approximated as EF ≃ ℏkF vF . In this +case, Eqs. (18)-(20) reduce to +rσ ≡ κσ +kF +≃ −i + sin ϕσ +kF ξ , +(45) +ζσ ≡ kσ +kF +≃ 1 + sinh ησ +kF ξ +, +(46) +¯ζσ ≡ +¯kσ +kF +≃ 1 − sinh ησ +kF ξ +, +(47) +to leading order in O(kF ξ)−1, and Eq. (28) becomes +cosh ησ cos ϕσ − 1 +sinh ησ sin ϕσ +≃ s(ν) +1 + tan +� +kF Lζσ +2 +� +tan +� +kF L¯ζσ +2 +� +tan +� +kF Lζσ +2 +� +− tan +� +kF L¯ζσ +2 +� , += s(ν) cot +�L sinh ησ +ξ +� +, +(48) +where +we +have +used +the +trigonometric +identity +tan (x + y) = (tan (x) + tan y)/(1 + tan x tan y). In gen- +eral this transcendental equation cannot be solved ana- +lytically. However, in the regime of parameters EF ≫ +h0 ≫ ∆, where the exchange field h0 is much larger +than ∆, we can write cosh ησ ≈ sinh ησ ≈ +�� h0 +∆ +�� ≫ 1 +[see Eqs. +(16) and (17) ], and Eq. +(48) reduces to +cot ϕσ = s(ν) cot (Lh0/ℏvF ). Equivalently we can write +this result as +arccos +�Eσ +∆ +� += +� +� +� +� +� +� +� +� +� +LEσ +ℏvF ++ σ Lh0 +ℏvF ++ 2nπ, +(even) +LEσ +ℏvF ++ σ Lh0 +ℏvF ++ (2n + 1) π. +(odd) +(49) +This result can be interpreted as a semiclassical Bohr- +Sommerfeld quantization condition for particles which + +7 +perform a complete a closed loop in the region −L/2 < +x < L/2 [36]. In particular, it exactly coincides with the- +oretical results obtained for SU-FM-SU Josephson junc- +tions with a normal (i.e., ∆ = 0) FM region [30–32], the +only difference being that within our theoretical treat- +ment, we can distinguish the symmetry of the solutions. +The similarity of these results can be rationalized noting +that considering a normal sandwiched region in an SU- +FM-SU junction corresponds to taking the limit h0 ≫ ∆ +in our Eq. (48) while keeping the ratio Eσ/∆ finite (since +Eσ corresponds to a subgap state, it is always bounded +by ∆), thus resulting in Eq. (49). This shows that our +Eq. (28) is a generic relation describing different situa- +tions regardless of the magnitude of the ratio h0/∆. +B. +YSR-impurity limit +We now consider the atomic YSR (or simply Shiba) +limit, in which the exchange profile becomes point-like, +L → 0, while h0 → ∞, in such a way that the product +Lh0 = J = const. Under these assumptions the magnetic +barrier becomes a delta function and the Hamiltonian in +Eq. (3) can be written as +HZ ≈ −J +� ∞ +−∞ +dx δ(x) +� +ψ† +↑(x)ψ↑(x) − ψ† +↓(x)ψ↓(x) +� +. +(50) +In this case, it is easy to see that the odd-symmetry solu- +tions decouple from the above Hamiltonian (50), as they +vanish at x = 0, and only even solutions can couple to +the delta-potential. +As in the previous section, note that the limit h0 → ∞ +implies cosh ησ ≈ sinh ησ ≈ +�� h0 +∆ +�� ≫ 1. However, the limit +h0 → ∞ is not compatible with the semiclassical ap- +proach, as it violates the requirement h0 ≪ EF . There- +fore we cannot use here our previous Eq. (49). Instead, +we must first take the limit ησ ≫ 1 together with the +limit L → 0, which applied to Eqs. (19) and (20) yield +kσ → kF +� +2h0 +ℏvF kF +, +(51) +¯kσ → ikF +� +2h0 +ℏvF kF +. +(52) +In addition Eqs. (29)-(32) become +Kσ → kF h0L +ℏvF += kF ρ0J, +(53) +¯Kσ → −kF h0L +ℏvF += −kF ρ0J, +(54) +where the expressions for the density of states per spin +of 1D quasiparticles at the Fermi energy ρ0 = 1/ℏvF , +and the exchange coupling J = h0L, have been used. +Replacing these expressions into Eq. (28) for the even- +symmetry solutions, we obtain +σ +Ee +σ +� +∆2 − (Ee)2 +σ += 1 − (ρ0J)2 +(2Jρ0) +. +(55) +From this expression, we can easily solve for Ee +σ +Ee +σ +∆ = σ 1 − (ρ0J)2 +1 + (ρ0J)2 , +(56) +which is the well-known expression for the energy of YSR- +impurity subgap level [1]. This result indicates that any +finite value of J produces a YSR in-gap state. This type +of subgap YSR states has been observed in several STM +experiments on atomic magnetic adsorbates on supercon- +ducing substrates [27, 37–41]. +For completeness, and in order to illustrate the general +scope of Eq. (28), here we also show the result for the +YSR odd states for a small (but finite) L. Using similar +approximations, we obtain the expression +Eo +σ +∆ = σ +1 +� +1 + +�ρ0Jk2 +F L2 +6 +�2 , +(57) +where it becomes evident that in addition to a finite value +of J, a finite value of kF L is needed to observe an odd- +symmetry subgap YSR state. +C. +Subgap ABS spectrum in generic cases +As stated in Section II, Eq. (28) implicitly defines the +energy of the subgap states as a function of the param- +eters h0/∆ , kF ξ, and kF L. These parameters can be +directly or indirectly controlled in experiments, i.e., the +parameter h0 can be controlled by modifying the FMI +material, the length L of the FMI region can be modified +varying the length Lw of the semiconductor via vapor- +liquid-solid (VLS) method and subsequent evaporation of +the FMI material [20], and the parameter kF in the semi- +conductor can be varied by changing the SE material or +by introducing external gates to modify the chemical po- +tential µ. Therefore, due to this high degree of tunability, +hybrid heterostructures might offer a unique platform to +produce and control engineered subgap states. Probably +the easiest way to experimentally control the subgap elec- +tronic structure is by producing different devices with the +same FMI material and different lengths L. Therefore, in +this section we show the numerical solutions of Eq. (28) +with fixed parameters h0/∆ and kF ξ (which control the +“operation regime” of the device), and calculate both the +energy dependence of the even- and odd-symmetry ABS, +and the total spin Sz of the device as a function of L (i.e., +dimensionless variable kF L). +Generally speaking, the overall evolution of the ABS +spectrum from L = 0 to L → ∞ is quite complex and de- +serves a detailed explanation. As shown in Fig. 2, as the + +8 +parameter kF L increases, more and more subgap states +emerge from the gap edges. This behavior is reminiscent +of a quantum particle in a square-well potential, tipically +taught in introductory quantum mechanics courses [42], +where increasing the width L of the well increases the +number of allowed bound states. In our case, the emer- +gence of new ABS as kF L increases can be intuitively +understood in terms of a competition between supercon- +ductivity and magnetic field: the magnetic field tends +to break Cooper-pairs and to locally disrupt supercon- +ductivity in the magnetic region by introducing subgap +states that become macroscopic in number for large L, +eventually populating the whole gap. +We note that for any finite L, even- and odd-symmetry +states are generically non-degenerate (except at isolated +points). However, as it is clear from Figs. 2 and 3, their +energy difference (evidenced as oscillations of the blue +and red lines around the semiclassical value) decreases +very rapidly and the solutions become degenerate in the +limit L → ∞. This transition from non-degenerate YSR +states in the limit L → 0, to double degenerate ABS +states for L → ∞ has been discussed in previous works +on ballistic SU-FM-SU junctions [19, 30–32], and in the +case of extended Shiba impurities in 1D nanowires [43]. +It is also clearly visible in Fig. 2, and more dramatically +in Fig. 3 below. In our 1D geometry, this degeneracy +in the limit L → ∞ can be intuitively understood by +linearizing the spectrum around the Fermi energy, and +expressing the original fermionic operators in terms of +right- and left-moving fields slowly varying in the scale +of k−1 +F +[44], i.e., ψσ (x) ≈ eikF xψR,σ (x) + e−ikF xψL,σ (x). +The slowly-varying fields ψR,σ(x) and ψL,σ(x) are two +independent chiral fermionic fields obeying the usual an- +ticommutation relations, in terms of which the original +Hamiltonian becomes [43] +Hw ≈ +� +σ +� ∞ +−∞ +dx +� +−iℏvF ψ† +R,σ(x)∂xψR,σ(x) ++ iℏvF ψ† +L,σ(x)∂xψL,σ(x) +� +(58) +H ∆ ≈ ∆ +� ∞ +−∞ +dx +� +ψ† +R,↑(x)ψ† +L,↓(x) + ψ† +L,↑(x)ψ† +R,↓(x) + H.c. +� +, +(59) +HZ ≈ − +� ∞ +−∞ +dx h0 +� +ψ† +R,↑(x)ψR,↑(x) − ψ† +R,↓(x)ψR,↓(x) ++ ψ† +L,↑(x)ψL,↑(x) − ψ† +L,↓(x)ψL,↓(x) +� +, +(60) +where oscillating terms proportional to e±2ikF x have been +neglected as they cancel out in the limit L → ∞ due to +destructive interference. Defining the new chiral Nambu +spinors +Ψ1,σ(x) = +� ψR,σ(x) +ψ† +L,¯σ(x) +� +, +Ψ2,σ(x) = +� ψL,σ(x) +ψ† +R,¯σ(x) +� +, +(61) +the Hamiltonian of the system can be expressed in terms +of two decoupled chiral sectors +H = 1 +2 +� +σ=↑,↓ +� +j=1,2 +� ∞ +−∞ +dx Ψ† +j,σ(x)Hj,σ(x)Ψj,σ(x), (62) +with the definitions of the chiral BdG Hamiltonians +Hj,σ = +� +(−1)jivF ∂x − σh0 +σ∆ +σ∆ +(−1)j+1ivF ∂x − σh0 +� +. +(63) +The Nambu spinors Eq. (61) define two independent chi- +ral subspaces related by the inversion symmetry of the +original Hamiltonian, i.e., under the space inversion op- +eration x ↔ −x, the fermionic operators transform as +ψL,σ(x) ↔ ψR,σ(x), and consequently we conclude that +Ψ1,σ(x) ↔ Ψ2,σ(x), which must then be degenerate. In +addition, the particle-hole symmetry Eq. (8) in this rep- +resentation produces Ψ1,σ(x) → Ψ2,¯σ(x), and therefore +H1,σ → −H2,¯σ, implying that the solutions verify the +particle-hole symmetry property E1,σ = −E2,¯σ. More- +over, notice that assuming periodic boundary conditions, +the problem can be solved with the solutions ψR,σ(x) ∼ +eikx and ψL,σ(x) ∼ e−ikx, and the dispersion relation +becomes E1,σ(k) = E2,σ(k) = ± +� +(ℏvF k)2 + ∆2 − σh0. +From here, a renormalized quasiparticle gap 2∆ren = +2 |∆ − h0| is obtained, consistent with our previous re- +sult. +In terms of the chiral Nambu spinors, the most general +solution is the linear combination +Ψσ(x) = AeikF xΨ1,σ(x) + Be−ikF xΨ2,σ(x). +(64) +This is exactly the same form that can be obtained by +combining the degenerate even and odd solutions in Eqs. +(13) and (15) in the semiclassical limit where kF ξ ≫ 1. +From the analysis of the linearized Hamiltonian, we +conclude that the degeneracy in the limit L → ∞ +arises from the absence of chirality-breaking terms, i.e., +terms ∼ Ψ† +1,σ(x)Ψ2,σ(x) arising from, e.g., single par- +ticle backscattering terms ψ† +R,σ(x)ψL,σ(x) or Cooper- +pairing channels ψ† +R(L),↑(x)ψ† +R(L),↓(x) carrying momen- +tum ∓2kF . +For this to occur, the magnetic FMI re- +gion must be uniform and its length L must be much +larger than k−1 +F +in order to produce the required cancel- +lation of the rapidly oscillating exponentials ∼ e±2ikF x. +In other words, the product kF L must be kF L ≫ 1, +consistent with our numerical results in Figs. 2 and 3. +Only for small values of kF L, where this destructive in- +terference is incomplete, residual couplings of the type +∼ Ψ† +1,σ(x)Ψ2,σ(x) remain, and the degeneracy is lifted. +Finally, we stress that the degeneracy in the limit L → ∞ +is a robust property to the presence of interactions, as +shown in previous works [43]. +On the other hand, in the limit L → 0 and for any +finite value of the Zeeman field h0, both (even and odd) +solutions converge to Eσ/∆ → ±1, indicating that the +FMI region is no longer relevant (i.e., it physically drops + +9 +−1 +1 +0 +E/∆ +−1 +1 +0 +0 +10 +20 +30 +40 +50 +0 +1 +2 +3 +4 +5 +6 +kF L +Sz +0 +2 +4 +6 +8 +10 +12 +14 +kF L +FIG. 2. Energy of the Andreev bound states (upper panel) and total spin Sz(lower panel) as a function of kF L, for kF ξ = 7.8 +and h0/∆ = 3.0 (left panel) and kF ξ = 3.4 and h0/∆ = 2.1 (right panel). Blue and red colors correspond to even and odd states +respectively. Lines starting from the top gap edge at positive energy E/∆ = 1 (bottom gap edge at negative energy E/∆ = −1) +correspond to up (down) spin projections of the states. For smaller values of kF L (right panel), plateaus corresponding to +regions of integer and half-integer spin are more separated and might become easier to observe in experiments. +from the description). However, the behavior near L = 0 +is quite different for each case: while the even-symmetry +solution tends to E/∆ → 1 as [see Eq. (56)] +Ee +σ +∆ ≈ σ +� +1 − 2 +�h0L +ℏvF +�2 +. . . +� +, +(65) +from Eq. (57) we conclude that the odd solution behaves +as +Eo +σ +∆ ≈ σ +� +1 − 1 +2 +�h0k2 +F L3 +6ℏvF +�2 +. . . +� +, +(66) +therefore approaching the gap edge much faster as L → 0. +Besides the general features of the spectrum discussed +up to this point, its evolution as L increases is strongly +affected by the values of the parameters kF ξ and h0/∆. +In what follows, we analyze their effects on Figs. 2 and +Fig. 3 respectively. +1. +Effect of varying the parameter kF ξ +This parameter can be considered as a “knob” which +tunes the device from the semiclassical behavior (kF ξ +large, see left panel in Fig. 2) into a “quantum” regime +(kF ξ small, see right panel) where the spectrum is dom- +inated by quantum oscillations. The hybrid heterostruc- +ture under study is promising in this sense since, due to +the combination of materials (in particular, semiconduc- +tors with a much smaller kF as compared to metals), it +is in principle possible that kF ξ can be experimentally +controlled. In addition, kF could be further modified by +introducing external gating leads (through the modifica- +tion of the chemical potential µ). To illustrate the dra- +matic changes in the spectrum as kF ξ varies, in Fig 2 we +show the numerically obtained subgap spectra as a func- +tion of kF L for kF ξ = 7.8 and h0/∆ = 3.0 (left panel), +for and kF ξ = 3.4 and h0/∆ = 2.1 (right panel). Solid +blue (red) lines correspond to even(odd)-symmetry solu- +tions. Moreover, since we always assume h0 > 0, solu- +tions emerging from the top edge E/∆ = 1 (bottom edge +E/∆ = −1) correspond to spin up (spin down) solutions. +In addition, note the reflection symmetry of the solutions +around the horizontal E = 0 axis, a consequence of the +particle-hole symmetry of the BdG Hamiltonian, Eq. (8). +Upon decreasing kF ξ, the subgap spectrum becomes +much more intricate due to the enhanced even-odd +energy-splitting, which results in an amplified oscillatory +behavior of the ABS (we have reduced the range of kF L in +the right panel for clarity in the figure). Unfortunately, +in the regime kF ξ ∼ 1 no analytic expressions for the +subgap ABS are possible, but qualitative considerations + +10 +can be provided. In fact, the amplified oscillations can +be traced back to the larger energy dependence of the +momenta Eq. (18)-(20) as kF ξ decreases. Then, whereas +for large kF ξ all these quantities converge to a static (i.e., +energy-independent) value ∼ kF , the limit of small kF ξ +produces a larger effect on the space-dependence of the +wave functions through the exponential factors in Eqs. +(12)-(15). This in turn produces larger interference ef- +fects, and an enhanced lifting of the even-odd degener- +acy. +This phenomenological behavior enables interesting +possibilities, such as the chance to observe half-integer +spin (and fermion parity-switching) quantum phase tran- +sitions in the ground state. To illustrate this effect, we +show the ground-state Sz transitions in the bottom pan- +els of Fig. +2 in each case. +While for larger kF ξ, the +half-integer Sz steps are very narrow due to the almost- +degenerate even-odd solutions (i.e., the even and odd so- +lutions cross zero energy almost at the same value of +kF L), for smaller kF ξ the Sz transitions occur in well- +defined half-integer steps. This behavior is well explained +by the enhanced lifting of the even-odd degeneracy, which +allows to observe one ABS crossing zero energy at a time. +2. +Effect of varying the parameter h0/∆ +In Fig. 3 we show the evolution of the subgap spectrum +as a function of kF L, for different values of the Zeeman +field h0/∆ = 0.8, 1.54 and 2.2, and for a fixed relatively +large value kF ξ = 8.2, allowing to interpret these results +in terms of the semiclassical approximation. Here we can +clearly distinguish three qualitatively different regimes: +a) the “weak field” regime h0 < ∆ (top panel) where +the ABS do not cross E = 0, b) the “intermediate field” +regime ∆ < h0 < 2∆ (middle panel) where the ABS can +evenually cross zero energy, and quantum phase transi- +tions can be induced, and finally c) the “strong field” +(2∆ < h0) regime (bottom panel), where the ABS can +be found anywhere in the region −1 < Eσ/∆ < 1. In all +cases, the value of h0 determines the asymptotic limit to +which the ABS approach for large L (see dashed black +lines in Fig. 3). Below we briefly discuss the main fea- +tures of the spectrum in each regime. +a. +Weak-field regime 0 < h0 < ∆: +This regime +is characterized by a Zeeman field which is not strong +enough to destroy the superconducting gap. +In this +case none of the ABS is able to cross E = 0 and in +the limit L → ∞ they asymptotically approach the +value Eσ/∆ → σ (1 − h0/∆) (see horizontal dashed black +lines), and therefore a renormalized gap remains (see top +panel in Fig. 3). More quantitatively, in the semiclassi- +cal limit [Eq. (48)] they obey the asymptotic expression +−1 +1 +0 +h0 +E/∆ +−1 +1 +0 +h0 +E/∆ +0 +20 +40 +60 +80 +100 +−1 +1 +0 +kF L +E/∆ +FIG. 3. Energy of the Andreev bound states as a function of +kF L for the three different values of h0 (h0/∆ = 0.8, 1.54, 2.2 +for the lower, middle and upper panels) and kF ξ = 8.2. Blue +and red colors correspond to even and odd states respectively. +Lines starting from negative (positive) energies correspond to +down (up) spin projections of the state. Note that the value +of h0/∆ sets the asymptotic limit for the Andreev states and +is crucial to determine the overall subgap spectrum. +valid for kF L → ∞ +Eν +σ +∆ ≃ σ +� +�1 − h0 +∆ + π2 +2 +� ξ +L +�2 � +1 − s(ν)ξ +L +� +2∆ +h0 +− 1 +�2� +� , +(67) +with s(ν) = 1(−1) for ν = e(o). +From here, we can +clearly see that whereas the even-odd averaged quanti- +ties (i.e., the semiclassical values) approach the asymp- +totic limit as L−2, the energy difference between even +and odd solutions (i.e., the amplitude of the oscillation +around the semiclassical limit) decreases as L−3, and the +solutions become degenerate in the limit L → ∞. On the +other hand, the quasiparticle gap in the limit L → ∞ is +renormalized to 2∆ren = 2 |∆ − h0|. Note that this gap +renormalization is quite specific to this setup, and is not +present, for instance, in the case of Ref. [32], where the +magnetic region is normal and not superconducting, and +in addition the system corresponds to a “short” SU-FM- +SU junction with L < ξ, and therefore only few subgap +states are allowed. +Another feature of the weak-field regime is that the +ABS require a minimal length Lmin to emerge in the sub- + +11 +gap region. This can be easily understood in terms of Eq. +49, where a minimal magnetic phase, represented by the +product Lh0/ℏvF , must be accumulated in order to pro- +duce an observable in-gap ABS. Finally, concerning the +spin quantum number of the ground state, since none of +the ABS cross EF , no quantum phase transitions are ex- +pected according to the results of Sec. II B and the value +of the ground state spin remains a spin-singlet Sz = 0. +b. Intermediate field regime ∆ < h0 < 2∆: In this +case the Zeeman field h0 is sufficiently strong to force the +ABS to cross zero energy, eventually inducing quantum +phase transitions (see middle panel in Fig. 3). The n-th +critical value Lc,n can be obtained imposing the condition +Eσ = 0 on the semiclassical approximation in Eq. (48), +Lν +c,n = ξ +arctan +� +−s (ν) ∓ +�� h0 +∆ +�2 − 1 +� ++ nπ +�� h0 +∆ +�2 − 1 +, +(68) +with s(ν) = 1(−1) for ν = e(o). +In this regime, the ABS follow the same asymp- +totic behavior as in Eq. +(67), approaching Eσ/∆ → +σ (1 − h0/∆), although the overall subgap spectrum is +completely different due to the closing of the gap, and +due to the overlap of the E↑ and E↓ spectrum as L +increases beyond the first critical Lc,0. In fact, in the +regime L > Lc,0 the quasiparticle gap becomes com- +pletely populated (and washed away) by subgap states. +Moreover, we predict an accumulation of levels in the re- +gion −∆ + h0 < E < ∆ − h0, which can eventually form +a peak structure in the total density of states. +c. Strong field regime 2∆ < h0: Finally, in this regime +(see bottom panel in Fig. 3), the asymptotic dashed lines +fall within the continuum and it is no longer possible to +obtain an analytic expression for the ABS behavior in +the limit L → ∞. As a result, the subgap ABS can be +found anywhere in the subgap region −1 < Eσ/∆ < 1. +In addition, we note that the minimal length required to +observe in-gap ABS has reduced to Lmin ≈ 0. +IV. +SUMMARY AND CONCLUSIONS +In this work we have analyzed the subgap electronic +structure in the one dimensional SE-SU-FMI heterostruc- +ture schematically depicted in Fig. 1, a novel physical +system recently fabricated using molecular beam epitaxy +techniques (MBE). The main motivation to study this +type of hybrid systems is that, via a careful combina- +tion of different materials, the emergent characteristics +can be completely different from those of the individ- +ual components, providing a way to build devices with +tailored properties and specific functionalities. In partic- +ular, much of the experimental effort has focused on the +realization of topological superconducting phases host- +ing Majorana zero modes, with possible applications in +topological quantum computing [20, 21]. A distinguish- +ing feature of these heterostructures is the coexistence +of antagonistic superconductor and ferromagnetic insu- +lating layers over a finite and arbitrary length L in a +semiconductor wire, a combination that confers unique +spectral properties which cannot be found in elemental +materials in nature. +In particular, we have modelled the hybrid struc- +ture +assuming +non-interacting +fermions +in +a +one- +dimensional single-channel nanowire under the effect of +two proximity-induced interactions: a SU pairing and +a space-dependent Zeeman exchange coupling [see Eqs. +(1)-(3)]. +We have solved the associated Bogoliubov-de +Gennes equations and, by imposing standard continuity +conditions on the wave functions, we have obtained an +equation [Eq. (28)] defining the subgap ABS spectrum +of the device. +This single equation encodes our main +theoretical results. We stress that our approach is equiv- +alent to other works using the scattering-matrix formal- +ism. We have analytically solved Eq. (28) in two paradig- +matic limits: the semiclassical limit (Sec. III A) and the +Yu-Shiba-Rusinov limit, typical of atomic magnetic mo- +ments interacting with a superconductor (Sec. III B). In +both cases, we have been able to recover well-known ana- +lytical results, providing important sanity checks for our +theoretical results. As a consequence of the symmetries +of the Hamiltonian (i.e., inversion x → −x and sz spin +symmetries), it was possible to classify the solutions into +even- and odd-symmetry, and with sz labels σ =↑, ↓. In +particular, we note that the even-odd classification, aris- +ing in the present case due to the inversion symmetry of +the Hamiltonian, is nothing but the 1D analog of the clas- +sification in angular momentum eigenstates ℓ occurring +in 3D spherically-symmetric Hamiltonians [7, 25, 26]. +We have studied the subgap spectrum of ABS as a +function of different parameters, namely: the length of +the magnetic region (through the dimensionless parame- +ter kF L), the strength of the Zeeman exchange induced +by the FMI (parameter h0/∆), and the superconducting +coherence length (parameter kF ξ). We stress that each +one of these parameters could in principle (directly or in- +directly) be controlled in experiments. However, due to +its potential relevance for on-going experimental efforts, +we have in particular focused our study on the evolution +of the subgap spectrum as a function of the length L (i.e., +as it is probably the easiest parameter to vary in experi- +ments), for fixed parameters kF ξ and h0/∆. The parame- +ter L can be controlled by, e.g., changing the experimen- +tal growing conditions of the semiconductor nanowires +using the VLS growth method. In Figs. 2 and 3 we have +analyzed the evolution of the subgap spectrum in terms +of the parameter kF L for different values of h0/∆ and +kF ξ. Roughly speaking, while kF ξ controls the “semi- +classical vs quantum” operation regime of the device, +and the magnitude of the even-odd energy separation, +the parameter h0/∆ essentially controls the energy sep- +aration of the E↑ and E↓ solutions, eventually enabling +many interesting physical phenomena such as the possi- + +12 +bility to observe multiple ABS crossing zero-energy, the +existence of multiple spin- and parity-changing quantum +phase transitions in the device, quasiparticle gap renor- +malization ∆ → ∆ren = |∆ − h0| in the limit of large +kF L, etc.. An important conclusion here is that in order +to experimentally observe a quantum phase transition, +the condition h0 > ∆ must be fulfilled. +Interpreting L as a “tunable” parameter has another +theoretical advantage, as it enables to address the in- +teresting fundamental question of how to connect two +paradigmatic limits in SU-FM hybrid devices: the atomic +limit (kF L → 0), where the physics is that of the well- +known non-degenerate YSR states, and the ballistic limit +(kF L ≫ 1) where the spectrum of the subgap ABS be- +comes double degenerate. Until very recently, these lim- +its were treated as disconnected from each other. In Ref. +[32] this issue was addressed in the particular case of SU- +FM-SU junctions in the limit L < ξ. Here we have revis- +ited this intriguing question for a different setup where +such constraint does not exist, and have studied the evo- +lution of the subgap spectrum as a function of L. The +abovementioned symmetry classification into even and +odd solutions is critically important to allow the inter- +pretation of the degeneracy in the limit kF L → ∞ as an +“even-odd degeneracy”. At the same time, it enables to +explain the degeneracy lifting in the limit L → 0, where +only even states prevail in the subgap region of ener- +gies. +Using an approximate model of one-dimensional +fermions with linearized dispersion, we have provided a +simple picture where the even-odd degeneracy naturally +emerges as a consequence of destructive interferences of +terms e±i2kF x arising from single-particle backscattering +mechanisms. +The continuous evolution of the subgap spectrum as a +function of kF L allows a better understanding of previ- +ous experimental STM results on atomic magnetic adsor- +bates on superconducting substrates, where the subgap +YSR states are usually interpreted in terms of a point-like +magnetic moment [27, 37–41]. While the delta-function +limit is obviously a mathematical idealization, in terms +of our model the observed YSR states can be rationalized +assuming a finite value of kF L and a (more physically ap- +pealing) finite value of the atomic local field h0. This is +precisely the case if we note that for magnetic impurities +(e.g. Fe, Co or Mn atoms) deposited on top of bulk metal- +lic S surfaces (e.g., Pb or Al), the spatial extension of the +short-ranged Zeeman field can be estimated as the size of +the d-shell orbitals L ∼ 1 ˚A, while the Fermi wavevector +of bulk superconductors (e.g., Pb) is kF ∼ 1−2×1010m−1 +(see Ref. [45]). This type of adsorbate/substrate combi- +nation yields a parameter kF L ∼ 1, which is within the +regime where we recover observable subgap states (see +Figs. 2 and 3). On the other hand, in 1D semiconduc- +tor heterostructures as those of Refs. 20 and 21, kF is +usually much smaller than in metallic superconductors. +Measurements of the number of carriers from the Hall +conductance RH in 2D InGaAl quantum wells [46] yield +the estimated value kF ∼ 2.2 × 107m−1, three orders of +magnitude smaller as compared to bulk Pb. This much +smaller value of kF allows for much larger, experimentally +accessible values of L, while keeping values of h0 also +within experimental reach. All together, this combina- +tion makes these hybrid materials a much more versatile +platform to control the spectrum of YSR/ABS subgap +states. +To characterize the quantum phase transitions occur- +ring in the device, we have computed the value of the to- +tal Sz using a spin version of the Friedel sum rule [see Eq. +(44) and also Ref. [32]. We stress that these transitions +are a generalization of the well-known “0-π” transition +occurring in atomic Shiba impurities [22, 47] or quantum +dots coupled to superconductors [48–50]. From this per- +spective, the difference with respect to atomic systems +is that instead of a single transition, actually multiple +transitions can occur due to the finite extension L of +the “impurity” and the many ABS states with different +symmetry which can eventually cross below EF . Inter- +estingly, we stress that the ocurrence of these quantum +phase transitions can be tuned varying the length L. +We now briefly address the effect of the Rashba spin- +orbit interaction, which has been neglected in our work. +As mentioned previously, this interaction was neglected +to simplify the theoretical description of this (already +quite complex and rich) problem. This interaction can +drive the system into the topological superconductor +class D [51, 52], hosting Majorana zero modes at the ends +(see e.g., Ref. 34 for a related setup), and in that case +we expect qualitative changes with respect to the results +presented here. Consequently our results apply to exper- +imental SE-SU-FMI systems where the spin-orbit energy +term ESOC = α2 +Rm∗/2, with αR the Rashba parameter, +is negligible compared to ∆ and h0. +Finally, we consider the effect of disorder in this setup. +This might be a relevant effect as a random disorder po- +tential will eventually break the inversion symmetry of +the model and might lift the predicted even-odd degen- +eracy in the limit kF L ≫ 1. However, we believe the +energy-lifting effect might be weak in epitaxially-grown +samples, where disorder is a relatively small effect. +ACKNOWLEDGMENTS +This work was partially supported by CONICET un- +der grant PIP 0792, UNLP under grant PID X497, and +Agencia I+D+i under PICT 2017-2081, Argentina. AML +is grateful to Liliana Arrachea for pointing out crucial +bibliographic references. + +13 +[1] A. V. Balatsky, I. Vekhter, and J.-X. Zhu, Rev. Mod. +Phys. 78, 373 (2006). +[2] B. W. Heinrich, J. I. Pascual, and K. J. Franke, Prog. +Surf. Sci. 93, 1 (2018). +[3] R. Pawlak, S. Hoffman, J. Klinovaja, D. Loss, and +E. Meyer, Prog. Part. Nucl. Phys. 107, 1 (2019). +[4] D.-J. Choi, N. Lorente, J. Wiebe, K. von Bergmann, +A. F. Otte, and A. J. Heinrich, Rev. Mod. Phys. 91, +041001 (2019). +[5] L. Yu, Acta Phys. Sin. 21, 75 (1965). +[6] H. Shiba, Prog. Theor. Phys. 40, 435 (1968). +[7] A. I. Rusinov, Zh. Eksp. Teor. Fiz. Pisma. Red. 9, 146 +(1968), [JETP Lett. 9, 85 (1969)]. +[8] S. Nadj-Perge, I. K. Drozdov, B. A. Bernevig, and +A. Yazdani, Phys. Rev. B 88, 020407(R) (2013). +[9] J. Klinovaja, P. Stano, A. Yazdani, and D. Loss, Phys. +Rev. Lett. 111, 186805 (2013). +[10] J. Li, H. Chen, I. K. Drozdov, A. Yazdani, B. A. +Bernevig, and A. H. MacDonald, Phys. Rev. B 90, +235433 (2014). +[11] S. Nadj-Perge, I. K. Drozdov, J. Li, H. Chen, S. Jeon, +J. Seo, A. H. MacDonald, B. A. Bernevig, and A. Yaz- +dani, Science 346, 602 (2014). +[12] M. Ruby, F. Pientka, Y. Peng, F. von Oppen, B. W. +Heinrich, and K. J. Franke, Phys. Rev. Lett. 115, 197204 +(2015). +[13] B. E. Feldman, M. T. Randeria, J. Li, S. Jeon, Y. Xie, +Z. Wang, I. K. Drozdov, B. Andrei Bernevig, and A. Yaz- +dani, Nat. Phys. 13, 286 EP (2016), article. +[14] R. Pawlak, M. Kisiel, J. Klinovaja, T. Meier, S. Kawai, +T. Glatzel, D. Loss, and E. Meyer, npj Quantum Inf. 2, +16035 (2016). +[15] M. Ruby, B. W. Heinrich, Y. Peng, F. von Oppen, and +K. J. Franke, Nano Lett. 17, 4473 (2017). +[16] H. Kim, +A. Palacio-Morales, +T. Posske, +L. R´ozsa, +K. Palot´as, L. Szunyogh, M. Thorwart, and R. Wiesen- +danger, Sci. Adv. 4, eaar5251 (2018). +[17] B. J¨ack, Y. Xie, and A. Yazdani, Nat. Rev. Phys. 3, 541 +(2021). +[18] F. S. Bergeret, A. F. Volkov, and K. B. Efetov, Rev. Mod. +Phys. 77, 1321 (2005). +[19] M. Eschrig, Phil. Trans. R. Soc. A 376, 20150149 (2018). +[20] Y. Liu, S. Vaitiek˙enas, S. Mart´ı-S´anchez, C. Koch, +S. Hart, Z. Cui, T. Kanne, S. A. Khan, R. Tanta, +S. Upadhyay, M. E. Cachaza, C. M. Marcus, J. Ar- +biol, K. A. Moler, and P. Krogstrup, Nano Lett. 20, 456 +(2020). +[21] S. Vaitiek˙enas, Y. Liu, P. Krogstrup, and C. M. Marcus, +Nat. Phys. 17, 43 (2021). +[22] A. Sakurai, Prog. Theor. Phys. 44, 1472 (1970). +[23] A. Costa, J. Fabian, and D. Kochan, Phys. Rev. B 98, +134511 (2018). +[24] A. I. Rusinov, Zh. Eksp. Teor. Fiz. 56, 2047 (1969). +[25] M. E. Flatt´e and J. M. Byers, Phys. Rev. B 56, 11213 +(1997). +[26] L. Arrachea, Phys. Rev. B 104, 134515 (2021). +[27] S.-H. Ji, T. Zhang, Y.-S. Fu, X. Chen, X.-C. Ma, J. Li, +W.-H. Duan, J.-F. Jia, and Q.-K. Xue, Phys. Rev. Lett. +100, 226801 (2008). +[28] M. Ruby, Y. Peng, F. von Oppen, B. W. Heinrich, and +K. J. Franke, Phys. Rev. Lett. 117, 186801 (2016). +[29] D.-J. Choi, C. Rubio-Verd´u, J. de Bruijckere, M. M. +Ugeda, N. Lorente, and J. I. Pascual, Nat. Commun. 8, +15175 (2017), article. +[30] F. Konschelle, F. S. Bergeret, and I. V. Tokatly, Phys. +Rev. Lett. 116, 237002 (2016). +[31] F. Konschelle, I. V. Tokatly, and F. S. Bergeret, Phys. +Rev. B 94, 014515 (2016). +[32] M. Rouco, I. V. Tokatly, and F. S. Bergeret, Phys. Rev. +B 99, 094514 (2019). +[33] S. Takei, B. M. Fregoso, H.-Y. Hui, A. M. Lobos, and +S. Das Sarma, Phys. Rev. Lett. 110, 186803 (2013). +[34] J. D. Sau and P. M. R. Brydon, Phys. Rev. Lett. 115, +127003 (2015). +[35] A. C. Hewson, The Kondo Problem to Heavy Fermions +(Cambridge University Press, Cambridge, 1993). +[36] K. Duncan and B. Gy¨orffy, Ann. Phys. 298, 273 (2002). +[37] A. Yazdani, B. A. Jones, C. P. Lutz, M. F. Crommie, and +D. M. Eigler, Science 275, 1767 (1997). +[38] M. Iavarone, G. Karapetrov, J. Fedor, D. Rosenmann, +T. Nishizaki, and N. Kobayashi, J. Phys.: Condens. Mat- +ter 22, 015501 (2010). +[39] S.-H. Ji, T. Zhang, Y.-S. Fu, X. Chen, J.-F. Jia, Q.-K. +Xue, and X.-C. Ma, App. Phys. Lett. 96, 073113 (2010). +[40] J. Bauer, J. I. Pascual, and K. J. Franke, Phys. Rev. B +87, 075125 (2013). +[41] N. Hatter, B. W. Heinrich, M. Ruby, J. I. Pascual, and +K. J. Franke, Nat. Commun. 6, 8988 (2015). +[42] L. D. Landau and E. M. Lifshitz, Quantum Mechanics: +non-relativistic theory (Pergamon Press, Oxford, 1958). +[43] T. Bortolin, A. Iucci, and A. M. Lobos, Phys. Rev. B +100, 155111 (2019). +[44] T. Giamarchi, Quantum Physics in One Dimension (Ox- +ford University Press, Oxford, 2003). +[45] N. W. Ashcroft and N. D. Mermin, Solid state physics +(Holt, Rinehart and Winston, New York, 1976). +[46] M. Kjærgaard, Proximity Induced Superconducting Prop- +erties in One and Two Dimensional Semiconductors: To- +wards Topological States of Matter, Ph.D. thesis (2015). +[47] K. J. Franke, G. Schulze, and J. I. Pascual, Science 332, +940 (2011). +[48] J. Bauer, A. Oguri, and A. C. Hewson, J. Phys.: Con- +dens. Matter 19, 486211 (2007). +[49] R. +S. +Deacon, +Y. +Tanaka, +A. +Oiwa, +R. +Sakano, +K. Yoshida, K. Shibata, K. Hirakawa, and S. Tarucha, +Phys. Rev. Lett. 104, 076805 (2010). +[50] E. J. H. Lee, X. Jiang, M. Houzet, R. Aguado, C. M. +Lieber, and S. De Franceschi, Nat. Nanotechnol 9, 79 +(2014). +[51] A. Altland and M. R. Zirnbauer, Phys. Rev. B 55, 1142 +(1997). +[52] S. Ryu, A. P. Schnyder, A. Furusaki, and A. W. W. Lud- +wig, New J. Phys. 12, 065010 (2010). + diff --git a/3NE2T4oBgHgl3EQfjQer/content/tmp_files/load_file.txt b/3NE2T4oBgHgl3EQfjQer/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..2ca5655ec2542ed4cf49f264fc623d7496c1ea05 --- /dev/null +++ b/3NE2T4oBgHgl3EQfjQer/content/tmp_files/load_file.txt @@ -0,0 +1,975 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf,len=974 +page_content='Subgap states and quantum phase transitions in one-dimensional superconductor-ferromagnetic insulator heterostructures Javier Feijoo,1, 2 An´ıbal Iucci,1, 2 and Alejandro M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Lobos3, 4 1Instituto de F´ısica La Plata - CONICET, Diag 113 y 64 (1900) La Plata, Argentina 2Departamento de F´ısica, Universidad Nacional de La Plata, cc 67, 1900 La Plata, Argentina.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' 3Instituto Interdisciplinario de Ciencias B´asicas (CONICET-UNCuyo) 4Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina We theoretically study the spectral properties of a one dimensional semiconductor- superconductor-ferromagnetic insulator (SE-SU-FMI) hybrid nanostructure, motivated by recents experiments where such devices have been fabricated using epitaxial growing techniques.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' We model the hybrid structure as a one-dimensional single-channel semiconductor nanowire under the si- multaneous effect of two proximity-induced interactions: superconducting pairing and a (spatially inhomogeneous) Zeeman exchange field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' The coexistence of these competing interactions generates a rich quantum phase diagram and a complex subgap Andreev bound state (ABS) spectrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' By exploiting the symmetries of the problem, we classify the solutions of the Bogoliubov-de Gennes equations into even and odd ABS with respect to the spatial inversion symmetry x → −x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' We find the ABS spectrum of the device as a function of the different parameters of the model: the length L of the coexisting SU-FMI region, the induced Zeeman exchange field h0, and the induced superconducting coherence length ξ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' In particular we analyze the evolution of the subgap spectrum as a function of the length L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Interestingly, we have found that depending on the ratio h0/∆, the emerging ABS can eventually cross below the Fermi energy at certain critical values Lc, and induce spin-and fermion parity-changing quantum phase transitions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' We argue that this type of device constitute a promising highly-tunable platform to engineer subgap ABS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' INTRODUCTION The interplay of superconductivity and magnetism at the microscopic scale has attracted a great deal of at- tention in recent years [1–4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' For instance, the Yu- Shiba-Rusinov (YSR) states [5–7] arising from the ex- change interaction of an atomic magnetic moment in con- tact with a superconductor, have been proposed as fun- damental building blocks to engineer quantum devices with topologically non-trivial ground states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' In partic- ular, the so-called “Shiba chains” (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=', one-dimensional arrays of magnetic atoms deposited on top of a clean superconductor) are systems predicted to support Ma- jorana zero-modes at the ends of the chain [8–10], and could be used in topologically-protected quantum com- putation schemes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Low-temperature scanning-tunneling microscopy (STM) experiments have confirmed the pres- ence of intruiguing zero-energy end-modes [11–17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Other systems where the competition of superconduc- tivity and magnetism at the nanoscale generates ex- otic subgap states are superconductor (SU)- ferromag- net (FM) heterostructures, such as SU-FM-SU Josephson junctions and SU-FM proximity devices [18, 19].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Subgap states generated in these structures are usually referred to as Andreev bound states (ABS).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' More recently, a novel class of hybrid device, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=', semiconductor (SE) nanowire systems combined with superconductors and ferromag- netic insulator (FMI) materials have been fabricated us- ing molecular-beam epitaxy techniques [20, 21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' These SE-SU-FMI hybrid structures allow to build nanostruc- tures with specific tailored properties which are impossi- ble to obtain with the isolated individual components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Despite the evident differences between the abovemen- x z SC Bulk FMI Semiconductor L x z L h0 Magnetic profile FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Schematic representation of the SC-FMI heterostruc- ture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' tioned physical systems, from the theoretical perspective they can be described within the same unified theoretical model combining superconductivity and local exchange fields at the microscopic scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' The emerging subgap states (which can be referred to as either YSR states or ABS, depending on the context) appear symmetrically around the Fermi level EF , and localize spatially around the impurity or the FM region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Their energy-position within the gap depend on the value of the exchange field and on other experimental parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Interest- ingly, whenever one of these states crosses EF , a spin- and parity-changing quantum phase transition, usually arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content='03967v1 [cond-mat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content='supr-con] 10 Jan 2023 2 known as the “0 − π” phase transition, occurs [1, 22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' In the case of atomic “Shiba impurities” or ultra-short SU-FM-SU junctions (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=', junctions in which the length L of the FM region is much smaller than λF , the Fermi wavelength of the superconductor [23]), it is customary to consider the magnetic scatterer as a point-like classical spin S located at the point R0, interacting via a contact s-d exchange interaction HZ = J(r) S·s(r) with the host superconducting electrons [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Here J(r) = J0δ(r − R0) is the local exchange potential and s(r) is the spin den- sity vector of the electronic fluid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Subsequent theoretical works considered atomic-sized systems with finite- (al- beit short-ranged) exchange interactions with spherical symmetry [7, 24–26].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' In that case, theory predicts the existence of multiple YSR states labelled by their orbital momentum ℓ, a prediction that has been recently ob- served in STM experiments [27–29].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' The behavior of subgap states and the associated 0−π quantum phase transitions has also been studied in the opposite limit L ≫ λF in the context of ballistic SU- FM-SU Josephson junctions with generic spin-dependent fields in the sandwiched region [30–32].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' In this case the results differ from the well-known results of YSR states due to the finite extension of the magnetic profile.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' In particular, the subgap spectrum of long SU-FM-SU junc- tions with zero phase difference is known to be double degenerate [19, 31], showing the inherent complexity of these hybrid heterostructures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' On the experimental side, the possibility to engineer and control the position of the subgap states by a modification of the fabrication para- maters (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=', the length L or exchange field h0 via dif- ferent FM materials) opens interesting perspectives for potential electronic devices, where the precise knowledge of the subgap spectrum is crucial to control their trans- port properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Motivated by the experimental developments men- tioned above, in this work we study the subgap states emerging in one-dimensional (1D) SE-SU-FMI het- erostructures where the SU and the FMI layers simul- taneously generate coexisting proximity-induced pairing and exchange interactions over a finite and arbitrary length L in the SE nanowire, as schematically shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' This coexistence is a crucial aspect of this device, which makes it unique and different from the abovemen- tioned SU-FM-SU junctions, where such overlap occurs only at the SU-FM interface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Our main goal in this work is to study and understand the behavior of the subgap ABS in this device as a function of the experimentally rel- evant parameters of the model, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=', the length L of the FMI region and the magnitude of the induced exchange field h0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' As mentioned above, a device similar to that shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' 1 has been recently experimentally real- ized in SE nanowires with epitaxially-grown SU and FMI layers [20, 21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' While the main interest of that work was the fabrication of a device with non-trivial topological SU ground state hosting Majorana zero modes, here we will study the regime of parameters favoring a topologically- trivial ground state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' As we will show below (see Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' II), this case is already very complex and rich as a result of the antagonistic SU and FM interactions and, to the best of our knowledge, the detailed behavior of subgap states and the quantum phase diagram emerging in such a system have not been explicitly studied before.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' The article is organized as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' In Section II, we introduce the model representing a 1D SE-SU-FMI hy- brid nanowire, discuss the solution to the Bogoliubov- de Gennes equations for the subgap states, and derive a generic equation for the subgap spectrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' In Sec- tion III, we analyze the results in two specific limits, where we recover well-known results: a) the semiclassical limit, where the superconducting coherence length ξ is much larger than the Fermi wavelength λF , and b) the atomic YSR limit, in which the exchange-field induced by the FMI region becomes a delta-function potential: i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=', infinitesimally narrow (L ≪ λF ), and infinitely deep (h0 ≫ EF ), in such a way that the product h0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content='L = J is kept constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' In both cases, well-known analytical solutions to the subgap spectrum can be recovered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' In addition, we numerically solve the characteristic equation for the subgap states and provide a generic description of the subgap spectrum, not restricted to any of these limits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' We find a rich behaviour of the subgap ABS, where the competing FM exchange and SU pairing inter- actions give rise to parity- and spin-changing quantum phase transitions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Finally, in Section IV, we present a summary and our conclusions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' THEORETICAL MODEL We focus on the system schematically depicted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' 1, which represents a 1D SE-SU-FMI hybrid nanostruc- ture of total length Lw, similar to those fabricated in Refs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' 20 and 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' We model this system with the Hamil- tonian H = Hw + H∆ + HZ, where Hw = � σ � Lw 2 − Lw 2 dx ψ† σ(x) � −ℏ2∂2 x 2m∗ − µ � ψ† σ(x), (1) H ∆ = ∆ � Lw 2 − Lw 2 dx � ψ† ↑(x)ψ† ↓(x) + H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' � , (2) HZ = � Lw 2 − Lw 2 dx h(x) � ψ† ↑(x)ψ↑(x) − ψ† ↓(x)ψ↓(x) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' (3) Here Hw is the Hamiltonian of a single-channel SE nanowire of length Lw, in which the fermionic operator ψσ(x) creates an electron at position x with spin projec- tion σ =↑, ↓ and effective mass m∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' The parameter µ is the chemical potential, which can be experimentally var- ied applying external gates beneath the nanostructure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' The terms H∆ and HZ represent, respectively, the proximity-induced pairing interaction encoded by the pa- rameter ∆, and the Zeeman exchange interaction intro- duced by the FMI and described by a space-dependent exchange field h(x), which we assume oriented along the 3 z direction (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Moreover, since these interac- tions are externally induced into the semiconductor, we make the additional assumption that ∆ is unaffected by the presence of h(x) (a renormalized value of ∆ does not change qualitatively our results).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' As mentioned before, these two terms can be effectively induced by the pres- ence of epitaxially-grown SU and FMI shells in contact with the SE nanowire [20, 21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' It has been experimen- tally confirmed [21] that the FMI shell (EuS in that case) consists of a single magnetic monodomain, and there- fore modelling this layer by the Hamiltonian HZ is a reasonable approximation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' In addition, the epitaxially- generated interfaces are essentially disorder-free, a neces- sary condition to produce a proximity-induced hard-gap [33].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' This feature allows to neglect the effects of disorder and considerably simplifies the theoretical description.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' The presence of both, a hard proximity-induced super- conductor gap and an effectively induced Zeeman field, in these nanowires have been reported in transport mea- surements in Refs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' 20 and 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' In addition, note that in the above model we have neglected the effect of the Rashba spin-orbit interaction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' While this interaction is crucial for the emergence of a topologically non-trivial (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=', D class) superconducting phase supporting Majo- rana zero-modes [34], here we will focus strictly on the topologically-trivial ground state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' As we will show be- low, the competition of SU and FM interactions make this system already very complex and interesting in it- self.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' We note that since the total single-particle fermionic spin along z sz = 1 2 � Lw 2 − Lw 2 dx � ψ† ↑(x)ψ↑(x) − ψ† ↓(x)ψ↓(x) � , (4) is a conserved quantity which verifies [sz, H] = 0, we can label the electronic eigenstates of H with σ = {↑, ↓}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Therefore, we introduce the following Nambu spinors Ψ↑(x) = � ψ↑(x) ψ† ↓(x) � , Ψ↓(x) = � ψ↓(x) ψ† ↑(x) � , (5) related to each other via the charge-conjugation transfor- mation Ψ¯σ(x) = KτxΨσ(x), where τx is the 2 × 2 Pauli matrix, and K is the complex conjugation operator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' In terms of these spinors the Hamiltonian writes H = 1 2 � σ � Lw 2 − Lw 2 dx Ψ† σ(x)HBdG,σ(x)Ψσ(x), (6) where the Bogoliubov-de Gennes (BdG) Hamiltonian is defined as HBdG,σ = � − ℏ2∂2 x 2m − µ + σh(x) σ∆ σ∆ ℏ2∂2 x 2m + µ + σh(x) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' (7) In this expression, the spin projection σ =↑ (↓) on the left-hand side corresponds to the + (−) sign in the definition of the BdG matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Using the above charge-conjugation transformation, we note that the BdG Hamiltonian Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' (7) verifies the following symme- try transformation KτxHBdG,σ = −H∗ BdG,¯σKτx, (8) and therefore, provided χσ(x) is a solution of the BdG eigenvalue equation HBdG,σ(x)χσ(x) = Eσχσ(x), (9) with eigenenergy Eσ, the transformed spinor χ¯σ(x) = Kτxχσ(x), is also a solution with eigenenergy E¯σ = −Eσ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' In what follows, we assume for simplicity the thermo- dynamic limit Lw → ∞, and we focus on the features introduced by the magnitude and spatial dependence of h (x), which is crucial for the rest of this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' In addi- tion, we assume the following step-like spatial profile for the exchange field h(x) = � −h0 if |x| < L 2 , 0 if |x| ⩾ L 2 , (10) which models a uniform FMI shell of length L in contact with the SE nanowire (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' This choice for h(x) allows to split the problem into regions with either |x| < L 2 or |x| > L 2 , with generic exponential solutions χσ(x) ∼ � ασ βσ � eikx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' (11) Linear combinations of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' (11), with appropriate coeffi- cients and with allowed values of k for each region, must be built so that continuity of the total wavefunction and its derivative at the interfaces is satisfied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' With this re- quirement, the solution of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' (9) is finally obtained.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Note that the BdG Hamiltonian (7) is even under space inversion x → −x, and therefore its eigenstates must be even or odd under this transformation of coordinates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' This symmetry allows to reduce the number of unknowns of the problem (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=', coefficients of the linear combinta- tion).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Replacing the above ansatz Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' (11) into the BdG eigenvalue Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' (9),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' and looking for localized solutions with energy within the gap |Eσ| < ∆,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' we obtain the fol- lowing expressions for the eigenstates belonging to the even-symmetry subspace: 4 χe,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content='σ � x > L 2 � = Ae 1σ � 1 σe−iϕσ � e−κσx + Ae 2σ � 1 σeiϕσ � e−κ∗ σx,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' (12) χe,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content='σ � −L 2 ≤ x ≤ L 2 � = Be 1σ � 1 σe−ησ � cos kσx + Be 2σ � 1 σeησ � cos ¯kσx,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' (13) and the following expressions for the odd-symmetry eigenfunctions χo,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content='σ � x > L 2 � = Ao 1σ � 1 σe−iϕσ � e−κσx + Ao 2σ � 1 σeiϕσ � e−κ∗ σx,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' (14) χo,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content='σ � −L 2 ≤ x ≤ L 2 � = Bo 1σ � 1 σe−ησ � sin kσx + Bo 2σ � 1 σeησ � sin ¯kσx,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' (15) where the coefficients {Aν 1σ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Aν 2σ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Bν 1σ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Bν 2σ},' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' with ν = {e,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' o},' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' are unknowns to be fixed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' In addition, in the above expressions we have introduced the parametriza- tion cos ϕσ = Eσ ∆ , (16) cosh ησ = Eσ + σh0 ∆ , (17) where we fix the definition of ϕσ to the interval ϕσ ∈ (0, π].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' The phase variable ϕσ is associated to the An- dreev reflection taking place at the interface xb = L/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Note that the parametrization in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' (17) makes sense whenever the right-hand side is positive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' If this condi- tion is not satisfied, one can always use the symmetry Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' (8) to send Eσ → −E¯σ and σ → ¯σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' In addition, note that whenever 1 ≤ (Eσ + σh0) /∆ the parameter ησ is purely real, while for 0 < (Eσ + σh0) /∆ < 1 it is purely imaginary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Finally, we have introduced the quantities κσ ≡ −ikF � 1 + 2i kF ξ sin ϕσ, (18) kσ ≡ kF � 1 + 2 kF ξ sinh ησ, (19) ¯kσ ≡ kF � 1 − 2 kF ξ sinh ησ, (20) and the definition of the coherence length of the (proximity-induced) 1D superconductor ξ = ℏvF /∆.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' No- tice also that the spatial dependence of the wavefunc- tions in the region x < −L/2 can be readily obtained by symmetry from the relations χe,σ (x) = χe,σ (−x), and χo,σ (x) = −χo,σ (−x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' We can intuitively understand the form of the scatter- ing solutions in the regions x > L/2 and x < −L/2 in the limit kF ξ ≫ 1 (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=', the semiclassical limit, see Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content='III A), where the momentum κσ in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' (18) can be expanded as κσ ≃ −ikF + sin ϕσ/kF ξ, and the eigenfunctions Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' (12) and (14) take the form χν,σ � x > L 2 � ≈ � Aν 1σ � 1 σe−iϕσ � eikF x+ +Aν 2σ � 1 σeiϕσ � e−ikF x � e− sin ϕσx ξ , (21) with ν = {e, o}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' In this way, it becomes evident that the component proportional to Aν 1σ corresponds to a right- moving particle ∼ eikF x while Aν 2σ corresponds to a left- moving particle ∼ e−ikF x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' In addition, the wavefunctions exponentially decay into the superconductor within a lo- calization length λloc = ξ/ sin ϕσ = ξ/ � 1 − (Eσ/∆)2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' These results are in complete agreement with Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' [32], where the spectrum of SU-FM-SU Josephson junctions has been recently studied as a function of the length L of the FM region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' However, in our case, the presence of a finite pairing gap ∆ in the region −L/2 < x < L/2 (as opposed to the assumption ∆ = 0 in the FM region in that work), gives rise to important differences which we analyze below in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Continuity conditions at the interface We now impose the continuity conditions on the wave- function and its derivative at the boundary xb = L/2: χν,σ � x− b � = χν,σ � x+ b � (22) ∂xχν,σ � x− b � = ∂xχν,σ � x+ b � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' (23) Note that the same equations are obtained by symme- try at the other boundary −xb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Inserting the solutions Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' (12)-(15),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' we can express the continuity equations in matrix form as 5 � 1 σe−iϕσ σe−iϕσ 1 � � aν 1σ aν 2σ � = � 1 σe−ησ σe−ησ 1 � � Fν � kσL 2 � 0 0 Fν � ¯kσL 2 � � � bν 1σ bν 2σ � ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' (24) − � 1 σe−iϕσ σe−iϕσ 1 � � κσ 0 0 κ∗ σ � � aν 1σ aν 2σ � = −s(ν) � 1 σe−ησ σe−ησ 1 � � kσGν � kσL 2 � 0 0 ¯kσGν � ¯kσL 2 � � � bν 1σ bν 2σ � ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' (25) where we have conveniently redefined the unknown coef- ficients as Aν 1σ → eκσL/2aν 1σ Bν 1σ → bν 1σ (26) Aν 2σ → σeκ∗ σL/2e−iϕσaν 2σ Bν 2σ → σe−ησbν 2σ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' (27) in order to give these equations a more symmetric form.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' In addition, we have used the notation s(ν) = +1(−1) for ν = e(o), and Fe(x) = Go(x) ≡ cos(x), Ge(x) = Fo(x) ≡ sin(x) for compactness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' In each subspace (even or odd) we have four equa- tions and four unknowns.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Eliminating the variables (bν 1σ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' bν 2σ)T ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' and writing the equation for (aν 1σ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' aν 2σ)T ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' we find from the nullification of the corresponding determi- nant the following equations: cosh ησ cos ϕσ − 1 sinh ησ sin ϕσ = � � � � � � � � � � � � � |κσ|2 − � Kσ + ¯Kσ � Re κσ + Kσ ¯Kσ � ¯Kσ − Kσ � Im κσ (even-symmetry subspace),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' |κσ|2 + � Qσ + ¯Qσ � Re κσ + Qσ ¯Qσ � Qσ − ¯Qσ � Im κσ (odd-symmetry subspace),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' (28) where we have defined the quantities Kσ = kσ tan �kσL 2 � ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' (29) ¯Kσ = ¯kσ tan �¯kσL 2 � ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' (30) Qσ = kσ cot �kσL 2 � ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' (31) ¯Qσ = ¯kσ cot �¯kσL 2 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' (32) From Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' (28), the eigenvalue Eσ for each subspace is finally obtained.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' This equation summarizes our main the- oretical results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' In the next Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' III we analyze the nu- merical solution and different important limits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Spin-changing quantum phase transitions We now focus on the quantum phase transitions which occur whenever one of the subgap states crosses EF .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' To that end, let us analyze the spinors defined in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' (5), and consider the norm of the “up” spinor q↑ = � Lw/2 −Lw/2 dx � ψ† ↑ (x) ψ↑ (x) + ψ↓ (x) ψ† ↓ (x) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Recalling the definition of the single-particle sz operator [see Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' (4)], it is straightforward to associate these two quantities through the relation q↑ = 2sz − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Since sz is a conserved quantity, so is the norm q↑ of the “up” Nambu spinors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' This connection allows to interpret q↑ as an effective “conserved charge”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Similar considerations allow to write the relation q↓ = −2sz − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Due to the particle-hole relation Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' (8), the information about sz can be obtained with either q↑ or q↓.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' A more symmetric form involving both conserved charges is sz = q↑ − q↓ 4 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' (33) While redundant, this expression makes explicit that in the spin-symmetric case q↑ = q↓, the net spin sz must vanish (sz = 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' We now return to Hamiltonian Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' (7), and let us separate the effect of the proximity-induced Zeeman field, by writing it as HBdG,σ = H0,σ + Vσ, where H0,σ = � − ℏ2∂2 x 2m − µ σ∆ σ∆ ℏ2∂2 x 2m + µ � , (34) Vσ = � σh(x) 0 0 σh(x) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' (35) In this form, we can interpret the effect of the exchange field as a “perturbation” on an otherwise homogeneous 6 1D superconductor represented by H0,σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Therefore, the full and the unperturbed single-particle Green’s functions in this problem are respectively defined as Gσ (z) = [z − H0,σ − Vσ]−1 , (36) G0,σ (z) = [z − H0,σ]−1 , (37) From here, the total number of effective “up” charges Q↑ induced in the ground state due to the potential Vσ, compared to the unperturbed homogeneous SU wire, can be computed as ∆Q↑ = − 1 π Im Tr � ∞ −∞ dϵ nF (ϵ) ∆G↑ (ϵ + iδ) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' (38) where ∆Gσ (z) ≡ Gσ (z) − G0,σ (z).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' At T = 0, Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' (38) can be easily computed from the well-known expression of the Friedel sum rule [35] ∆Q↑ = 1 π � 0 −∞ dϵ �∂η↑ (ϵ) ∂ϵ − ∂η0,↑ (ϵ) ∂ϵ � (39) = η↑ (0) − η0,↑ (0) π (40) where we have defined the phase shifts [32, 35] ησ (ϵ) = Im ln det Gσ (ϵ + iδ) , (41) η0,σ (ϵ) = Im ln det G0,σ (ϵ + iδ) , (42) and where we have used that the phase shifts vanish in the limit ϵ → ±∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Since the system is non-interacting, the Green’s func- tion Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' (36) can be written in terms of single-particle eigenstates |α, σ⟩, with α a generic label, as Gσ (z) = � α |α, σ⟩ ⟨α, σ| z − Eα,σ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' (43) Therefore, after simple algebra, and using the above re- lations and the fact that in the absence of magnetic field sz = 0 [see Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' (33)], the total Sz of the ground state is Sz = ∆Q↑ 2 = 1 2 �� α Θ (−Eα,↑) − � α′ Θ � −E0 α′,↑ � � , (44) where Θ(ϵ) is the unit-step function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' The above expres- sion allows to interpret the total Sz of the ground state as a function of the “up” Nambu spinors with energy be- low EF = 0, as compared to the (unperturbed) situation h0 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Since the effective charges are quantized in inte- ger numbers, the total spin Sz can only change in discrete “jumps” of 1/2 whenever a subgap state with projection up crosses below EF (note that we have defined dimen- sionless spin operators).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' This interpretation makes sense since the ground state becomes spin-polarized when the exchange field h0 becomes large enough [i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=', the Zeeman energy of up-spin electron is decreased, see Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' (3) and (10)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' While the result of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' (44) has been obtained re- cently by the authors of Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' [32], we note that here we have rederived it in a different physical situation which allows a more generic regime of parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' RESULTS We start this section by analyzing different limits of the general result given in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' (28).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' In particular, in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' III A we focus on the semiclassical limit, and in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' III B we study the atomic limit, where we recover the YSR results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' In both cases, Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' (28) reduces to well- known analytical results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Finally in Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' III C we show results corresponding to intermediate regimes, obtained by solving numerically Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' (28).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Semiclassical limit Generally speaking, the semiclassical limit is verified when EF is the largest scale of the problem [36].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' In par- ticular, the condition EF ≫ ∆ (which is very well satis- fied in most experimental systems) can be expressed as kF ξ ≫ 1, recalling that after linearization of the normal quasiparticle dispersion, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=', ϵk,σ ≃ ±ℏvF k, where the +(−) sign corresponds to right-(left-)movers, the Fermi energy can be approximated as EF ≃ ℏkF vF .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' In this case, Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' (18)-(20) reduce to rσ ≡ κσ kF ≃ −i + sin ϕσ kF ξ , (45) ζσ ≡ kσ kF ≃ 1 + sinh ησ kF ξ , (46) ¯ζσ ≡ ¯kσ kF ≃ 1 − sinh ησ kF ξ , (47) to leading order in O(kF ξ)−1, and Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' (28) becomes cosh ησ cos ϕσ − 1 sinh ησ sin ϕσ ≃ s(ν) 1 + tan � kF Lζσ 2 � tan � kF L¯ζσ 2 � tan � kF Lζσ 2 � − tan � kF L¯ζσ 2 � , = s(ν) cot �L sinh ησ ξ � , (48) where we have used the trigonometric identity tan (x + y) = (tan (x) + tan y)/(1 + tan x tan y).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' In gen- eral this transcendental equation cannot be solved ana- lytically.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' However, in the regime of parameters EF ≫ h0 ≫ ∆, where the exchange field h0 is much larger than ∆, we can write cosh ησ ≈ sinh ησ ≈ �� h0 ∆ �� ≫ 1 [see Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' (16) and (17) ], and Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' (48) reduces to cot ϕσ = s(ν) cot (Lh0/ℏvF ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Equivalently we can write this result as arccos �Eσ ∆ � = � � � � � � � � � LEσ ℏvF + σ Lh0 ℏvF + 2nπ, (even) LEσ ℏvF + σ Lh0 ℏvF + (2n + 1) π.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' (odd) (49) This result can be interpreted as a semiclassical Bohr- Sommerfeld quantization condition for particles which 7 perform a complete a closed loop in the region −L/2 < x < L/2 [36].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' In particular, it exactly coincides with the- oretical results obtained for SU-FM-SU Josephson junc- tions with a normal (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=', ∆ = 0) FM region [30–32], the only difference being that within our theoretical treat- ment, we can distinguish the symmetry of the solutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' The similarity of these results can be rationalized noting that considering a normal sandwiched region in an SU- FM-SU junction corresponds to taking the limit h0 ≫ ∆ in our Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' (48) while keeping the ratio Eσ/∆ finite (since Eσ corresponds to a subgap state, it is always bounded by ∆), thus resulting in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' (49).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' This shows that our Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' (28) is a generic relation describing different situa- tions regardless of the magnitude of the ratio h0/∆.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' YSR-impurity limit We now consider the atomic YSR (or simply Shiba) limit, in which the exchange profile becomes point-like, L → 0, while h0 → ∞, in such a way that the product Lh0 = J = const.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Under these assumptions the magnetic barrier becomes a delta function and the Hamiltonian in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' (3) can be written as HZ ≈ −J � ∞ −∞ dx δ(x) � ψ† ↑(x)ψ↑(x) − ψ† ↓(x)ψ↓(x) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' (50) In this case, it is easy to see that the odd-symmetry solu- tions decouple from the above Hamiltonian (50), as they vanish at x = 0, and only even solutions can couple to the delta-potential.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' As in the previous section, note that the limit h0 → ∞ implies cosh ησ ≈ sinh ησ ≈ �� h0 ∆ �� ≫ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' However, the limit h0 → ∞ is not compatible with the semiclassical ap- proach, as it violates the requirement h0 ≪ EF .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' There- fore we cannot use here our previous Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' (49).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Instead, we must first take the limit ησ ≫ 1 together with the limit L → 0, which applied to Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' (19) and (20) yield kσ → kF � 2h0 ℏvF kF , (51) ¯kσ → ikF � 2h0 ℏvF kF .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' (52) In addition Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' (29)-(32) become Kσ → kF h0L ℏvF = kF ρ0J, (53) ¯Kσ → −kF h0L ℏvF = −kF ρ0J, (54) where the expressions for the density of states per spin of 1D quasiparticles at the Fermi energy ρ0 = 1/ℏvF , and the exchange coupling J = h0L, have been used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Replacing these expressions into Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' (28) for the even- symmetry solutions, we obtain σ Ee σ � ∆2 − (Ee)2 σ = 1 − (ρ0J)2 (2Jρ0) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' (55) From this expression, we can easily solve for Ee σ Ee σ ∆ = σ 1 − (ρ0J)2 1 + (ρ0J)2 , (56) which is the well-known expression for the energy of YSR- impurity subgap level [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' This result indicates that any finite value of J produces a YSR in-gap state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' This type of subgap YSR states has been observed in several STM experiments on atomic magnetic adsorbates on supercon- ducing substrates [27, 37–41].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' For completeness, and in order to illustrate the general scope of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' (28), here we also show the result for the YSR odd states for a small (but finite) L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Using similar approximations, we obtain the expression Eo σ ∆ = σ 1 � 1 + �ρ0Jk2 F L2 6 �2 , (57) where it becomes evident that in addition to a finite value of J, a finite value of kF L is needed to observe an odd- symmetry subgap YSR state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Subgap ABS spectrum in generic cases As stated in Section II, Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' (28) implicitly defines the energy of the subgap states as a function of the param- eters h0/∆ , kF ξ, and kF L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' These parameters can be directly or indirectly controlled in experiments, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=', the parameter h0 can be controlled by modifying the FMI material, the length L of the FMI region can be modified varying the length Lw of the semiconductor via vapor- liquid-solid (VLS) method and subsequent evaporation of the FMI material [20], and the parameter kF in the semi- conductor can be varied by changing the SE material or by introducing external gates to modify the chemical po- tential µ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Therefore, due to this high degree of tunability, hybrid heterostructures might offer a unique platform to produce and control engineered subgap states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Probably the easiest way to experimentally control the subgap elec- tronic structure is by producing different devices with the same FMI material and different lengths L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Therefore, in this section we show the numerical solutions of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' (28) with fixed parameters h0/∆ and kF ξ (which control the “operation regime” of the device), and calculate both the energy dependence of the even- and odd-symmetry ABS, and the total spin Sz of the device as a function of L (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=', dimensionless variable kF L).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Generally speaking, the overall evolution of the ABS spectrum from L = 0 to L → ∞ is quite complex and de- serves a detailed explanation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' As shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' 2, as the 8 parameter kF L increases, more and more subgap states emerge from the gap edges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' This behavior is reminiscent of a quantum particle in a square-well potential, tipically taught in introductory quantum mechanics courses [42], where increasing the width L of the well increases the number of allowed bound states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' In our case, the emer- gence of new ABS as kF L increases can be intuitively understood in terms of a competition between supercon- ductivity and magnetic field: the magnetic field tends to break Cooper-pairs and to locally disrupt supercon- ductivity in the magnetic region by introducing subgap states that become macroscopic in number for large L, eventually populating the whole gap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' We note that for any finite L, even- and odd-symmetry states are generically non-degenerate (except at isolated points).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' However, as it is clear from Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' 2 and 3, their energy difference (evidenced as oscillations of the blue and red lines around the semiclassical value) decreases very rapidly and the solutions become degenerate in the limit L → ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' This transition from non-degenerate YSR states in the limit L → 0, to double degenerate ABS states for L → ∞ has been discussed in previous works on ballistic SU-FM-SU junctions [19, 30–32], and in the case of extended Shiba impurities in 1D nanowires [43].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' It is also clearly visible in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' 2, and more dramatically in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' 3 below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' In our 1D geometry, this degeneracy in the limit L → ∞ can be intuitively understood by linearizing the spectrum around the Fermi energy, and expressing the original fermionic operators in terms of right- and left-moving fields slowly varying in the scale of k−1 F [44], i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=', ψσ (x) ≈ eikF xψR,σ (x) + e−ikF xψL,σ (x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' The slowly-varying fields ψR,σ(x) and ψL,σ(x) are two independent chiral fermionic fields obeying the usual an- ticommutation relations, in terms of which the original Hamiltonian becomes [43] Hw ≈ � σ � ∞ −∞ dx � −iℏvF ψ† R,σ(x)∂xψR,σ(x) + iℏvF ψ† L,σ(x)∂xψL,σ(x) � (58) H ∆ ≈ ∆ � ∞ −∞ dx � ψ† R,↑(x)ψ† L,↓(x) + ψ† L,↑(x)ψ† R,↓(x) + H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' � , (59) HZ ≈ − � ∞ −∞ dx h0 � ψ† R,↑(x)ψR,↑(x) − ψ† R,↓(x)ψR,↓(x) + ψ† L,↑(x)ψL,↑(x) − ψ† L,↓(x)ψL,↓(x) � , (60) where oscillating terms proportional to e±2ikF x have been neglected as they cancel out in the limit L → ∞ due to destructive interference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Defining the new chiral Nambu spinors Ψ1,σ(x) = � ψR,σ(x) ψ† L,¯σ(x) � , Ψ2,σ(x) = � ψL,σ(x) ψ† R,¯σ(x) � , (61) the Hamiltonian of the system can be expressed in terms of two decoupled chiral sectors H = 1 2 � σ=↑,↓ � j=1,2 � ∞ −∞ dx Ψ† j,σ(x)Hj,σ(x)Ψj,σ(x), (62) with the definitions of the chiral BdG Hamiltonians Hj,σ = � (−1)jivF ∂x − σh0 σ∆ σ∆ (−1)j+1ivF ∂x − σh0 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' (63) The Nambu spinors Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' (61) define two independent chi- ral subspaces related by the inversion symmetry of the original Hamiltonian, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=', under the space inversion op- eration x ↔ −x, the fermionic operators transform as ψL,σ(x) ↔ ψR,σ(x), and consequently we conclude that Ψ1,σ(x) ↔ Ψ2,σ(x), which must then be degenerate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' In addition, the particle-hole symmetry Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' (8) in this rep- resentation produces Ψ1,σ(x) → Ψ2,¯σ(x), and therefore H1,σ → −H2,¯σ, implying that the solutions verify the particle-hole symmetry property E1,σ = −E2,¯σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' More- over, notice that assuming periodic boundary conditions, the problem can be solved with the solutions ψR,σ(x) ∼ eikx and ψL,σ(x) ∼ e−ikx, and the dispersion relation becomes E1,σ(k) = E2,σ(k) = ± � (ℏvF k)2 + ∆2 − σh0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' From here, a renormalized quasiparticle gap 2∆ren = 2 |∆ − h0| is obtained, consistent with our previous re- sult.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' In terms of the chiral Nambu spinors, the most general solution is the linear combination Ψσ(x) = AeikF xΨ1,σ(x) + Be−ikF xΨ2,σ(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' (64) This is exactly the same form that can be obtained by combining the degenerate even and odd solutions in Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' (13) and (15) in the semiclassical limit where kF ξ ≫ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' From the analysis of the linearized Hamiltonian, we conclude that the degeneracy in the limit L → ∞ arises from the absence of chirality-breaking terms, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=', terms ∼ Ψ† 1,σ(x)Ψ2,σ(x) arising from, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=', single par- ticle backscattering terms ψ† R,σ(x)ψL,σ(x) or Cooper- pairing channels ψ† R(L),↑(x)ψ† R(L),↓(x) carrying momen- tum ∓2kF .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' For this to occur, the magnetic FMI re- gion must be uniform and its length L must be much larger than k−1 F in order to produce the required cancel- lation of the rapidly oscillating exponentials ∼ e±2ikF x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' In other words, the product kF L must be kF L ≫ 1, consistent with our numerical results in Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' 2 and 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Only for small values of kF L, where this destructive in- terference is incomplete, residual couplings of the type ∼ Ψ† 1,σ(x)Ψ2,σ(x) remain, and the degeneracy is lifted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Finally, we stress that the degeneracy in the limit L → ∞ is a robust property to the presence of interactions, as shown in previous works [43].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' On the other hand, in the limit L → 0 and for any finite value of the Zeeman field h0, both (even and odd) solutions converge to Eσ/∆ → ±1, indicating that the FMI region is no longer relevant (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=', it physically drops 9 −1 1 0 E/∆ −1 1 0 0 10 20 30 40 50 0 1 2 3 4 5 6 kF L Sz 0 2 4 6 8 10 12 14 kF L FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Energy of the Andreev bound states (upper panel) and total spin Sz(lower panel) as a function of kF L, for kF ξ = 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content='8 and h0/∆ = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content='0 (left panel) and kF ξ = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content='4 and h0/∆ = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content='1 (right panel).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Blue and red colors correspond to even and odd states respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Lines starting from the top gap edge at positive energy E/∆ = 1 (bottom gap edge at negative energy E/∆ = −1) correspond to up (down) spin projections of the states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' For smaller values of kF L (right panel), plateaus corresponding to regions of integer and half-integer spin are more separated and might become easier to observe in experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' from the description).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' However, the behavior near L = 0 is quite different for each case: while the even-symmetry solution tends to E/∆ → 1 as [see Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' (56)] Ee σ ∆ ≈ σ � 1 − 2 �h0L ℏvF �2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' � , (65) from Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' (57) we conclude that the odd solution behaves as Eo σ ∆ ≈ σ � 1 − 1 2 �h0k2 F L3 6ℏvF �2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' � , (66) therefore approaching the gap edge much faster as L → 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Besides the general features of the spectrum discussed up to this point, its evolution as L increases is strongly affected by the values of the parameters kF ξ and h0/∆.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' In what follows, we analyze their effects on Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' 2 and Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' 3 respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Effect of varying the parameter kF ξ This parameter can be considered as a “knob” which tunes the device from the semiclassical behavior (kF ξ large, see left panel in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' 2) into a “quantum” regime (kF ξ small, see right panel) where the spectrum is dom- inated by quantum oscillations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' The hybrid heterostruc- ture under study is promising in this sense since, due to the combination of materials (in particular, semiconduc- tors with a much smaller kF as compared to metals), it is in principle possible that kF ξ can be experimentally controlled.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' In addition, kF could be further modified by introducing external gating leads (through the modifica- tion of the chemical potential µ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' To illustrate the dra- matic changes in the spectrum as kF ξ varies, in Fig 2 we show the numerically obtained subgap spectra as a func- tion of kF L for kF ξ = 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content='8 and h0/∆ = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content='0 (left panel), for and kF ξ = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content='4 and h0/∆ = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content='1 (right panel).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Solid blue (red) lines correspond to even(odd)-symmetry solu- tions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Moreover, since we always assume h0 > 0, solu- tions emerging from the top edge E/∆ = 1 (bottom edge E/∆ = −1) correspond to spin up (spin down) solutions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' In addition, note the reflection symmetry of the solutions around the horizontal E = 0 axis, a consequence of the particle-hole symmetry of the BdG Hamiltonian, Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' (8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Upon decreasing kF ξ, the subgap spectrum becomes much more intricate due to the enhanced even-odd energy-splitting, which results in an amplified oscillatory behavior of the ABS (we have reduced the range of kF L in the right panel for clarity in the figure).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Unfortunately, in the regime kF ξ ∼ 1 no analytic expressions for the subgap ABS are possible, but qualitative considerations 10 can be provided.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' In fact, the amplified oscillations can be traced back to the larger energy dependence of the momenta Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' (18)-(20) as kF ξ decreases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Then, whereas for large kF ξ all these quantities converge to a static (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=', energy-independent) value ∼ kF , the limit of small kF ξ produces a larger effect on the space-dependence of the wave functions through the exponential factors in Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' (12)-(15).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' This in turn produces larger interference ef- fects, and an enhanced lifting of the even-odd degener- acy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' This phenomenological behavior enables interesting possibilities, such as the chance to observe half-integer spin (and fermion parity-switching) quantum phase tran- sitions in the ground state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' To illustrate this effect, we show the ground-state Sz transitions in the bottom pan- els of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' 2 in each case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' While for larger kF ξ, the half-integer Sz steps are very narrow due to the almost- degenerate even-odd solutions (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=', the even and odd so- lutions cross zero energy almost at the same value of kF L), for smaller kF ξ the Sz transitions occur in well- defined half-integer steps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' This behavior is well explained by the enhanced lifting of the even-odd degeneracy, which allows to observe one ABS crossing zero energy at a time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Effect of varying the parameter h0/∆ In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' 3 we show the evolution of the subgap spectrum as a function of kF L, for different values of the Zeeman field h0/∆ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content='8, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content='54 and 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content='2, and for a fixed relatively large value kF ξ = 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content='2, allowing to interpret these results in terms of the semiclassical approximation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Here we can clearly distinguish three qualitatively different regimes: a) the “weak field” regime h0 < ∆ (top panel) where the ABS do not cross E = 0, b) the “intermediate field” regime ∆ < h0 < 2∆ (middle panel) where the ABS can evenually cross zero energy, and quantum phase transi- tions can be induced, and finally c) the “strong field” (2∆ < h0) regime (bottom panel), where the ABS can be found anywhere in the region −1 < Eσ/∆ < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' In all cases, the value of h0 determines the asymptotic limit to which the ABS approach for large L (see dashed black lines in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Below we briefly discuss the main fea- tures of the spectrum in each regime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Weak-field regime 0 < h0 < ∆: This regime is characterized by a Zeeman field which is not strong enough to destroy the superconducting gap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' In this case none of the ABS is able to cross E = 0 and in the limit L → ∞ they asymptotically approach the value Eσ/∆ → σ (1 − h0/∆) (see horizontal dashed black lines), and therefore a renormalized gap remains (see top panel in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' More quantitatively, in the semiclassi- cal limit [Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' (48)] they obey the asymptotic expression −1 1 0 h0 E/∆ −1 1 0 h0 E/∆ 0 20 40 60 80 100 −1 1 0 kF L E/∆ FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Energy of the Andreev bound states as a function of kF L for the three different values of h0 (h0/∆ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content='8, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content='54, 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content='2 for the lower, middle and upper panels) and kF ξ = 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Blue and red colors correspond to even and odd states respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Lines starting from negative (positive) energies correspond to down (up) spin projections of the state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Note that the value of h0/∆ sets the asymptotic limit for the Andreev states and is crucial to determine the overall subgap spectrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' valid for kF L → ∞ Eν σ ∆ ≃ σ � �1 − h0 ∆ + π2 2 � ξ L �2 � 1 − s(ν)ξ L � 2∆ h0 − 1 �2� � , (67) with s(ν) = 1(−1) for ν = e(o).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' From here, we can clearly see that whereas the even-odd averaged quanti- ties (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=', the semiclassical values) approach the asymp- totic limit as L−2, the energy difference between even and odd solutions (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=', the amplitude of the oscillation around the semiclassical limit) decreases as L−3, and the solutions become degenerate in the limit L → ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' On the other hand, the quasiparticle gap in the limit L → ∞ is renormalized to 2∆ren = 2 |∆ − h0|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Note that this gap renormalization is quite specific to this setup, and is not present, for instance, in the case of Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' [32], where the magnetic region is normal and not superconducting, and in addition the system corresponds to a “short” SU-FM- SU junction with L < ξ, and therefore only few subgap states are allowed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Another feature of the weak-field regime is that the ABS require a minimal length Lmin to emerge in the sub- 11 gap region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' This can be easily understood in terms of Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' 49, where a minimal magnetic phase, represented by the product Lh0/ℏvF , must be accumulated in order to pro- duce an observable in-gap ABS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Finally, concerning the spin quantum number of the ground state, since none of the ABS cross EF , no quantum phase transitions are ex- pected according to the results of Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' II B and the value of the ground state spin remains a spin-singlet Sz = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Intermediate field regime ∆ < h0 < 2∆: In this case the Zeeman field h0 is sufficiently strong to force the ABS to cross zero energy, eventually inducing quantum phase transitions (see middle panel in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' The n-th critical value Lc,n can be obtained imposing the condition Eσ = 0 on the semiclassical approximation in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' (48), Lν c,n = ξ arctan � −s (ν) ∓ �� h0 ∆ �2 − 1 � + nπ �� h0 ∆ �2 − 1 , (68) with s(ν) = 1(−1) for ν = e(o).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' In this regime, the ABS follow the same asymp- totic behavior as in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' (67), approaching Eσ/∆ → σ (1 − h0/∆), although the overall subgap spectrum is completely different due to the closing of the gap, and due to the overlap of the E↑ and E↓ spectrum as L increases beyond the first critical Lc,0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' In fact, in the regime L > Lc,0 the quasiparticle gap becomes com- pletely populated (and washed away) by subgap states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Moreover, we predict an accumulation of levels in the re- gion −∆ + h0 < E < ∆ − h0, which can eventually form a peak structure in the total density of states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Strong field regime 2∆ < h0: Finally, in this regime (see bottom panel in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' 3), the asymptotic dashed lines fall within the continuum and it is no longer possible to obtain an analytic expression for the ABS behavior in the limit L → ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' As a result, the subgap ABS can be found anywhere in the subgap region −1 < Eσ/∆ < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' In addition, we note that the minimal length required to observe in-gap ABS has reduced to Lmin ≈ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' SUMMARY AND CONCLUSIONS In this work we have analyzed the subgap electronic structure in the one dimensional SE-SU-FMI heterostruc- ture schematically depicted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' 1, a novel physical system recently fabricated using molecular beam epitaxy techniques (MBE).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' The main motivation to study this type of hybrid systems is that, via a careful combina- tion of different materials, the emergent characteristics can be completely different from those of the individ- ual components, providing a way to build devices with tailored properties and specific functionalities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' In partic- ular, much of the experimental effort has focused on the realization of topological superconducting phases host- ing Majorana zero modes, with possible applications in topological quantum computing [20, 21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' A distinguish- ing feature of these heterostructures is the coexistence of antagonistic superconductor and ferromagnetic insu- lating layers over a finite and arbitrary length L in a semiconductor wire, a combination that confers unique spectral properties which cannot be found in elemental materials in nature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' In particular, we have modelled the hybrid struc- ture assuming non-interacting fermions in a one- dimensional single-channel nanowire under the effect of two proximity-induced interactions: a SU pairing and a space-dependent Zeeman exchange coupling [see Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' (1)-(3)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' We have solved the associated Bogoliubov-de Gennes equations and, by imposing standard continuity conditions on the wave functions, we have obtained an equation [Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' (28)] defining the subgap ABS spectrum of the device.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' This single equation encodes our main theoretical results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' We stress that our approach is equiv- alent to other works using the scattering-matrix formal- ism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' We have analytically solved Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' (28) in two paradig- matic limits: the semiclassical limit (Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' III A) and the Yu-Shiba-Rusinov limit, typical of atomic magnetic mo- ments interacting with a superconductor (Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' III B).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' In both cases, we have been able to recover well-known ana- lytical results, providing important sanity checks for our theoretical results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' As a consequence of the symmetries of the Hamiltonian (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=', inversion x → −x and sz spin symmetries), it was possible to classify the solutions into even- and odd-symmetry, and with sz labels σ =↑, ↓.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' In particular, we note that the even-odd classification, aris- ing in the present case due to the inversion symmetry of the Hamiltonian, is nothing but the 1D analog of the clas- sification in angular momentum eigenstates ℓ occurring in 3D spherically-symmetric Hamiltonians [7, 25, 26].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' We have studied the subgap spectrum of ABS as a function of different parameters, namely: the length of the magnetic region (through the dimensionless parame- ter kF L), the strength of the Zeeman exchange induced by the FMI (parameter h0/∆), and the superconducting coherence length (parameter kF ξ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' We stress that each one of these parameters could in principle (directly or in- directly) be controlled in experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' However, due to its potential relevance for on-going experimental efforts, we have in particular focused our study on the evolution of the subgap spectrum as a function of the length L (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=', as it is probably the easiest parameter to vary in experi- ments), for fixed parameters kF ξ and h0/∆.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' The parame- ter L can be controlled by, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=', changing the experimen- tal growing conditions of the semiconductor nanowires using the VLS growth method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' In Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' 2 and 3 we have analyzed the evolution of the subgap spectrum in terms of the parameter kF L for different values of h0/∆ and kF ξ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Roughly speaking,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' while kF ξ controls the “semi- classical vs quantum” operation regime of the device,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' and the magnitude of the even-odd energy separation,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' the parameter h0/∆ essentially controls the energy sep- aration of the E↑ and E↓ solutions,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' eventually enabling many interesting physical phenomena such as the possi- 12 bility to observe multiple ABS crossing zero-energy,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' the existence of multiple spin- and parity-changing quantum phase transitions in the device,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' quasiparticle gap renor- malization ∆ → ∆ren = |∆ − h0| in the limit of large kF L,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content='. An important conclusion here is that in order to experimentally observe a quantum phase transition, the condition h0 > ∆ must be fulfilled.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Interpreting L as a “tunable” parameter has another theoretical advantage, as it enables to address the in- teresting fundamental question of how to connect two paradigmatic limits in SU-FM hybrid devices: the atomic limit (kF L → 0), where the physics is that of the well- known non-degenerate YSR states, and the ballistic limit (kF L ≫ 1) where the spectrum of the subgap ABS be- comes double degenerate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Until very recently, these lim- its were treated as disconnected from each other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' In Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' [32] this issue was addressed in the particular case of SU- FM-SU junctions in the limit L < ξ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Here we have revis- ited this intriguing question for a different setup where such constraint does not exist, and have studied the evo- lution of the subgap spectrum as a function of L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' The abovementioned symmetry classification into even and odd solutions is critically important to allow the inter- pretation of the degeneracy in the limit kF L → ∞ as an “even-odd degeneracy”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' At the same time, it enables to explain the degeneracy lifting in the limit L → 0, where only even states prevail in the subgap region of ener- gies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Using an approximate model of one-dimensional fermions with linearized dispersion, we have provided a simple picture where the even-odd degeneracy naturally emerges as a consequence of destructive interferences of terms e±i2kF x arising from single-particle backscattering mechanisms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' The continuous evolution of the subgap spectrum as a function of kF L allows a better understanding of previ- ous experimental STM results on atomic magnetic adsor- bates on superconducting substrates, where the subgap YSR states are usually interpreted in terms of a point-like magnetic moment [27, 37–41].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' While the delta-function limit is obviously a mathematical idealization, in terms of our model the observed YSR states can be rationalized assuming a finite value of kF L and a (more physically ap- pealing) finite value of the atomic local field h0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' This is precisely the case if we note that for magnetic impurities (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Fe, Co or Mn atoms) deposited on top of bulk metal- lic S surfaces (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=', Pb or Al), the spatial extension of the short-ranged Zeeman field can be estimated as the size of the d-shell orbitals L ∼ 1 ˚A, while the Fermi wavevector of bulk superconductors (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=', Pb) is kF ∼ 1−2×1010m−1 (see Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' [45]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' This type of adsorbate/substrate combi- nation yields a parameter kF L ∼ 1, which is within the regime where we recover observable subgap states (see Figs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' 2 and 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' On the other hand, in 1D semiconduc- tor heterostructures as those of Refs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' 20 and 21, kF is usually much smaller than in metallic superconductors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Measurements of the number of carriers from the Hall conductance RH in 2D InGaAl quantum wells [46] yield the estimated value kF ∼ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content='2 × 107m−1, three orders of magnitude smaller as compared to bulk Pb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' This much smaller value of kF allows for much larger, experimentally accessible values of L, while keeping values of h0 also within experimental reach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' All together, this combina- tion makes these hybrid materials a much more versatile platform to control the spectrum of YSR/ABS subgap states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' To characterize the quantum phase transitions occur- ring in the device, we have computed the value of the to- tal Sz using a spin version of the Friedel sum rule [see Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' (44) and also Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' [32].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' We stress that these transitions are a generalization of the well-known “0-π” transition occurring in atomic Shiba impurities [22, 47] or quantum dots coupled to superconductors [48–50].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' From this per- spective, the difference with respect to atomic systems is that instead of a single transition, actually multiple transitions can occur due to the finite extension L of the “impurity” and the many ABS states with different symmetry which can eventually cross below EF .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Inter- estingly, we stress that the ocurrence of these quantum phase transitions can be tuned varying the length L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' We now briefly address the effect of the Rashba spin- orbit interaction, which has been neglected in our work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' As mentioned previously, this interaction was neglected to simplify the theoretical description of this (already quite complex and rich) problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' This interaction can drive the system into the topological superconductor class D [51, 52], hosting Majorana zero modes at the ends (see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=', Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' 34 for a related setup), and in that case we expect qualitative changes with respect to the results presented here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Consequently our results apply to exper- imental SE-SU-FMI systems where the spin-orbit energy term ESOC = α2 Rm∗/2, with αR the Rashba parameter, is negligible compared to ∆ and h0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Finally, we consider the effect of disorder in this setup.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' This might be a relevant effect as a random disorder po- tential will eventually break the inversion symmetry of the model and might lift the predicted even-odd degen- eracy in the limit kF L ≫ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' However, we believe the energy-lifting effect might be weak in epitaxially-grown samples, where disorder is a relatively small effect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' ACKNOWLEDGMENTS This work was partially supported by CONICET un- der grant PIP 0792, UNLP under grant PID X497, and Agencia I+D+i under PICT 2017-2081, Argentina.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' AML is grateful to Liliana Arrachea for pointing out crucial bibliographic references.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' 13 [1] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Balatsky, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Vekhter, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content='-X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Zhu, Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' 78, 373 (2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' [2] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Heinrich, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Pascual, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Franke, Prog.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Surf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' 93, 1 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' [3] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Pawlak, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Hoffman, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Klinovaja, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Loss, and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Meyer, Prog.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Part.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' 107, 1 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' [4] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content='-J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Choi, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Lorente, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Wiebe, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' von Bergmann, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Otte, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Heinrich, Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' 91, 041001 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' [5] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Yu, Acta Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Sin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' 21, 75 (1965).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' [6] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Shiba, Prog.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Theor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' 40, 435 (1968).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' [7] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Rusinov, Zh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Eksp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Teor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Fiz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Pisma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Red.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' 9, 146 (1968), [JETP Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' 9, 85 (1969)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' [8] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Nadj-Perge, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Drozdov, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Bernevig, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Yazdani, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' B 88, 020407(R) (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' [9] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Klinovaja, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Stano, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Yazdani, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Loss, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' 111, 186805 (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' [10] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Li, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Chen, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Drozdov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Yazdani, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Bernevig, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' MacDonald, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' B 90, 235433 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' [11] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Nadj-Perge, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Drozdov, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Li, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Chen, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Jeon, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Seo, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' MacDonald, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Bernevig, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Yaz- dani, Science 346, 602 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' [12] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Ruby, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Pientka, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Peng, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' von Oppen, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Heinrich, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Franke, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' 115, 197204 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' [13] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Feldman, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Randeria, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Li, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Jeon, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Xie, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Wang, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Drozdov, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Andrei Bernevig, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Yaz- dani, Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' 13, 286 EP (2016), article.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' [14] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Pawlak, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Kisiel, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Klinovaja, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Meier, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Kawai, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Glatzel, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Loss, and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Meyer, npj Quantum Inf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' 2, 16035 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' [15] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Ruby, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Heinrich, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Peng, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' von Oppen, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Franke, Nano Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' 17, 4473 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' [16] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Kim, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Palacio-Morales, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Posske, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' R´ozsa, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Palot´as, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Szunyogh, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Thorwart, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Wiesen- danger, Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' 4, eaar5251 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' [17] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' J¨ack, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Xie, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Yazdani, Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' 3, 541 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' [18] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Bergeret, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Volkov, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Efetov, Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' 77, 1321 (2005).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' [19] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Eschrig, Phil.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' A 376, 20150149 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' [20] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Liu, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Vaitiek˙enas, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Mart´ı-S´anchez, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Koch, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Hart, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Cui, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Kanne, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Khan, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Tanta, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Upadhyay, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Cachaza, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Marcus, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Ar- biol, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Moler, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Krogstrup, Nano Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' 20, 456 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' [21] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Vaitiek˙enas, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Liu, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Krogstrup, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Marcus, Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' 17, 43 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' [22] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Sakurai, Prog.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Theor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' 44, 1472 (1970).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' [23] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Costa, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Fabian, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Kochan, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' B 98, 134511 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' [24] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Rusinov, Zh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Eksp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Teor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Fiz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' 56, 2047 (1969).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' [25] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Flatt´e and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Byers, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' B 56, 11213 (1997).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' [26] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Arrachea, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' B 104, 134515 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' [27] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Ji, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Zhang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content='-S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Fu, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Chen, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content='-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Ma, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Li, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Duan, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content='-F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Jia, and Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content='-K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Xue, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' 100, 226801 (2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' [28] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Ruby, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Peng, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' von Oppen, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Heinrich, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Franke, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' 117, 186801 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' [29] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content='-J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Choi, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Rubio-Verd´u, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' de Bruijckere, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Ugeda, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Lorente, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Pascual, Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' 8, 15175 (2017), article.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' [30] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Konschelle, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Bergeret, and I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Tokatly, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' 116, 237002 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' [31] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Konschelle, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Tokatly, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Bergeret, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' B 94, 014515 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' [32] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Rouco, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Tokatly, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Bergeret, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' B 99, 094514 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' [33] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Takei, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Fregoso, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content='-Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Hui, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Lobos, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Das Sarma, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' 110, 186803 (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' [34] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Sau and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Brydon, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' 115, 127003 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' [35] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Hewson, The Kondo Problem to Heavy Fermions (Cambridge University Press, Cambridge, 1993).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' [36] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Duncan and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Gy¨orffy, Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' 298, 273 (2002).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' [37] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Yazdani, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Jones, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Lutz, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Crommie, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Eigler, Science 275, 1767 (1997).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' [38] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Iavarone, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Karapetrov, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Fedor, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Rosenmann, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Nishizaki, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Kobayashi, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' : Condens.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Mat- ter 22, 015501 (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' [39] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content='-H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Ji, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Zhang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content='-S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Fu, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Chen, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content='-F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Jia, Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content='-K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Xue, and X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content='-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Ma, App.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' 96, 073113 (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' [40] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Bauer, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Pascual, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Franke, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' B 87, 075125 (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' [41] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Hatter, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Heinrich, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Ruby, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Pascual, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Franke, Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' 6, 8988 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' [42] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Landau and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Lifshitz, Quantum Mechanics: non-relativistic theory (Pergamon Press, Oxford, 1958).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' [43] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Bortolin, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Iucci, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Lobos, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' B 100, 155111 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' [44] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Giamarchi, Quantum Physics in One Dimension (Ox- ford University Press, Oxford, 2003).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' [45] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Ashcroft and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Mermin, Solid state physics (Holt, Rinehart and Winston, New York, 1976).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' [46] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Kjærgaard, Proximity Induced Superconducting Prop- erties in One and Two Dimensional Semiconductors: To- wards Topological States of Matter, Ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' thesis (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' [47] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Franke, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Schulze, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Pascual, Science 332, 940 (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' [48] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Bauer, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Oguri, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Hewson, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' : Con- dens.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Matter 19, 486211 (2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' [49] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Deacon, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Tanaka, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Oiwa, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Sakano, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Yoshida, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Shibata, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Hirakawa, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Tarucha, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' 104, 076805 (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' [50] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Lee, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Jiang, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Houzet, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Aguado, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Lieber, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' De Franceschi, Nat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Nanotechnol 9, 79 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' [51] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Altland and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Zirnbauer, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' B 55, 1142 (1997).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' [52] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Ryu, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Schnyder, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Furusaki, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Lud- wig, New J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} +page_content=' 12, 065010 (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3NE2T4oBgHgl3EQfjQer/content/2301.03967v1.pdf'} diff --git a/3tE2T4oBgHgl3EQf6AiT/vector_store/index.faiss b/3tE2T4oBgHgl3EQf6AiT/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..4bc0a15092309f96194aba39e1dd0a66d6303ef4 --- /dev/null +++ b/3tE2T4oBgHgl3EQf6AiT/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:8e61989bde6a8de23d078be9e989299362ca0c0115f79bc139928f8216dec82a +size 2293805 diff --git a/49E0T4oBgHgl3EQfvgE1/vector_store/index.pkl b/49E0T4oBgHgl3EQfvgE1/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..4fc010aceb6c58d0de3c44256025f8bd882c6054 --- /dev/null +++ b/49E0T4oBgHgl3EQfvgE1/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:695953e4fd98edb71020b54214bd2d1a6c191658430b4e3e357fb003fc089ad5 +size 797643 diff --git a/49E1T4oBgHgl3EQfAwK8/vector_store/index.faiss b/49E1T4oBgHgl3EQfAwK8/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..b1da03140f2748dba0024b9e81e0067ff5439997 --- /dev/null +++ b/49E1T4oBgHgl3EQfAwK8/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:31a1dc2d0136f8e7227dde9f0aa6d0e6db67fd2973de1126e69f34ad6203c767 +size 4980781 diff --git a/59E0T4oBgHgl3EQfewCK/content/2301.02395v1.pdf b/59E0T4oBgHgl3EQfewCK/content/2301.02395v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..f4835221e045acdccc80eabe9ddb75a19b6fdc02 --- /dev/null +++ b/59E0T4oBgHgl3EQfewCK/content/2301.02395v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:759598288656ba3837be1ff4c853c5d457833be1ef600bf855486bf956aa6b6b +size 2858073 diff --git a/59E0T4oBgHgl3EQfewCK/vector_store/index.pkl b/59E0T4oBgHgl3EQfewCK/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..58abbd44eb8b943a65436a0f419160dac4dcc64b --- /dev/null +++ b/59E0T4oBgHgl3EQfewCK/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:e5780af18254c405208ff382a6a2702f2aca827e809275f2145b858def9d1380 +size 312751 diff --git a/69AyT4oBgHgl3EQfQfbA/content/tmp_files/2301.00048v1.pdf.txt b/69AyT4oBgHgl3EQfQfbA/content/tmp_files/2301.00048v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..5b7c2501d55ab0e1d7041324f2e78d42429a1f4f --- /dev/null +++ b/69AyT4oBgHgl3EQfQfbA/content/tmp_files/2301.00048v1.pdf.txt @@ -0,0 +1,1233 @@ +On the gate-error robustness of variational quantum algorithms +Daniil Rabinovich,1 Ernesto Campos,1 Soumik Adhikary,1 Ekaterina +Pankovets,1, 2 Dmitry Vinichenko,1, 3 and Jacob Biamonte4 +1Skolkovo Institute of Science and Technology, Moscow, Russian Federation +2Moscow Institute of Physics and Technology, Moscow, Russian Federation +3Moscow Engineering Physics Institute, Moscow, Russian Federation +4Beijing Institute of Mathematical Sciences and Applications, Beijing, China +Variational algorithms are designed to work within the limitations of contemporary devices and +suffer from performance limiting errors. +Here we identify an experimentally relevant model for +gate errors, natural to variational quantum algorithms. We study how a quantum state prepared +variationally decoheres under this noise model, which manifests as a perturbation to the energy +approximation in the variational paradigm. A perturbative analysis of an optimized circuit allows +us to determine the noise threshold for which the acceptance criteria imposed by the stability +lemma remains satisfied. We benchmark the results against the variational quantum approximate +optimization algorithm for 3-SAT instances and unstructured search with up to 10 qubits and 30 +layers. Finally, we observe that errors in certain gates have a significantly smaller impact on the +quality of the prepared state. Motivated by this, we show that it is possible to reduce the execution +time of the algorithm with minimal to no impact on the performance. +I. +INTRODUCTION +Noisy Intermediate Scale Quantum (NISQ) quantum +computing [1] suffers from limited coherence times and +opeartion precision [2–5]. In practice we are severely lim- +ited by the number of qubits and circuit depths that +one may implement with reasonable fidelity. +This has +piratical implications in that it limits contemporary ex- +perimental demonstrations. A host of theoretical results +are now emerging, leading to improved understanding +of the use of random circuit sampling as the basis of a +scalable experimental violation of the extended Church- +Turing thesis [6] and on the complexity analysis of NISQ +[7]. The variational model of quantum computation is +designed to work within these practical limitations [8– +10]. More generally, the variational model is known to +be computationally universal, yet these results are highly +idealized and do not account for noise [11]. +Reminiscent of machine learning, a variational algo- +rithm makes use of a short parameterized quantum cir- +cuit, known as ansatz, in which parameters are itera- +tively tuned to minimize a cost function in a quantum-to- +classical feedback loop [12]. The cost function is typically +given in the form of the expectation of a so called prob- +lem Hamiltonian; where the ground state of the problem +Hamiltonian encodes the solution of a given problem in- +stance. Thus, by the way of cost function (energy) min- +imization, a variational algorithm attempts to approx- +imate the ground state of a given Hamiltonian. +This +strategy, however, does not provide us with a guarantee +in regards to the quality of the approximate solution, +where the latter is typically quantified as the overlap +between the state prepared by the ansatz and the true +ground state. Nevertheless, the overlap can be bounded. +It has been shown using the stability lemma that the +bounds can be directly related to the energy, thus allow- +ing us to determine the energy threshold (upper bound) +required to guarantee a fixed minimum overlap. We call +this the acceptance threshold; a state with energy below +this threshold is said to be accepted by the algorithm +[11]. +Variational algorithms by their design alleviate the ef- +fects of certain systematic limitations of NISQ devices. +Nevertheless, variational algorithms are not immune to +stochastic noise. While there exist some evidence that +variational algorithms can in fact benefit from certain +level of stochastic noise [13], in general, it is detrimental +to the performance; stochastic noise leads to decoherence +thus typically reducing solution quality. +In this paper we study the extent to which errors, in the +form of parameter alterations, affects the performance of +variational algorithms. +We analytically show that the +shift in energy varies quadratically with the strength of +noise (for small amounts of noise). We demonstrate this +numerically for variational quantum approximate opti- +misation in two common problems—3-SAT [14] and un- +structured search [15, 16]. Furthermore we also found the +performance to be more resilient to alterations in certain +parameters. With that in mind we propose avenues to +potentially improve performance and reduce the execu- +tion time of variational quantum algorithms. +II. +PRELIMINARIES +A. +Variational Quantum Approximate +Optimization +The quantum approximate optimization algorithm +(QAOA) [17], originally designed to approximately solve +combinatorial optimization problems [14, 17–28], consists +of ansatze circuits expressive enough to (in theory) emu- +late any quantum cirucuit [19, 20]. +Consider a pseudo-Boolean function C : {0, 1}×n → R, +the objective of the algorithm is to approximate a bit +string that minimizes C. To accomplish this, C is first +arXiv:2301.00048v1 [quant-ph] 30 Dec 2022 + +2 +encoded as a problem Hamiltonian H, diagonal in the +computational basis. The ground state H encodes the +solution to the problem; in other words QAOA searches +for a solution |g⟩ such that ⟨g|H|g⟩ = min H. +The algorithm begins with an ansatz state |ψp(γ, β)⟩— +prepared by a circuit of depth p — parameterized as: +|ψp(γ, β)⟩ = +p +� +k=1 +e−iβkHxe−iγkH |+⟩⊗n , +(1) +with real parameters γk ∈ [0, 2π), βk ∈ [0, π). +Here +Hx = �n +j=1 Xj is the standard one-body mixer Hamil- +tonian with Pauli matrix Xj applied to the j-th qubit. +The cost function is given by the expectation of the prob- +lem Hamiltonian with respect to the ansatz state. The +algorith minimizes this cost function to output: +E∗ = minγ,β ⟨ψp(γ, β)| H |ψp(γ, β)⟩ +(2) +γ∗, β∗ ∈ arg minγ,β ⟨ψp(γ, β)| H |ψp(γ, β)⟩ +(3) +Here, |ψp(γ∗, β∗)⟩ is the approximate ground state of +H and hence the approximate solution to C. Indeed, the +quality of the approximation, quantified as the overlap +between the true solution and the approximate solution, +is not known a priori from (2). +Nevertheless one can +establish bounds on this quantity using the so called sta- +bility lemma. +B. +Stability lemma +The stability lemma states that if |g⟩ is the true ground +state of H with energy Eg and ∆ is the spectral gap +(the difference between the ground state energy and the +energy of the first excited state) the following relation +holds [11, 29]: +1 − E∗ − Eg +∆ +≤ |⟨ψp(γ∗, β∗)|g⟩|2 ≤ 1 − E∗ − Eg +Em − Eg +(4) +where Em is the maximum eigenvalue of H. +Thus to +guarantee a non-trivial overlap one must ensure that +E∗ ≤ Eg + ∆. We call the latter the acceptance con- +dition. +III. +VARIATIONAL QUANTUM ALGORITHMS +IN THE PRESENCE OF REALISTIC GATE +ERRORS +Implementation of unitary operations depends signif- +icantly on the considered hardware. However, typically +the implementation makes use of electromagnetic pulses, +such as in superconducting quantum computers [30, 31], +neutral atom based quantum computers [32, 33], and +trapped ion based quantum computers [34, 35]. +Such +pulses can change the population of the energy levels +that constitute a qubit or introduce phases to the quan- +tum amplitudes, thus controlling the state of the qubits. +Consequently, the main contribution to gate errors comes +from variation in pulse shaping, meaning that amplitude +and timing of electromagnetic pulse can stochasticaly +vary. +In certain experimental setups, such as ground +state ion qubits, where entangling operations are per- +formed using the radial phonon modes [36], the variabil- +ity in pulse shaping is the main source of gate errors. +Angles of rotation in a typical gate operation depend +on time averaged intensity I(t) of the electromagnetic +pulse; θ ∝ +� +I(t)dt. Thus, variations in the pulse shap- +ing lead to stochastic deviations of the angles of rota- +tions from the desired values. In other words, if a cir- +cuit is composed of the parameterised gates {Uk(θk)}k; +θ ∈ [0, 2π) and one tries to prepare a state |ψ(θ)⟩ = +� +k Uk(θk) |ψ0⟩, a different state +|ψ(θ + δθ)⟩ = +� +k +U(θk + δθk) |ψ0⟩ , +(5) +is prepared instead due to the presence of errors. No- +tice here that the perturbation δθ to the parameters is +stochastic and is sampled with a certain probability den- +sity p(δθ). This implies that the prepared state can be +described by an ensemble {|ψ(θ + δθ)⟩ , p(δθ)}, which we +can equivalently view as a density matrix +ρ(θ) = +� +|ψ(θ + δθ)⟩⟨ψ(θ + δθ)|p(δθ)d(δθ). +(6) +Eq. (6) represents a noise model native to the vari- +ational paradigm of quantum computing. For the rest +of this paper we systematically study the effect of this +noise model on the performance of QAOA for instances +of 3-SAT and the unstructured search problem (see ap- +pendix A for more details on the considered problems). +In particular we study the energy perturbation around +E∗ in different scenarios subsequently recovering the +strength of noise under which the acceptance condition +continues to be satisfied. +IV. +RESULTS +A. +Perturbative analysis in presence of gate errors +Consider a problem Hamiltonian H and a variational +ansatz |ψ(θ)⟩ = U1(θ1) . . . Uq(θq) |ψ0⟩ used to mini- +mize H. Here the gates Uk(θk) have the form: +Uk(θk) = eiAkθk, A2 +k = 1, +(7) +A typical example of such an ansatz is the checkerboard +ansatz, with Mølmer-Sørensen (MS) gates as the entan- +gling two qubit gates. Nevertheless, any quantum circuit +can admit a decomposition in terms of operations that +satisfy (7); this adds generality to this assumption. + +3 +In the presence of gate errors the prepared quantum +state decoheres as |ψ(θ)⟩ → ρ(θ) as per (6). To obtain +the analytic form of ρ(θ) we first note that +Uk(θk + δθk) = Uk(θk)Uk(δθk) += cos δθkUk(θk) + sin δθkUk +� +θk + π +2 +� +. +(8) +This follows directly from (7). Therefore we get: +|ψ(θ + δθ)⟩⟨ψ(θ + δθ)| = +1 +� +k1,...,kq,m1,...,mq=0 +(cos2 δθ1 tank1+m1 δθ1) . . . (cos2 δθq tankq+mq δθq)|ψk1...kq⟩⟨ψm1...mq|, (9) +where +|ψk1...kq⟩ = U1(θ1 + k1 +π +2 ) . . . Uq(θq + kq +π +2 ) |ψ0⟩ . +(10) +Here we make three realistic assumptions—(a) pertur- +bations to all the angles are independent, (b) average +perturbation ⟨δθk⟩ = 0 and (c) the distribution p(δθk) +vanishes quickly outside the range (−σk, σk); that is, the +error is localized on the scale σk ≪ 1. Note that if as- +sumption (b) does not hold, one can always shift the +parameters as θ → θ + ⟨δθ⟩. +Substituting (9) in (6) we arrive at the expression: +ρ(θ) = |ψ(θ)⟩⟨ψ(θ)| + δρ, +(11) +where +δρ ≈ − +q +� +k=1 +ak|ψ(θ)⟩⟨ψ(θ)|+ +q +� +k=1 +ak|ψk⟩⟨ψk|+o(σ2 +k). (12) +Here |ψk⟩ = |ψ00...1...00⟩ with 1 placed in the k-th posi- +tion, and +ak ≡ ⟨sin2 δθk⟩ = +� +sin2 δθkp(δθk)d(δθk) ∼ σ2 +k. +(13) +Notice that the derivation above does not require θ to +be a minimum of the noiseless cost function. +Let us +now assume that θ∗ is a vector of parameters such that +|ψ(θ∗)⟩ approximates the ground state of H. The noise +induced energy perturbation around the optimal energy +E∗ is given as: +δE = Tr(ρ(θ∗)H) − ⟨ψ(θ∗)| H |ψ(θ∗)⟩ +≤ (Em − E∗) +� +k +ak. +(14) +For the simplest case where each parameter is sampled +from the same distribution (σk = σ) we can roughly es- +timate: +δE ≤ qσ2(Em − E∗). +(15) +Thus, requesting an energy threshold E ≤ Eg + ∆, we +conclude that for σ <∼ +� +∆ − (E∗ − Eg) +q(Em − E∗) +the acceptance +condition is still satisfied. +While our perturbative analysis holds for all varia- +tional algorithms, we substantiate our findings numer- +ically using QAOA. In particular we solve instances of +3-SAT and unstructured search problems to study the +behaviour of energy perturbation around E∗ caused by +the presence of gate errors. +1. +Constant perturbation +We begin with a simplified version of the noise model +proposed in (6). We ran QAOA for 100 uniformly gen- +erated 3-SAT instances of 6,8, and 10 variables with 26, +34 and 42 clauses respectively. +All the instances were +selected to have a unique satisfying assignment. The in- +stances were minimized by QAOA sequences of 15, 25 +and 30 layers respectively in order to obtain expected +values well below the energy gap. In order to numeri- +cally verify the behaviour of the energy perturbation, we +vary all optimal parameters by a constant angle δ. Fig- +ure 1 illustrates the shift in the energy for the minimized +instances, which can be seen to have a quadratic depen- +dence of the perturbed energy δE with respect to the +shift δ. This is natural to expect since the parameters +deviate from the local minimum, where linear contribu- +tion must have vanished (a rigorous expression showing +the quadratic behavior is derived in appendix B). +Similar to the case of 3-SAT, for the problem of un- +structured search we perturb optimal parameters of the +circuit by an angle δ and plot corresponding energy in +Fig. 2. Again, as expected, for small values of δ the en- +ergy perturbation is quadratic which comes from the fact +that the deviation happens around the minimum. + +4 +0.0000 +0.0025 +0.0050 +0.0075 +0.0100 +0.0125 +0.0150 +0.0175 +0.0200 +δ +−0.02 +0.00 +0.02 +0.04 +0.06 +0.08 +0.10 +0.12 +δE +6.0 qubits +71.8δ2 +8.0 qubits +160.5δ2 +10.0 qubits +250.3δ2 +FIG. 1. Energy shift obtained by perturbing the ansatz state +as |ψp(γ∗ + δ, β∗ + δ)⟩. The curves illustrate averages over +100 uniformly generated 3-SAT instances of 6, 8 and 10 qubits +with clause to variable ratio of 4.2 and unique satisfying as- +signment. The error bars depict standard error. Polynomial +fits of data indicates δ ∈ [0, 0.02] follow quadratic curves. +0.00 +0.01 +0.02 +0.03 +0.04 +0.05 +0.06 +0.07 +0.08 +δ +0.0 +0.2 +0.4 +0.6 +0.8 +1.0 +δE +6 qubits +208.9δ2 +8 qubits +1228.4δ2 +10 qubits +4664.2δ2 +FIG. 2. +Energy shift for the problem of unstructured +search +obtained +by +perturbing +of +the +ansatz +state +as +|ψp(γ∗ + δ, β∗ + δ)⟩. +Polynomial fits for data points of 6, +8 and 10 qubits follow quadratic curves in the ranges δ ∈ +[0, 0.02], [0, 0.01], [0, 0.008] respectively. +2. +Stochastic perturbation +We now consider the complete noise model in (6) and +verify our analytical prediction as shown in (15). +For +each 3-SAT instance, we randomly sample perturbations +δ to each of the gates from a uniform distribution on the +interval (−σ, σ) and average the obtained energy. Then +we average energies over instances of the same number +of qubits as depicted in Fig. 3. It is seen that for small +values of σ the behaviour is quadratic as per (15). It is +seen, that the value σ ∼ 0.075 could never violate the +acceptance criteria, as corresponding energy error never +exceeds the gap ∆ ≥ 1. For smaller number of qubits +and gates the threshold value of σ increases. +For unstructured search, we average the energy over +δ sampled for each gate from the uniform distribution +0.00 +0.05 +0.10 +0.15 +0.20 +0.25 +0.30 +0.35 +0.40 +σ +0 +1 +2 +3 +4 +5 +δE +6.0 qubits +61.0σ2 +8.0 qubits +118.5σ2 +10.0 qubits +172.8σ2 +FIG. 3. Average energy shift of 100 uniformly generated 3- +SAT instances of 6, 8 and 10 qubits with clause to variable +ratio of 4.2 and unique satisfying assignment. The shifts are +obtained by the perturbation of γ∗, β∗ by δ uniformly sam- +pled from the range (−σ, σ). Error bars depict standard error. +Polynomial fits of data indicates σ ∈ [0, 0.1] follow quadratic +curves. +(−σ, σ). We again recover quadratic behaviour in σ, as +depicted in Fig. 4. +It is seen that the same threshold +σ ∼ 0.075 now increases energy by no more then 0.6, +which guaranties 40% overlap with the target state. +0.00 +0.04 +0.08 +0.12 +0.16 +0.20 +0.24 +0.28 +σ +0.0 +0.2 +0.4 +0.6 +0.8 +1.0 +δE +6 qubits +21.4σ2 +8 qubits +60.3σ2 +10 qubits +133.2σ2 +FIG. 4. +Average energy for the problem of unstructured +search obtained by the perturbation of γ∗, β∗ by δ uni- +formly sampled from the range (−σ, σ). +Error bars de- +pict standard error. +Polynomial fits of data points of 6, +8 and 10 qubits follow quadratic curves in the ranges σ ∈ +[0, 0.1], [0, 0.07], [0, 0.05], respectively. +B. +Perturbation to individual parameters +Here we consider a modified version of (6), where pa- +rameters are perturbed one at a time while the rest are +kept intact. Effect of this model on the energy is illus- +trated in Figures 5 and 6. The results are numerical and +are yet to be explained analytically. We observe that per- +turbations to certain angles have a significantly smaller + +5 +tbh +γ +β +n = 6 +p = 8 +1 +2 +3 +4 +5 +6 +7 +8 +k +0.0105 +0.0110 +0.0115 +0.0120 +0.0125 +⟨H⟩ +δ=0.0 +δ=0.02 +δ=0.05 +δ=0.08 +δ=0.1 +1 +2 +3 +4 +5 +6 +7 +8 +k +0.02 +0.04 +0.06 +0.08 +0.10 +0.12 +⟨H⟩ +δ=0.0 +δ=0.02 +δ=0.05 +δ=0.08 +δ=0.1 +n = 8 +p = 15 +2 +4 +6 +8 +10 +12 +14 +k +0.0190 +0.0195 +0.0200 +0.0205 +0.0210 +⟨H⟩ +δ=0.0 +δ=0.02 +δ=0.05 +δ=0.08 +δ=0.1 +2 +4 +6 +8 +10 +12 +14 +k +0.05 +0.10 +0.15 +0.20 +⟨H⟩ +δ=0.0 +δ=0.02 +δ=0.05 +δ=0.08 +δ=0.1 +n = 10 +p = 25 +0 +3 +6 +9 +12 +15 +18 +21 +24 +k +0.0850 +0.0855 +0.0860 +0.0865 +0.0870 +⟨H⟩ +δ=0.0 +δ=0.02 +δ=0.05 +δ=0.08 +δ=0.1 +0 +3 +6 +9 +12 +15 +18 +21 +24 +k +0.10 +0.15 +0.20 +0.25 +0.30 +⟨H⟩ +δ=0.0 +δ=0.02 +δ=0.05 +δ=0.08 +δ=0.1 +FIG. 5. Energy ⟨H⟩ = ⟨ψ(θ∗ + δθ)| H |ψ(θ∗ + δθ)⟩ from the unstructured search problem, where βk (right column) or γk (left +column), from the k-th layer, are perturbed. +effect on the energy. +Thus we can infer that reducing +the value of such angles would not have a significant ef- +fect on performance but will reduce the execution time of +the algorithm, that is texec = �p +k=1 βk + γk. Conversely, +we could limit the execution time as texec ≤ tmax and +increase the number of layers, since +min ⟨ψp| H |ψp⟩ ≥ min ⟨ψp+1| H |ψp+1⟩ +(16) +for the same tmax. +Reducing the execution time is important to quantum +algorithms, since variational parameters are proportional +to the time required to execute a gate experimentally. +NISQ era devices suffers from limited coherence, thus +reducing execution times can lead to more efficient hard- +ware utilization [37, 38]. We test these ideas in the setting +of unstructured search, as depicted in Fig. 7. Here we +show the optimized QAOA energies for 6 qubits at mul- +tiple depths with execution time limited to tmax. The +highlighted green and orange rectangles depict the two +groups of optimal angles that minimize the energy at +each depth, as presented in [15]. Green rectangles also +indicate the depth and texec at which an ansatz will not +be able to decrease its energy by either increasing depth +or tmax. Following the observations of Fig. 5, by slightly +reducing tmax the optimizer will reduce the parameters +to which the energy is less sensitive. This results in a + +6 +γ +β +n = 6 +p = 15 +2 +4 +6 +8 +10 +12 +14 +k +0.08 +0.10 +0.12 +0.14 +⟨H⟩ +δ = 0.0 +δ = 0.02 +δ = 0.05 +δ = 0.08 +δ = 0.1 +2 +4 +6 +8 +10 +12 +14 +k +0.075 +0.100 +0.125 +0.150 +0.175 +0.200 +⟨H⟩ +δ = 0.0 +δ = 0.02 +δ = 0.05 +δ = 0.08 +δ = 0.1 +n = 8 +p = 25 +0 +3 +6 +9 +12 +15 +18 +21 +24 +k +0.08 +0.10 +0.12 +0.14 +0.16 +⟨H⟩ +δ = 0.0 +δ = 0.02 +δ = 0.05 +δ = 0.08 +δ = 0.1 +0 +3 +6 +9 +12 +15 +18 +21 +24 +k +0.10 +0.15 +0.20 +0.25 +⟨H⟩ +δ = 0.0 +δ = 0.02 +δ = 0.05 +δ = 0.08 +δ = 0.1 +n = 10 +p = 30 +0 +4 +8 +12 +16 +20 +24 +28 +k +0.10 +0.12 +0.14 +0.16 +0.18 +0.20 +⟨H⟩ +δ = 0.0 +δ = 0.02 +δ = 0.05 +δ = 0.08 +δ = 0.1 +0 +4 +8 +12 +16 +20 +24 +28 +k +0.10 +0.15 +0.20 +0.25 +0.30 +⟨H⟩ +δ = 0.0 +δ = 0.02 +δ = 0.05 +δ = 0.08 +δ = 0.1 +FIG. 6. +Average energy ⟨H⟩ = ⟨ψ(θ∗ + δθ)| H |ψ(θ∗ + δθ)⟩ of 100 uniformly generated 3-SAT instances where βk (right +column) or γk (left column), from the k-th layer, are perturbed. The instances are of 6, 8 and 10 qubits with clause to variable +ratio of 4.2 and unique satisfying assignment. +slight energy increase as illustrated in Fig. 7 where to +the left of the green rectangles we can observe darkening +gradients. +By contrast, orange rectangles highlight longer execu- +tion times corresponding to different sets of angles that +also minimize the energy for a given number of layers. +Therefore if the optimization routine finds the a solu- +tion corresponding to the orange rectangle, setting tmax +to be slightly less than the texec of the orange rectangle +will lead the optimizer to find angles corresponding to +the green rectangle. This will amount to a considerable +reduction in execution time. +Alternatively increasing the number of layers while +keeping tmax will reduce the energy. In general, for an +arbitrary problem Hamiltonian we can not be sure if our +optimization has returned the ideal set of angles (green +ones in our example). For this reason, the best strategy +would be to reduce tmax or increase depth while fixing +tmax until performance stagnates. +V. +DISCUSSION +In this study we considered a realistic noise model— +one where the variational gate parameters are stochasti- +cally perturbed—and demonstrated its effect on the per- + +7 +4.1 +6.1 +8.1 +10.1 +12.1 +14.1 +16.1 +18.1 +20.1 +22.1 +24.1 +26.1 +28.1 +30.1 +32.1 +34.1 +36.1 +38.1 +40.0 +42.0 +max execution time tmax +8 +7 +6 +5 +4 +3 +2 +1 +depth p +energy +0.2 +0.4 +0.6 +0.8 +FIG. 7. Expected value for multiple combinations of depth for maximum execution times. Green and orange rectangles depict +the two branches of angles that minimize expectation value for a given depth. +formance of variational algorithms. +Using a perturba- +tive analysis we showed that the change in energy δE +(from optimised energy E∗), caused due to the pres- +ence of the considered gate errors, behaves quadratically +with respect to the angle perturbations for small values +of the perturbations. This allows us to establish upper +bounds on the amount of perturbation such that the ac- +ceptance condition continues to be satisfied. This guar- +antees a fixed overlap between the target sate and the +state prepared by the noisy variational circuit. We con- +firm our analytical findings numerically in QAOA for two +common problems—3-SAT and unstructured search, us- +ing different modifications of the considered noise model. +Moreover we observed form our numerical results that +the algorithmic performance is more resilient to pertur- +bations of certain variational parameters. Motivated by +this observation we demonstrated that performance of +QAOA with a total execution time texec = � +k γk + βk +is stable if retrained with a maximum execution time +tmax = texec ± ϵ for ϵ ≪ texec. We also show that in +some cases (a) reduction in tmax can lead to dramatic +reductions in texec, and (b) increasing depth while fixing +texec can lead to an energy reduction. +While our study is primarily focused on energy pertur- +bations around the noiseless optimum θ∗, in practice one +has to train in the presence of noise. This would change +optimal angles θ∗ → θ∗ + δθ∗, where shift δθ∗ increases +with increase of the strength of the noise. Nevertheless, +using perturbation theory around the noiseless optimum +one can estimate δθ∗ = O(σ2), and the corresponding +change in the energy is Tr(ρ(θ∗+δθ∗)H)−Tr(ρ(θ∗)H) = +O(σ4). Therefore, working in the regime of weak noise +one can safely use noiseless optimum θ∗. See appendix +C for detailed calculation. +VI. +ACKNOWLEDGEMENT +* D.R., E.C., S.A., E.P., D.V. acknowledge support +from the research project, Leading Research Center on +Quantum Computing (agreement No. 014/20). +[1] John Preskill. Quantum computing in the nisq era and +beyond. Quantum, 2:79, 2018. +[2] Johannes Weidenfeller, Lucia C Valor, Julien Gacon, +Caroline Tornow, Luciano Bello, Stefan Woerner, and +Daniel J Egger. +Scaling of the quantum approximate +optimization algorithm on superconducting qubit based +hardware. arXiv preprint arXiv:2202.03459, 2022. +[3] Alexander K Ratcliffe, Richard L Taylor, Joseph J Hope, +and Andr´e RR Carvalho. Scaling trapped ion quantum +computers using fast gates and microtraps. Physical Re- +view Letters, 120(22):220501, 2018. +[4] Swathi S Hegde, Jingfu Zhang, and Dieter Suter. Toward +the speed limit of high-fidelity two-qubit gates. Physical +Review Letters, 128(23):230502, 2022. +[5] Adam R Mills, Charles R Guinn, Michael J Gullans, An- +thony J Sigillito, Mayer M Feldman, Erik Nielsen, and +Jason R Petta. +Two-qubit silicon quantum processor +with operation fidelity exceeding 99%. Science Advances, +8(14):eabn5130, 2022. +[6] Dorit Aharonov, Xun Gao, Zeph Landau, Yunchao Liu, +and Umesh Vazirani. A polynomial-time classical algo- +rithm for noisy random circuit sampling. arXiv e-prints, +page arXiv:2211.03999, November 2022. +[7] Sitan Chen, Jordan Cotler, Hsin-Yuan Huang, and Jerry +Li. +The Complexity of NISQ. +arXiv e-prints, page +arXiv:2210.07234, October 2022. +[8] Abhinav Kandala, Antonio Mezzacapo, Kristan Temme, +Maika Takita, +Markus Brink, +Jerry M Chow, +and +Jay M Gambetta. Hardware-efficient variational quan- +tum eigensolver for small molecules and quantum mag- +nets. Nature, 549(7671):242–246, 2017. + +8 +[9] Daniil Rabinovich, Soumik Adhikary, Ernesto Campos, +Vishwanathan Akshay, Evgeny Anikin, Richik Sengupta, +Olga Lakhmanskaya, Kirill Lakhmanskiy, and Jacob Bi- +amonte. Ion-native variational ansatz for quantum ap- +proximate optimization. Phys. Rev. A, 106:032418, Sep +2022. +[10] Guido +Pagano, +Aniruddha +Bapat, +Patrick +Becker, +Katherine S Collins, Arinjoy De, Paul W Hess, Harvey B +Kaplan, Antonis Kyprianidis, Wen Lin Tan, Christopher +Baldwin, et al. Quantum approximate optimization of +the long-range ising model with a trapped-ion quantum +simulator. Proceedings of the National Academy of Sci- +ences, 117(41):25396–25401, 2020. +[11] Jacob Biamonte. Universal variational quantum compu- +tation. Physical Review A, 103(3):L030401, 2021. +[12] Marco Cerezo, Andrew Arrasmith, Ryan Babbush, Si- +mon C Benjamin, Suguru Endo, Keisuke Fujii, Jarrod R +McClean, Kosuke Mitarai, Xiao Yuan, Lukasz Cincio, +et al. Variational quantum algorithms. Nature Reviews +Physics, 3(9):625–644, 2021. +[13] E Campos, D Rabinovich, V Akshay, and J Biamonte. +Training saturation in layerwise quantum approximate +optimisation. (Letter) Physical Review A, 104:L030401, +2021. +[14] V. Akshay, H. Philathong, M. E.S. Morales, and J. D. Bi- +amonte. Reachability Deficits in Quantum Approximate +Optimization. +Physical Review Letters, 124(9):090504, +Mar 2020. +[15] Vishwanathan Akshay, Daniil Rabinovich, Ernesto Cam- +pos, and Jacob Biamonte. Parameter concentrations in +quantum approximate optimization. Physical Review A, +104(1):L010401, 2021. +[16] Lov K Grover. +A fast quantum mechanical algorithm +for database search. In Proceedings of the twenty-eighth +annual ACM symposium on Theory of computing, pages +212–219, 1996. +[17] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. +A quantum approximate optimization algorithm. arXiv +preprint arXiv:1411.4028, 2014. +[18] Murphy Yuezhen Niu, Sirui Lu, and Isaac L Chuang. Op- +timizing qaoa: Success probability and runtime depen- +dence on circuit depth. arXiv preprint arXiv:1905.12134, +May 2019. +[19] Seth Lloyd. Quantum approximate optimization is com- +putationally universal. arXiv preprint arXiv:1812.11075, +2018. +[20] Mauro ES Morales, Jacob D Biamonte, and Zolt´an Zim- +bor´as. On the universality of the quantum approximate +optimization algorithm. Quantum Information Process- +ing, 19(9):1–26, 2020. +[21] Leo Zhou, Sheng-Tao Wang, Soonwon Choi, Hannes +Pichler, and Mikhail D. Lukin. Quantum approximate +optimization algorithm: Performance, mechanism, and +implementation on near-term devices. +Phys. Rev. X, +10:021067, Jun 2020. +[22] Zhihui Wang, Nicholas C Rubin, Jason M Dominy, and +Eleanor G Rieffel. X y mixers: Analytical and numeri- +cal results for the quantum alternating operator ansatz. +Physical Review A, 101(1):012320, 2020. +[23] Lucas T. Brady, Christopher L. Baldwin, Aniruddha Ba- +pat, Yaroslav Kharkov, and Alexey V. Gorshkov. Opti- +mal Protocols in Quantum Annealing and Quantum Ap- +proximate Optimization Algorithm Problems. Physical +Review Letters, 126(7):070505, Feb 2021. +[24] Edward +Farhi +and +Aram +W +Harrow. +Quantum +supremacy through the quantum approximate optimiza- +tion algorithm. arXiv preprint arXiv:1602.07674, 2016. +[25] Edward Farhi, Jeffrey Goldstone, Sam Gutmann, and +Leo Zhou. The quantum approximate optimization algo- +rithm and the sherrington-kirkpatrick model at infinite +size. arXiv preprint arXiv:1910.08187, Oct 2019. +[26] Matteo M Wauters, Glen Bigan Mbeng, and Giuseppe E +Santoro. +Polynomial scaling of qaoa for ground-state +preparation of the fully-connected p-spin ferromagnet. +arXiv preprint arXiv:2003.07419, 2020. +[27] Jahan Claes and Wim van Dam. Instance independence +of single layer quantum approximate optimization al- +gorithm on mixed-spin models at infinite size. +arXiv +preprint arXiv:2102.12043, 2021. +[28] Leo Zhou, Sheng-Tao Wang, Soonwon Choi, Hannes +Pichler, and Mikhail D. Lukin. Quantum approximate +optimization algorithm: Performance, mechanism, and +implementation on near-term devices. +Phys. Rev. X, +10:021067, Jun 2020. +[29] Vishwanathan Akshay, H Philathong, E Campos, Daniil +Rabinovich, Igor Zacharov, Xiao-Ming Zhang, and J Bi- +amonte. On circuit depth scaling for quantum approx- +imate optimization. +arXiv preprint arXiv:2205.01698, +2022. +[30] John Clarke and Frank K Wilhelm. +Superconducting +quantum bits. Nature, 453(7198):1031–1042, 2008. +[31] Jay M Gambetta, Jerry M Chow, and Matthias Steffen. +Building logical qubits in a superconducting quantum +computing system. npj quantum information, 3(1):1–7, +2017. +[32] L. V. Gerasimov, R. R. Yusupov, A. D. Moiseevsky, +I. Vybornyi, K. S. Tikhonov, S. P. Kulik, S. S. Straupe, +C. I. Sukenik, and D. V. Kupriyanov. Coupled dynamics +of spin qubits in optical dipole microtraps. 2022. +[33] M. Morgado and S. Whitlock. Quantum simulation and +computing with rydberg-interacting qubits. AVS Quan- +tum Science, 3(2):023501, 2021. +[34] Guido Pagano, A Bapat, P Becker, KS Collins, A De, +PW Hess, HB Kaplan, A Kyprianidis, WL Tan, C Bald- +win, et al. +Quantum approximate optimization of the +long-range ising model with a trapped-ion quantum sim- +ulator. arXiv preprint arXiv:1906.02700, 2019. +[35] J. Zhang, G. Pagano, P. W. Hess, A. Kyprianidis, +P. Becker, H. Kaplan, A. V. Gorshkov, Z.-X. Gong, +and C. Monroe. Observation of a many-body dynami- +cal phase transition with a 53-qubit quantum simulator. +Nature, 551(7682):601–604, 2017. +[36] Laird Nicholas Egan. Scaling Quantum Computers with +Long Chains of Trapped Ions. PhD thesis, University of +Maryland, College Park, 2021. +[37] Zhi-Cheng Yang, +Armin Rahmani, +Alireza Shabani, +Hartmut Neven, and Claudio Chamon. Optimizing vari- +ational quantum algorithms using pontryagin’s minimum +principle. Physical Review X, 7(2):021027, 2017. +[38] Mohannad +Ibrahim, +Hamed +Mohammadbagherpoor, +Cynthia Rios, Nicholas T Bronn, and Gregory T Byrd. +Pulse-level optimization of parameterized quantum cir- +cuits for variational quantum algorithms. arXiv preprint +arXiv:2211.00350, 2022. + +9 +Appendix A: 3-SAT and unstructured search +problems +1. +3-SAT +Boolean satifyability, or SAT, is the problem of deter- +mining weather a boolean formula written in conjunctive +normal form (CNF) is satisfiable. It is possible to map +any SAT instance via Karp reduction into 3-SAT, which +are restricted to 3 literals per clause. +In order to ap- +proximate solutions to SAT we embed the instance into +a Hamiltonian as +HSAT = +� +j +P(j), +(A1) +where j indexes clauses of an instance, and P(j) is the +tensor product of projectors that penalizes bit string as- +signments that do not satisfy the j-th clause. +2. +Unstructured search +Consider an unstructured database S indexed by j ∈ +{0, 1}×n. Let f : {0, 1}×n → {0, 1} be a Boolean function +(a.k.a. black box) such that: +f(j) = +� +1 +iff j = t +0 +otherwise. +(A2) +The task is to find t ∈ {0, 1}×n. The corresponding prob- +lem Hamiltonian for QAOA is +Ht = 1 − |t⟩⟨t|, +(A3) +thus the expected value is given by +⟨H⟩ = 1 − |⟨t|ψp(γ, β)⟩|2. +(A4) +QAOA performance for unstructured search is not sen- +sitive to the particular target state |t⟩ in the computa- +tional basis. For any target state |t⟩ representing a binary +string, there is a U = U † composed of X and 1 opera- +tors such that U |0⟩⊗n = |t⟩. The overlap of an arbitrary +state prepared by a QAOA sequence with |t⟩ is then: +⟨t|ψp(γ, β)⟩ = ⟨t| +p +� +k=1 +e−iβkHxe−iγk|t⟩⟨t| |+⟩⊗n += ⟨0|⊗n U +p +� +k=1 +e−iβkHxe−iγkU(|0⟩⟨0|)⊗nU |+⟩⊗n += ⟨0|⊗n U +p +� +k=1 +e−iβkHxUe−iγk(|0⟩⟨0|)⊗nU |+⟩⊗n += ⟨0|⊗n +p +� +k=1 +e−iβkHxe−iγk(|0⟩⟨0|)⊗n |+⟩⊗n , +which is independent on t. +Appendix B: Energy variation in presence of +constant perturbations to gate parameters +Using (9) one can calculate perturbation to the energy +caused by a shift of the optimal angles by a constant δθ +as +δE = ⟨ψ(θ∗ + δθ)| H |ψ(θ∗ + δθ)⟩ − ⟨ψ(θ∗)| H |ψ(θ∗)⟩ += − +q +� +k=1 +δθ2 +kE∗ + +q +� +m̸=k +δθkδθm(⟨ψ(θ∗)| H |ψkm⟩ + h.c.) ++ +q +� +m,k +δθkδθk ⟨ψm| H |ψk⟩ + o(δθkδθm) += 1 +2(δθ)T Hδθ + o(δθkδθm), +(B1) +where |ψmk⟩ = |ψ0...1...1...0⟩ with 1 placed only at m-th +and k-th positions. H is the Hessian of the energy at +noiseless optimum, Hij = +∂2 +∂θi∂θj +⟨ψ(θ)| H |ψ(θ)⟩ |θ=θ∗. +Here we use the fact that at the optimal position linear +contribution to the cost function necessarily vanishes. It +is seen now that for the constant perturbation δθk = δ +the energy changes as δE ∝ δ2. +Appendix C: Optimal parameters variation in the +presence of noise +Let us use expressions (11) and (12) to estimate change +in the energy if one accounts for shift of optimal param- +eters θ∗ → θ∗ + δθ∗: +Tr(ρ(θ∗ + δθ∗)H) = (1 − +q +� +k=1 +ak) ⟨ψ(θ∗ + δθ∗)| H |ψ(θ∗ + δθ∗)⟩ + +q +� +k=1 +ak ⟨ψk(θ∗ + δθ∗)| H |ψk(θ∗ + δθ∗)⟩ + o(σ2 +k) +(C1) +We introduce gradients of the noisy terms Bk += +∂ +∂θ ⟨ψk(θ)| H |ψk(θ)⟩ |θ=θ∗. Notice that gradients of the + +10 +noiseless function ⟨ψ(θ)| H |ψ(θ)⟩ vanish at optimum. +Then, +Tr(ρ(θ∗ + δθ∗)H) ≈ (1 − +q +� +k=1 +ak)E∗ + 1 +2(δθ∗)T Hδθ∗ ++ +q +� +k=1 +ak[⟨ψk(θ∗)| H |ψk(θ∗)⟩ + (δθ∗)T Bk]. +(C2) +Minimizing it with respect to δθ∗ one gets δθ∗ = +�q +k=1 akH−1Bk. Thus, if we account for the change of +optimal parameters in the presence of noise, the energy +shifts by +Tr(ρ(θ∗ + δθ∗)H) − Tr(ρ(θ∗)H) ≈ +(δθ∗)T Hδθ∗ + +q +� +k=1 +ak(δθ∗)T Bk = O(σ4). +(C3) + diff --git a/69AyT4oBgHgl3EQfQfbA/content/tmp_files/load_file.txt b/69AyT4oBgHgl3EQfQfbA/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..bcc250a2e037f4846657ef5682b4159864c1634f --- /dev/null +++ b/69AyT4oBgHgl3EQfQfbA/content/tmp_files/load_file.txt @@ -0,0 +1,674 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf,len=673 +page_content='On the gate-error robustness of variational quantum algorithms Daniil Rabinovich,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='1 Ernesto Campos,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='1 Soumik Adhikary,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='1 Ekaterina Pankovets,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' 2 Dmitry Vinichenko,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' 3 and Jacob Biamonte4 1Skolkovo Institute of Science and Technology,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Moscow,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Russian Federation 2Moscow Institute of Physics and Technology,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Moscow,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Russian Federation 3Moscow Engineering Physics Institute,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Moscow,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Russian Federation 4Beijing Institute of Mathematical Sciences and Applications,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Beijing,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' China Variational algorithms are designed to work within the limitations of contemporary devices and suffer from performance limiting errors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Here we identify an experimentally relevant model for gate errors, natural to variational quantum algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' We study how a quantum state prepared variationally decoheres under this noise model, which manifests as a perturbation to the energy approximation in the variational paradigm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' A perturbative analysis of an optimized circuit allows us to determine the noise threshold for which the acceptance criteria imposed by the stability lemma remains satisfied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' We benchmark the results against the variational quantum approximate optimization algorithm for 3-SAT instances and unstructured search with up to 10 qubits and 30 layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Finally, we observe that errors in certain gates have a significantly smaller impact on the quality of the prepared state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Motivated by this, we show that it is possible to reduce the execution time of the algorithm with minimal to no impact on the performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' INTRODUCTION Noisy Intermediate Scale Quantum (NISQ) quantum computing [1] suffers from limited coherence times and opeartion precision [2–5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' In practice we are severely lim- ited by the number of qubits and circuit depths that one may implement with reasonable fidelity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' This has piratical implications in that it limits contemporary ex- perimental demonstrations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' A host of theoretical results are now emerging, leading to improved understanding of the use of random circuit sampling as the basis of a scalable experimental violation of the extended Church- Turing thesis [6] and on the complexity analysis of NISQ [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' The variational model of quantum computation is designed to work within these practical limitations [8– 10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' More generally, the variational model is known to be computationally universal, yet these results are highly idealized and do not account for noise [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Reminiscent of machine learning, a variational algo- rithm makes use of a short parameterized quantum cir- cuit, known as ansatz, in which parameters are itera- tively tuned to minimize a cost function in a quantum-to- classical feedback loop [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' The cost function is typically given in the form of the expectation of a so called prob- lem Hamiltonian;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' where the ground state of the problem Hamiltonian encodes the solution of a given problem in- stance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Thus, by the way of cost function (energy) min- imization, a variational algorithm attempts to approx- imate the ground state of a given Hamiltonian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' This strategy, however, does not provide us with a guarantee in regards to the quality of the approximate solution, where the latter is typically quantified as the overlap between the state prepared by the ansatz and the true ground state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Nevertheless, the overlap can be bounded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' It has been shown using the stability lemma that the bounds can be directly related to the energy, thus allow- ing us to determine the energy threshold (upper bound) required to guarantee a fixed minimum overlap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' We call this the acceptance threshold;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' a state with energy below this threshold is said to be accepted by the algorithm [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Variational algorithms by their design alleviate the ef- fects of certain systematic limitations of NISQ devices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Nevertheless, variational algorithms are not immune to stochastic noise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' While there exist some evidence that variational algorithms can in fact benefit from certain level of stochastic noise [13], in general, it is detrimental to the performance;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' stochastic noise leads to decoherence thus typically reducing solution quality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' In this paper we study the extent to which errors, in the form of parameter alterations, affects the performance of variational algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' We analytically show that the shift in energy varies quadratically with the strength of noise (for small amounts of noise).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' We demonstrate this numerically for variational quantum approximate opti- misation in two common problems—3-SAT [14] and un- structured search [15, 16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Furthermore we also found the performance to be more resilient to alterations in certain parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' With that in mind we propose avenues to potentially improve performance and reduce the execu- tion time of variational quantum algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' PRELIMINARIES A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Variational Quantum Approximate Optimization The quantum approximate optimization algorithm (QAOA) [17], originally designed to approximately solve combinatorial optimization problems [14, 17–28], consists of ansatze circuits expressive enough to (in theory) emu- late any quantum cirucuit [19, 20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Consider a pseudo-Boolean function C : {0, 1}×n → R, the objective of the algorithm is to approximate a bit string that minimizes C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' To accomplish this, C is first arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='00048v1 [quant-ph] 30 Dec 2022 2 encoded as a problem Hamiltonian H, diagonal in the computational basis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' The ground state H encodes the solution to the problem;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' in other words QAOA searches for a solution |g⟩ such that ⟨g|H|g⟩ = min H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' The algorithm begins with an ansatz state |ψp(γ, β)⟩— prepared by a circuit of depth p — parameterized as: |ψp(γ, β)⟩ = p � k=1 e−iβkHxe−iγkH |+⟩⊗n , (1) with real parameters γk ∈ [0, 2π), βk ∈ [0, π).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Here Hx = �n j=1 Xj is the standard one-body mixer Hamil- tonian with Pauli matrix Xj applied to the j-th qubit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' The cost function is given by the expectation of the prob- lem Hamiltonian with respect to the ansatz state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' The algorith minimizes this cost function to output: E∗ = minγ,β ⟨ψp(γ, β)| H |ψp(γ, β)⟩ (2) γ∗, β∗ ∈ arg minγ,β ⟨ψp(γ, β)| H |ψp(γ, β)⟩ (3) Here, |ψp(γ∗, β∗)⟩ is the approximate ground state of H and hence the approximate solution to C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Indeed, the quality of the approximation, quantified as the overlap between the true solution and the approximate solution, is not known a priori from (2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Nevertheless one can establish bounds on this quantity using the so called sta- bility lemma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Stability lemma The stability lemma states that if |g⟩ is the true ground state of H with energy Eg and ∆ is the spectral gap (the difference between the ground state energy and the energy of the first excited state) the following relation holds [11, 29]: 1 − E∗ − Eg ∆ ≤ |⟨ψp(γ∗, β∗)|g⟩|2 ≤ 1 − E∗ − Eg Em − Eg (4) where Em is the maximum eigenvalue of H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Thus to guarantee a non-trivial overlap one must ensure that E∗ ≤ Eg + ∆.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' We call the latter the acceptance con- dition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' VARIATIONAL QUANTUM ALGORITHMS IN THE PRESENCE OF REALISTIC GATE ERRORS Implementation of unitary operations depends signif- icantly on the considered hardware.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' However, typically the implementation makes use of electromagnetic pulses, such as in superconducting quantum computers [30, 31], neutral atom based quantum computers [32, 33], and trapped ion based quantum computers [34, 35].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Such pulses can change the population of the energy levels that constitute a qubit or introduce phases to the quan- tum amplitudes, thus controlling the state of the qubits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Consequently, the main contribution to gate errors comes from variation in pulse shaping, meaning that amplitude and timing of electromagnetic pulse can stochasticaly vary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' In certain experimental setups, such as ground state ion qubits, where entangling operations are per- formed using the radial phonon modes [36], the variabil- ity in pulse shaping is the main source of gate errors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Angles of rotation in a typical gate operation depend on time averaged intensity I(t) of the electromagnetic pulse;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' θ ∝ � I(t)dt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Thus, variations in the pulse shap- ing lead to stochastic deviations of the angles of rota- tions from the desired values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' In other words, if a cir- cuit is composed of the parameterised gates {Uk(θk)}k;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' θ ∈ [0, 2π) and one tries to prepare a state |ψ(θ)⟩ = � k Uk(θk) |ψ0⟩, a different state |ψ(θ + δθ)⟩ = � k U(θk + δθk) |ψ0⟩ , (5) is prepared instead due to the presence of errors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' No- tice here that the perturbation δθ to the parameters is stochastic and is sampled with a certain probability den- sity p(δθ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' This implies that the prepared state can be described by an ensemble {|ψ(θ + δθ)⟩ , p(δθ)}, which we can equivalently view as a density matrix ρ(θ) = � |ψ(θ + δθ)⟩⟨ψ(θ + δθ)|p(δθ)d(δθ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' (6) Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' (6) represents a noise model native to the vari- ational paradigm of quantum computing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' For the rest of this paper we systematically study the effect of this noise model on the performance of QAOA for instances of 3-SAT and the unstructured search problem (see ap- pendix A for more details on the considered problems).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' In particular we study the energy perturbation around E∗ in different scenarios subsequently recovering the strength of noise under which the acceptance condition continues to be satisfied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' RESULTS A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Perturbative analysis in presence of gate errors Consider a problem Hamiltonian H and a variational ansatz |ψ(θ)⟩ = U1(θ1) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Uq(θq) |ψ0⟩ used to mini- mize H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Here the gates Uk(θk) have the form: Uk(θk) = eiAkθk, A2 k = 1, (7) A typical example of such an ansatz is the checkerboard ansatz, with Mølmer-Sørensen (MS) gates as the entan- gling two qubit gates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Nevertheless, any quantum circuit can admit a decomposition in terms of operations that satisfy (7);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' this adds generality to this assumption.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' 3 In the presence of gate errors the prepared quantum state decoheres as |ψ(θ)⟩ → ρ(θ) as per (6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' To obtain the analytic form of ρ(θ) we first note that Uk(θk + δθk) = Uk(θk)Uk(δθk) = cos δθkUk(θk) + sin δθkUk � θk + π 2 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' (8) This follows directly from (7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Therefore we get: |ψ(θ + δθ)⟩⟨ψ(θ + δθ)| = 1 � k1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=',kq,m1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=',mq=0 (cos2 δθ1 tank1+m1 δθ1) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' (cos2 δθq tankq+mq δθq)|ψk1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='kq⟩⟨ψm1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='mq|, (9) where |ψk1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='kq⟩ = U1(θ1 + k1 π 2 ) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Uq(θq + kq π 2 ) |ψ0⟩ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' (10) Here we make three realistic assumptions—(a) pertur- bations to all the angles are independent, (b) average perturbation ⟨δθk⟩ = 0 and (c) the distribution p(δθk) vanishes quickly outside the range (−σk, σk);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' that is, the error is localized on the scale σk ≪ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Note that if as- sumption (b) does not hold, one can always shift the parameters as θ → θ + ⟨δθ⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Substituting (9) in (6) we arrive at the expression: ρ(θ) = |ψ(θ)⟩⟨ψ(θ)| + δρ, (11) where δρ ≈ − q � k=1 ak|ψ(θ)⟩⟨ψ(θ)|+ q � k=1 ak|ψk⟩⟨ψk|+o(σ2 k).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' (12) Here |ψk⟩ = |ψ00.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='00⟩ with 1 placed in the k-th posi- tion, and ak ≡ ⟨sin2 δθk⟩ = � sin2 δθkp(δθk)d(δθk) ∼ σ2 k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' (13) Notice that the derivation above does not require θ to be a minimum of the noiseless cost function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Let us now assume that θ∗ is a vector of parameters such that |ψ(θ∗)⟩ approximates the ground state of H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' The noise induced energy perturbation around the optimal energy E∗ is given as: δE = Tr(ρ(θ∗)H) − ⟨ψ(θ∗)| H |ψ(θ∗)⟩ ≤ (Em − E∗) � k ak.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' (14) For the simplest case where each parameter is sampled from the same distribution (σk = σ) we can roughly es- timate: δE ≤ qσ2(Em − E∗).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' (15) Thus, requesting an energy threshold E ≤ Eg + ∆, we conclude that for σ <∼ � ∆ − (E∗ − Eg) q(Em − E∗) the acceptance condition is still satisfied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' While our perturbative analysis holds for all varia- tional algorithms, we substantiate our findings numer- ically using QAOA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' In particular we solve instances of 3-SAT and unstructured search problems to study the behaviour of energy perturbation around E∗ caused by the presence of gate errors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Constant perturbation We begin with a simplified version of the noise model proposed in (6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' We ran QAOA for 100 uniformly gen- erated 3-SAT instances of 6,8, and 10 variables with 26, 34 and 42 clauses respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' All the instances were selected to have a unique satisfying assignment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' The in- stances were minimized by QAOA sequences of 15, 25 and 30 layers respectively in order to obtain expected values well below the energy gap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' In order to numeri- cally verify the behaviour of the energy perturbation, we vary all optimal parameters by a constant angle δ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Fig- ure 1 illustrates the shift in the energy for the minimized instances, which can be seen to have a quadratic depen- dence of the perturbed energy δE with respect to the shift δ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' This is natural to expect since the parameters deviate from the local minimum, where linear contribu- tion must have vanished (a rigorous expression showing the quadratic behavior is derived in appendix B).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Similar to the case of 3-SAT, for the problem of un- structured search we perturb optimal parameters of the circuit by an angle δ and plot corresponding energy in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Again, as expected, for small values of δ the en- ergy perturbation is quadratic which comes from the fact that the deviation happens around the minimum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' 4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='0000 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='0025 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='0050 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='0075 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='0100 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='0125 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='0150 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='0175 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='0200 δ −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='08 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='12 δE 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='0 qubits 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='8δ2 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='0 qubits 160.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='5δ2 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='0 qubits 250.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='3δ2 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Energy shift obtained by perturbing the ansatz state as |ψp(γ∗ + δ, β∗ + δ)⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' The curves illustrate averages over 100 uniformly generated 3-SAT instances of 6, 8 and 10 qubits with clause to variable ratio of 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='2 and unique satisfying as- signment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' The error bars depict standard error.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Polynomial fits of data indicates δ ∈ [0, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='02] follow quadratic curves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='01 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='03 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='07 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='08 δ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='0 δE 6 qubits 208.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='9δ2 8 qubits 1228.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='4δ2 10 qubits 4664.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='2δ2 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Energy shift for the problem of unstructured search obtained by perturbing of the ansatz state as |ψp(γ∗ + δ, β∗ + δ)⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Polynomial fits for data points of 6, 8 and 10 qubits follow quadratic curves in the ranges δ ∈ [0, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='02], [0, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='01], [0, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='008] respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Stochastic perturbation We now consider the complete noise model in (6) and verify our analytical prediction as shown in (15).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' For each 3-SAT instance, we randomly sample perturbations δ to each of the gates from a uniform distribution on the interval (−σ, σ) and average the obtained energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Then we average energies over instances of the same number of qubits as depicted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' It is seen that for small values of σ the behaviour is quadratic as per (15).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' It is seen, that the value σ ∼ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='075 could never violate the acceptance criteria, as corresponding energy error never exceeds the gap ∆ ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' For smaller number of qubits and gates the threshold value of σ increases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' For unstructured search, we average the energy over δ sampled for each gate from the uniform distribution 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='30 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='35 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='40 σ 0 1 2 3 4 5 δE 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='0 qubits 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='0σ2 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='0 qubits 118.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='5σ2 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='0 qubits 172.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='8σ2 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Average energy shift of 100 uniformly generated 3- SAT instances of 6, 8 and 10 qubits with clause to variable ratio of 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='2 and unique satisfying assignment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' The shifts are obtained by the perturbation of γ∗, β∗ by δ uniformly sam- pled from the range (−σ, σ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Error bars depict standard error.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Polynomial fits of data indicates σ ∈ [0, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='1] follow quadratic curves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' (−σ, σ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' We again recover quadratic behaviour in σ, as depicted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' It is seen that the same threshold σ ∼ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='075 now increases energy by no more then 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='6, which guaranties 40% overlap with the target state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='08 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='12 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='16 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='24 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='28 σ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='0 δE 6 qubits 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='4σ2 8 qubits 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='3σ2 10 qubits 133.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='2σ2 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Average energy for the problem of unstructured search obtained by the perturbation of γ∗, β∗ by δ uni- formly sampled from the range (−σ, σ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Error bars de- pict standard error.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Polynomial fits of data points of 6, 8 and 10 qubits follow quadratic curves in the ranges σ ∈ [0, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='1], [0, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='07], [0, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='05], respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Perturbation to individual parameters Here we consider a modified version of (6), where pa- rameters are perturbed one at a time while the rest are kept intact.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Effect of this model on the energy is illus- trated in Figures 5 and 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' The results are numerical and are yet to be explained analytically.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' We observe that per- turbations to certain angles have a significantly smaller 5 tbh γ β n = 6 p = 8 1 2 3 4 5 6 7 8 k 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='0105 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='0110 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='0115 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='0120 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='0125 ⟨H⟩ δ=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='0 δ=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='02 δ=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='05 δ=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='08 δ=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='1 1 2 3 4 5 6 7 8 k 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='04 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='08 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='12 ⟨H⟩ δ=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='0 δ=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='02 δ=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='05 δ=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='08 δ=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='1 n = 8 p = 15 2 4 6 8 10 12 14 k 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='0190 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='0195 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='0200 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='0205 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='0210 ⟨H⟩ δ=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='0 δ=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='02 δ=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='05 δ=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='08 δ=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='1 2 4 6 8 10 12 14 k 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='20 ⟨H⟩ δ=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='0 δ=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='02 δ=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='05 δ=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='08 δ=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='1 n = 10 p = 25 0 3 6 9 12 15 18 21 24 k 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='0850 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='0855 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='0860 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='0865 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='0870 ⟨H⟩ δ=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='0 δ=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='02 δ=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='05 δ=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='08 δ=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='1 0 3 6 9 12 15 18 21 24 k 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='30 ⟨H⟩ δ=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='0 δ=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='02 δ=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='05 δ=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='08 δ=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='1 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Energy ⟨H⟩ = ⟨ψ(θ∗ + δθ)| H |ψ(θ∗ + δθ)⟩ from the unstructured search problem, where βk (right column) or γk (left column), from the k-th layer, are perturbed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' effect on the energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Thus we can infer that reducing the value of such angles would not have a significant ef- fect on performance but will reduce the execution time of the algorithm, that is texec = �p k=1 βk + γk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Conversely, we could limit the execution time as texec ≤ tmax and increase the number of layers, since min ⟨ψp| H |ψp⟩ ≥ min ⟨ψp+1| H |ψp+1⟩ (16) for the same tmax.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Reducing the execution time is important to quantum algorithms, since variational parameters are proportional to the time required to execute a gate experimentally.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' NISQ era devices suffers from limited coherence, thus reducing execution times can lead to more efficient hard- ware utilization [37, 38].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' We test these ideas in the setting of unstructured search, as depicted in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Here we show the optimized QAOA energies for 6 qubits at mul- tiple depths with execution time limited to tmax.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' The highlighted green and orange rectangles depict the two groups of optimal angles that minimize the energy at each depth, as presented in [15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Green rectangles also indicate the depth and texec at which an ansatz will not be able to decrease its energy by either increasing depth or tmax.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Following the observations of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' 5, by slightly reducing tmax the optimizer will reduce the parameters to which the energy is less sensitive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' This results in a 6 γ β n = 6 p = 15 2 4 6 8 10 12 14 k 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='08 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='12 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='14 ⟨H⟩ δ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='0 δ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='02 δ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='05 δ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='08 δ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='1 2 4 6 8 10 12 14 k 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='075 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='100 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='125 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='150 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='175 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='200 ⟨H⟩ δ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='0 δ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='02 δ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='05 δ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='08 δ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='1 n = 8 p = 25 0 3 6 9 12 15 18 21 24 k 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='08 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='12 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='14 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='16 ⟨H⟩ δ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='0 δ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='02 δ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='05 δ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='08 δ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='1 0 3 6 9 12 15 18 21 24 k 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='25 ⟨H⟩ δ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='0 δ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='02 δ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='05 δ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='08 δ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='1 n = 10 p = 30 0 4 8 12 16 20 24 28 k 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='12 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='14 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='16 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='18 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='20 ⟨H⟩ δ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='0 δ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='02 δ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='05 δ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='08 δ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='1 0 4 8 12 16 20 24 28 k 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='20 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='30 ⟨H⟩ δ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='0 δ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='02 δ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='05 δ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='08 δ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='1 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Average energy ⟨H⟩ = ⟨ψ(θ∗ + δθ)| H |ψ(θ∗ + δθ)⟩ of 100 uniformly generated 3-SAT instances where βk (right column) or γk (left column), from the k-th layer, are perturbed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' The instances are of 6, 8 and 10 qubits with clause to variable ratio of 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='2 and unique satisfying assignment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' slight energy increase as illustrated in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' 7 where to the left of the green rectangles we can observe darkening gradients.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' By contrast, orange rectangles highlight longer execu- tion times corresponding to different sets of angles that also minimize the energy for a given number of layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Therefore if the optimization routine finds the a solu- tion corresponding to the orange rectangle, setting tmax to be slightly less than the texec of the orange rectangle will lead the optimizer to find angles corresponding to the green rectangle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' This will amount to a considerable reduction in execution time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Alternatively increasing the number of layers while keeping tmax will reduce the energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' In general, for an arbitrary problem Hamiltonian we can not be sure if our optimization has returned the ideal set of angles (green ones in our example).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' For this reason, the best strategy would be to reduce tmax or increase depth while fixing tmax until performance stagnates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' DISCUSSION In this study we considered a realistic noise model— one where the variational gate parameters are stochasti- cally perturbed—and demonstrated its effect on the per- 7 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='1 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='1 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='1 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='1 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='1 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='1 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='1 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='1 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='1 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='1 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='1 26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='1 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='1 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='1 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='1 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='1 36.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='1 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='1 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='0 42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='0 max execution time tmax 8 7 6 5 4 3 2 1 depth p energy 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='8 FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Expected value for multiple combinations of depth for maximum execution times.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Green and orange rectangles depict the two branches of angles that minimize expectation value for a given depth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' formance of variational algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Using a perturba- tive analysis we showed that the change in energy δE (from optimised energy E∗), caused due to the pres- ence of the considered gate errors, behaves quadratically with respect to the angle perturbations for small values of the perturbations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' This allows us to establish upper bounds on the amount of perturbation such that the ac- ceptance condition continues to be satisfied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' This guar- antees a fixed overlap between the target sate and the state prepared by the noisy variational circuit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' We con- firm our analytical findings numerically in QAOA for two common problems—3-SAT and unstructured search, us- ing different modifications of the considered noise model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Moreover we observed form our numerical results that the algorithmic performance is more resilient to pertur- bations of certain variational parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Motivated by this observation we demonstrated that performance of QAOA with a total execution time texec = � k γk + βk is stable if retrained with a maximum execution time tmax = texec ± ϵ for ϵ ≪ texec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' We also show that in some cases (a) reduction in tmax can lead to dramatic reductions in texec, and (b) increasing depth while fixing texec can lead to an energy reduction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' While our study is primarily focused on energy pertur- bations around the noiseless optimum θ∗, in practice one has to train in the presence of noise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' This would change optimal angles θ∗ → θ∗ + δθ∗, where shift δθ∗ increases with increase of the strength of the noise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Nevertheless, using perturbation theory around the noiseless optimum one can estimate δθ∗ = O(σ2), and the corresponding change in the energy is Tr(ρ(θ∗+δθ∗)H)−Tr(ρ(θ∗)H) = O(σ4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Therefore, working in the regime of weak noise one can safely use noiseless optimum θ∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' See appendix C for detailed calculation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' VI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' ACKNOWLEDGEMENT D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=', E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=', S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=', E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=', D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' acknowledge support from the research project, Leading Research Center on Quantum Computing (agreement No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' 014/20).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' [1] John Preskill.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Quantum computing in the nisq era and beyond.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Quantum, 2:79, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' [2] Johannes Weidenfeller, Lucia C Valor, Julien Gacon, Caroline Tornow, Luciano Bello, Stefan Woerner, and Daniel J Egger.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Scaling of the quantum approximate optimization algorithm on superconducting qubit based hardware.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' arXiv preprint arXiv:2202.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='03459, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' [3] Alexander K Ratcliffe, Richard L Taylor, Joseph J Hope, and Andr´e RR Carvalho.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Scaling trapped ion quantum computers using fast gates and microtraps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Physical Re- view Letters, 120(22):220501, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' [4] Swathi S Hegde, Jingfu Zhang, and Dieter Suter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Toward the speed limit of high-fidelity two-qubit gates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Physical Review Letters, 128(23):230502, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' [5] Adam R Mills, Charles R Guinn, Michael J Gullans, An- thony J Sigillito, Mayer M Feldman, Erik Nielsen, and Jason R Petta.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Two-qubit silicon quantum processor with operation fidelity exceeding 99%.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Science Advances, 8(14):eabn5130, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' [6] Dorit Aharonov, Xun Gao, Zeph Landau, Yunchao Liu, and Umesh Vazirani.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' A polynomial-time classical algo- rithm for noisy random circuit sampling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' arXiv e-prints, page arXiv:2211.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='03999, November 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' [7] Sitan Chen, Jordan Cotler, Hsin-Yuan Huang, and Jerry Li.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' The Complexity of NISQ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' arXiv e-prints, page arXiv:2210.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='07234, October 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' [8] Abhinav Kandala, Antonio Mezzacapo, Kristan Temme, Maika Takita, Markus Brink, Jerry M Chow, and Jay M Gambetta.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Hardware-efficient variational quan- tum eigensolver for small molecules and quantum mag- nets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Nature, 549(7671):242–246, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' 8 [9] Daniil Rabinovich, Soumik Adhikary, Ernesto Campos, Vishwanathan Akshay, Evgeny Anikin, Richik Sengupta, Olga Lakhmanskaya, Kirill Lakhmanskiy, and Jacob Bi- amonte.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Ion-native variational ansatz for quantum ap- proximate optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' A, 106:032418, Sep 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' [10] Guido Pagano, Aniruddha Bapat, Patrick Becker, Katherine S Collins, Arinjoy De, Paul W Hess, Harvey B Kaplan, Antonis Kyprianidis, Wen Lin Tan, Christopher Baldwin, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Quantum approximate optimization of the long-range ising model with a trapped-ion quantum simulator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Proceedings of the National Academy of Sci- ences, 117(41):25396–25401, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' [11] Jacob Biamonte.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Universal variational quantum compu- tation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Physical Review A, 103(3):L030401, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' [12] Marco Cerezo, Andrew Arrasmith, Ryan Babbush, Si- mon C Benjamin, Suguru Endo, Keisuke Fujii, Jarrod R McClean, Kosuke Mitarai, Xiao Yuan, Lukasz Cincio, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Variational quantum algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Nature Reviews Physics, 3(9):625–644, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' [13] E Campos, D Rabinovich, V Akshay, and J Biamonte.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Training saturation in layerwise quantum approximate optimisation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' (Letter) Physical Review A, 104:L030401, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' [14] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Akshay, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Philathong, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Morales, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Bi- amonte.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Reachability Deficits in Quantum Approximate Optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Physical Review Letters, 124(9):090504, Mar 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' [15] Vishwanathan Akshay, Daniil Rabinovich, Ernesto Cam- pos, and Jacob Biamonte.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Parameter concentrations in quantum approximate optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Physical Review A, 104(1):L010401, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' [16] Lov K Grover.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' A fast quantum mechanical algorithm for database search.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' In Proceedings of the twenty-eighth annual ACM symposium on Theory of computing, pages 212–219, 1996.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' [17] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' A quantum approximate optimization algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' arXiv preprint arXiv:1411.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='4028, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' [18] Murphy Yuezhen Niu, Sirui Lu, and Isaac L Chuang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Op- timizing qaoa: Success probability and runtime depen- dence on circuit depth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' arXiv preprint arXiv:1905.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='12134, May 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' [19] Seth Lloyd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Quantum approximate optimization is com- putationally universal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' arXiv preprint arXiv:1812.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='11075, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' [20] Mauro ES Morales, Jacob D Biamonte, and Zolt´an Zim- bor´as.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' On the universality of the quantum approximate optimization algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Quantum Information Process- ing, 19(9):1–26, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' [21] Leo Zhou, Sheng-Tao Wang, Soonwon Choi, Hannes Pichler, and Mikhail D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Lukin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Quantum approximate optimization algorithm: Performance, mechanism, and implementation on near-term devices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' X, 10:021067, Jun 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' [22] Zhihui Wang, Nicholas C Rubin, Jason M Dominy, and Eleanor G Rieffel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' X y mixers: Analytical and numeri- cal results for the quantum alternating operator ansatz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Physical Review A, 101(1):012320, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' [23] Lucas T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Brady, Christopher L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Baldwin, Aniruddha Ba- pat, Yaroslav Kharkov, and Alexey V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Gorshkov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Opti- mal Protocols in Quantum Annealing and Quantum Ap- proximate Optimization Algorithm Problems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Physical Review Letters, 126(7):070505, Feb 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' [24] Edward Farhi and Aram W Harrow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Quantum supremacy through the quantum approximate optimiza- tion algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' arXiv preprint arXiv:1602.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='07674, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' [25] Edward Farhi, Jeffrey Goldstone, Sam Gutmann, and Leo Zhou.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' The quantum approximate optimization algo- rithm and the sherrington-kirkpatrick model at infinite size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' arXiv preprint arXiv:1910.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='08187, Oct 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' [26] Matteo M Wauters, Glen Bigan Mbeng, and Giuseppe E Santoro.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Polynomial scaling of qaoa for ground-state preparation of the fully-connected p-spin ferromagnet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' arXiv preprint arXiv:2003.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='07419, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' [27] Jahan Claes and Wim van Dam.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Instance independence of single layer quantum approximate optimization al- gorithm on mixed-spin models at infinite size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' arXiv preprint arXiv:2102.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='12043, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' [28] Leo Zhou, Sheng-Tao Wang, Soonwon Choi, Hannes Pichler, and Mikhail D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Lukin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Quantum approximate optimization algorithm: Performance, mechanism, and implementation on near-term devices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' X, 10:021067, Jun 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' [29] Vishwanathan Akshay, H Philathong, E Campos, Daniil Rabinovich, Igor Zacharov, Xiao-Ming Zhang, and J Bi- amonte.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' On circuit depth scaling for quantum approx- imate optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' arXiv preprint arXiv:2205.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='01698, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' [30] John Clarke and Frank K Wilhelm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Superconducting quantum bits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Nature, 453(7198):1031–1042, 2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' [31] Jay M Gambetta, Jerry M Chow, and Matthias Steffen.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Building logical qubits in a superconducting quantum computing system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' npj quantum information, 3(1):1–7, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' [32] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Gerasimov, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Yusupov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Moiseevsky, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Vybornyi, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Tikhonov, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Kulik, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Straupe, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Sukenik, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Kupriyanov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Coupled dynamics of spin qubits in optical dipole microtraps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' [33] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Morgado and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Whitlock.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Quantum simulation and computing with rydberg-interacting qubits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' AVS Quan- tum Science, 3(2):023501, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' [34] Guido Pagano, A Bapat, P Becker, KS Collins, A De, PW Hess, HB Kaplan, A Kyprianidis, WL Tan, C Bald- win, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Quantum approximate optimization of the long-range ising model with a trapped-ion quantum sim- ulator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' arXiv preprint arXiv:1906.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='02700, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' [35] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Zhang, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Pagano, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Hess, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Kyprianidis, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Becker, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Kaplan, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Gorshkov, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='-X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Gong, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Monroe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Observation of a many-body dynami- cal phase transition with a 53-qubit quantum simulator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Nature, 551(7682):601–604, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' [36] Laird Nicholas Egan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Scaling Quantum Computers with Long Chains of Trapped Ions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' PhD thesis, University of Maryland, College Park, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' [37] Zhi-Cheng Yang, Armin Rahmani, Alireza Shabani, Hartmut Neven, and Claudio Chamon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Optimizing vari- ational quantum algorithms using pontryagin’s minimum principle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Physical Review X, 7(2):021027, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' [38] Mohannad Ibrahim, Hamed Mohammadbagherpoor, Cynthia Rios, Nicholas T Bronn, and Gregory T Byrd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Pulse-level optimization of parameterized quantum cir- cuits for variational quantum algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' arXiv preprint arXiv:2211.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='00350, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' 9 Appendix A: 3-SAT and unstructured search problems 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' 3-SAT Boolean satifyability, or SAT, is the problem of deter- mining weather a boolean formula written in conjunctive normal form (CNF) is satisfiable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' It is possible to map any SAT instance via Karp reduction into 3-SAT, which are restricted to 3 literals per clause.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' In order to ap- proximate solutions to SAT we embed the instance into a Hamiltonian as HSAT = � j P(j), (A1) where j indexes clauses of an instance, and P(j) is the tensor product of projectors that penalizes bit string as- signments that do not satisfy the j-th clause.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Unstructured search Consider an unstructured database S indexed by j ∈ {0, 1}×n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Let f : {0, 1}×n → {0, 1} be a Boolean function (a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' black box) such that: f(j) = � 1 iff j = t 0 otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' (A2) The task is to find t ∈ {0, 1}×n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' The corresponding prob- lem Hamiltonian for QAOA is Ht = 1 − |t⟩⟨t|, (A3) thus the expected value is given by ⟨H⟩ = 1 − |⟨t|ψp(γ, β)⟩|2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' (A4) QAOA performance for unstructured search is not sen- sitive to the particular target state |t⟩ in the computa- tional basis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' For any target state |t⟩ representing a binary string, there is a U = U † composed of X and 1 opera- tors such that U |0⟩⊗n = |t⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' The overlap of an arbitrary state prepared by a QAOA sequence with |t⟩ is then: ⟨t|ψp(γ, β)⟩ = ⟨t| p � k=1 e−iβkHxe−iγk|t⟩⟨t| |+⟩⊗n = ⟨0|⊗n U p � k=1 e−iβkHxe−iγkU(|0⟩⟨0|)⊗nU |+⟩⊗n = ⟨0|⊗n U p � k=1 e−iβkHxUe−iγk(|0⟩⟨0|)⊗nU |+⟩⊗n = ⟨0|⊗n p � k=1 e−iβkHxe−iγk(|0⟩⟨0|)⊗n |+⟩⊗n , which is independent on t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Appendix B: Energy variation in presence of constant perturbations to gate parameters Using (9) one can calculate perturbation to the energy caused by a shift of the optimal angles by a constant δθ as δE = ⟨ψ(θ∗ + δθ)| H |ψ(θ∗ + δθ)⟩ − ⟨ψ(θ∗)| H |ψ(θ∗)⟩ = − q � k=1 δθ2 kE∗ + q � m̸=k δθkδθm(⟨ψ(θ∗)| H |ψkm⟩ + h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=') + q � m,k δθkδθk ⟨ψm| H |ψk⟩ + o(δθkδθm) = 1 2(δθ)T Hδθ + o(δθkδθm), (B1) where |ψmk⟩ = |ψ0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content='0⟩ with 1 placed only at m-th and k-th positions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' H is the Hessian of the energy at noiseless optimum, Hij = ∂2 ∂θi∂θj ⟨ψ(θ)| H |ψ(θ)⟩ |θ=θ∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Here we use the fact that at the optimal position linear contribution to the cost function necessarily vanishes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' It is seen now that for the constant perturbation δθk = δ the energy changes as δE ∝ δ2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Appendix C: Optimal parameters variation in the presence of noise Let us use expressions (11) and (12) to estimate change in the energy if one accounts for shift of optimal param- eters θ∗ → θ∗ + δθ∗: Tr(ρ(θ∗ + δθ∗)H) = (1 − q � k=1 ak) ⟨ψ(θ∗ + δθ∗)| H |ψ(θ∗ + δθ∗)⟩ + q � k=1 ak ⟨ψk(θ∗ + δθ∗)| H |ψk(θ∗ + δθ∗)⟩ + o(σ2 k) (C1) We introduce gradients of the noisy terms Bk = ∂ ∂θ ⟨ψk(θ)| H |ψk(θ)⟩ |θ=θ∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Notice that gradients of the 10 noiseless function ⟨ψ(θ)| H |ψ(θ)⟩ vanish at optimum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Then, Tr(ρ(θ∗ + δθ∗)H) ≈ (1 − q � k=1 ak)E∗ + 1 2(δθ∗)T Hδθ∗ + q � k=1 ak[⟨ψk(θ∗)| H |ψk(θ∗)⟩ + (δθ∗)T Bk].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' (C2) Minimizing it with respect to δθ∗ one gets δθ∗ = �q k=1 akH−1Bk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' Thus, if we account for the change of optimal parameters in the presence of noise, the energy shifts by Tr(ρ(θ∗ + δθ∗)H) − Tr(ρ(θ∗)H) ≈ (δθ∗)T Hδθ∗ + q � k=1 ak(δθ∗)T Bk = O(σ4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} +page_content=' (C3)' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/69AyT4oBgHgl3EQfQfbA/content/2301.00048v1.pdf'} diff --git a/6NFJT4oBgHgl3EQflSzb/content/tmp_files/2301.11583v1.pdf.txt b/6NFJT4oBgHgl3EQflSzb/content/tmp_files/2301.11583v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..f219b31c425ed73bc7561e88123aac898c5c4110 --- /dev/null +++ b/6NFJT4oBgHgl3EQflSzb/content/tmp_files/2301.11583v1.pdf.txt @@ -0,0 +1,1151 @@ +Tunable Strong Magnon-Magnon Coupling in Two- +Dimensional Array of Diamond Shaped Ferromagnetic +Nanodots +Sudip Majumder1, Samiran Choudhury1, Saswati Barman2, Yoshichika Otani3, 4, +Anjan Barman1,* +1Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for +Basic Sciences, Block JD, Sector III, Salt Lake, 700106, Kolkata, India +2Institute for Engineering and Management, Sector V, Salt Lake, 700091, Kolkata, India +3 CEMS-RIKEN, 2-1 Hirosawa, Saitama, 3510198, Wako, Japan +4Institute for Solid State Physics, University of Tokyo, 515 Kashiwanoha, Chiba, 277 8581, +Kashiwa, Japan +*Email: abarman@bose.res.in + + +Abstract +Hybrid magnonics involving coupling between magnons and different quantum particles have +been extensively studied during past few years for varied interests including quantum +electrodynamics. In such systems, magnons in magnetic materials with high spin density are +utilized where the “coupling strength” is collectively enhanced by the square root of the number +of spins to overcome the weaker coupling between individual spins and the microwave field. +However, achievement of strong magnon-magnon coupling in a confined nanomagnets would +be essential for on-chip integration of such hybrid systems. Here, through intensive study of +interaction between different magnon modes in a Ni80Fe20 (Py) nanodot array, we demonstrate +that the intermodal coupling can approach the strong coupling regime with coupling strength +up to 0.82 GHz and cooperativity of 2.51. Micromagnetic simulations reveal that the +intermodal coupling is mediated by the exchange field inside each nanodot. The coupling +strength could be continuously tuned by varying the bias field (Hext) strength and orientation +(), opening routes for external control over hybrid magnonic systems. These findings could +greatly enrich the rapidly evolving field of quantum magnonics. + +1. Introduction +Hybrid quantum systems [1] have recently attracted great attention due to their fundamental +importance and potential applications. It provides a new paradigm for the coherent transfer of + +quantum states from one platform to another to execute quantum information processing [2,3]. +This significantly facilitates the research on the fundamental physics of coupling between +different platforms which may lead to varied applications of quantum technologies, such as: +quantum computing [4,5], quantum communications [6,7], and quantum sensing [8]. The +introduction of magnons in hybrid systems was initiated from the exploration of spin ensembles +coupled to microwave photons [8-10]. The higher densities of spin in magnetic materials and +their collective dynamics as magnons, provide ultra-strong coupling with cooperativity up to +103-104 [11,12]. During the last decade, extensive research has been done on magnon-magnon +coupling [13-19]. However, on-chip integration of hybrid systems requires downscaling the +dimensions of the systems to the nanometer range. The microwave cavity usually has the +dimension of millimeters. The coupling strength (g) is proportional to the square root of the +number of spins present in the magnetic material [20,21]. To increase the coupling strength the +number of spins in the magnetic material is usually required to be large enough (N  1013), +thereby restricting the size of the microwave cavity and magnet and the ensuing device +miniaturization towards CMOS integration. +To overcome this geometrical limitation of a microwave cavity, it becomes imperative to +search for different systems to act as nanometric resonators. In this context, the recent +development of interlayer magnon coupling or exchange-driven magnon-magnon coupling in +the magnetic systems has opened a new avenue for quantum magnonics [22-24]. In the last +decade, extensive studies have been done using both confined and propagating magnons in the +field of magnonics, which emerged as an exciting field of research. To this end single +nanomagnets have been studied extensively due to their geometrically confined rich volume +and localized magnetic modes [25-29] in nanometer dimension and their tunability with +different external parameters. Therefore, such systems possess great potential in quantum +magnonics with the possibility of developing magnon-based on-chip quantum information +processing systems in the GHz and THz frequency range with high energy efficiency. Recently +magnon-magnon coupling has been observed experimentally in ferromagnetic nanowire +array[15] and in single nanomagnet using micromagnetic simulation[30]. Furthermore, +moderate to strong magnon-magnon coupling have also been observed in Ni80Fe20 (Py) +nanocross array mediated by dynamic dipolar interaction [31] and anisotropic dipolar +interaction[32]. These studies have opened a new approach for executing and controlling this +phenomenon in a large variety of systems by tailoring the geometric and material parameters +of these artificially patterned systems and the external bias field. This leads the quest for + +optimal solutions for applications in magnon-based quantum information technology. + +Here, we have explored magon-magnon coupling in diamond-shaped Py nanodot array with +the aid of a broadband ferromagnetic resonance (FMR) spectrometer[33,34] and +micromagnetic simulations. Remarkably, we observe an avoided crossing (anticrossing) of +magnon modes [1] characteristic of the formation of hybrid system. Anticrossing gap of up to +0.82 GHz and the ensuing cooperativity value as high as 2.51 are observed. Micromagnetic +simulations reveal that the coupling between two magnon modes is mediated by the exchange +field within each nanodot. Furthermore, the coupling strength is found to be highly dependent +on the orientation and strength of the bias magnetic field, leading towards the possibility of +externally controlled hybrid magnonic devices. + + +2. Experimental Details +The 20-nm-thick diamond shaped Py nanodots, arranged in an array of dimensions 25 μm × +200 μm, were prepared on self-oxidized Si [100] substrate by using electron beam evaporation +(EBE), electron beam lithography (EBL), and Ar+ ion milling tools. A coplanar waveguide +(CPW) made of Au, having 150 nm thickness, 30 μm wide central conducting (signal) line and +50 Ω characteristic impedance (Fig. 1(a)) was deposited on top of each array for broadband +FMR measurements. The CPW is separated from the nanodot array by a 60-nm-thick insulating +Al2O3 layer. The fabrication details are described in section S1 of the Supplementary Materials. +Fig. 1(b) exhibits the scanning electron microscope (SEM) image of the diamond nanodot array +arranged in a square lattice having width and height of the nanodots as 325 nm (dx) and 350 +nm (dy) and lattice constant of 400 nm. The nanomagnet’s lateral dimensions and pitch are +shown in the SEM image of Fig. 1(b). The SEM image shows that the fabricated structures +suffer from slight edge deformations and rounded corners. All these deformations have been +incorporated in the micromagnetic simulations as described later. The applied bias magnetic + +field orientation is shown in the inset of Fig. 1(b). The spin-wave (SW) spectra from the +samples were measured using a broadband FMR spectrometer, consisting of a high-frequency +Vector Network Analyzer (VNA, Agilent PNA-L, model no.: N5230C, frequency range: 10 +MHz to 50 GHz) and a homemade high-frequency probe station equipped with nonmagnetic +ground-signal-ground (GSG)-type picoprobe (GGB Industries, model no.: 40A-GSG-150- +EDP) and a coaxial cable. One end of the CPW is shorted and the back-reflected signal is +collected and fed back to the VNA by the same GSG probe and the coaxial cable. From the +frequency dependent real part of the S-parameter in the reflection geometry (Re (S11)), different +SW frequencies are identified, which results in the characteristic SW spectrum of the sample. +Additional details of the experimental setup are given in section S2 of the Supplementary +Materials. + + + +FIG. 1. (a) Schematic of the experimental geometry. The directions of the bias magnetic field +(Hext) and rf magnetic field (hrf) are shown in the schematic. (b) SEM image of diamond-shaped +Ni80Fe20 (Py) nanodots arranged in a square lattice having lattice constant a = 400 nm and nanodot +width dx = 325 nm, height dy = 350 nm. The inset again shows the orientation of Hext with respect +to hrf. (c) Real parts of the forward scattering parameter (S11) representing the FMR spectra at Hext += 400 Oe applied at an azimuthal angle  = 0°. The observed spin-wave (SW) modes are marked +by down arrows. (d) Bias field (Hext) dependent SW absorption spectra of Py nanodots is shown +at  = 0°. The surface plots correspond to the experimental results, while the symbols represent +the simulated data. The color map for the surface plots and the schematic of Hext are given at the +bottom right corner of the figure. + +3 +6 +9 +0.0 +0.5 +1.0 + + + +0.0 +0.3 +0.6 +0.9 +1.2 +3 +6 +9 +12 + M1 + M2 + M3 + +Frequency (GHz) +Hext (kOe) +Frequency (GHz) +Re S11 (Normalized) +M1 +M2 +M3 +Hext= 400 Oe +(a) +(b) +(c) +(d) +500 nm +x +y +Hext + +dx +a +dy +Re S11 +Normalised +1 +0 +(b) + +G +s +G +3. Results and Discussion +3.1. Experimental Result +3.1.1. Field Dependence of SW + The SW absorption spectra (Re (S11)) are acquired from FMR measurements for a broad +range of bias magnetic field. Fig. 1(c) shows representative raw spectra at Hext = 400 Oe. At +first, the magnetization of the samples are saturated along the +x direction by applying Hext = +1800 Oe, followed by gradual reduction of the field from 1600 Oe to 0 Oe at steps of 20 Oe in +a single trace. The surface plot in Fig. 1(d) displays the bias-field-dependent of SW absorption +spectra with their maximum power normalized to 1.0. These surface plots are generated from +the individual Re (S11) spectra acquired at a given applied magnetic field. Here, the bright +regions represent the experimental data while the symbols represent the micromagnetic +simulation results. The normalized surface plots help to identify three separate branches of SW, +among which the lowest frequency branch M1 shows maximum intensity in the entire field +regime. As we decrease the bias field M1 shows a dip (minimum) in f-Hext at Hext ≈ 300 Oe, +which indicates a mode softening due to transition in magnetization state of the nanomagnet +array. Other two SW modes M2 and M3 do not show any such transition and monotonically +decrease with the reduction in the bias field. + +Fig. 2 shows the magnetic field dependences of the frequencies at different bias field angles. +The variation of magnetic field orientation creates some remarkable changes. First, the dip in +M1 occurring at ~300 Oe gradually disappears. Fig. 2(a) shows the f-Hext plot at  = 5, where +the dip shows an upward shift. At  = 15, the dip completely disappears and the M1 shows a +monotonic variation of frequency with the field, as shown in Fig. 2(b). Secondly, the relative +intensity of M2 and M3 shows a clear variation with the bias field orientation. For 5 ≤  ≤ +15, M2 gradually losses its intensity at the expense of gradual increment of intensity of M3, +which starts to dominate over M2 at  = 15. With further increment of angle, M2 further loses +its intensity and at  = 23 it completely disappears. Fig. 2(c) shows the f-Hext plot at  = 23 +where a clear anticrossing between the branches representing modes M1 and M3 is observed +at Hext = 1060 Oe. The vertical dotted line represents the anticrossing field (Hac) in the f-Hext +plot. The value of Hac gradually shifts towards the lower field regime as we keep increasing . + +Fig. 2(d) shows the magnetic field dispersion of SW frequencies at  = 30 where an +anticrossing is observed at Hext = 920 Oe in between the SW modes M1 and M3. Here, the mid +frequency SW mode M2* reappears, though the intensity of this mode is low. With further +increment of , this mode becomes more prominent and two different anticrossings are now +observed instead of one. One of those appears in between M1 and M2* and another one in +between M2* and M3. At  = 45, both of the anticrossings are observed at Hext = 475 Oe as +shown in Fig. 2(e). With further increment of , the first anticrossing shifts towards lower bias +magnetic field values, whereas the second one appears in higher bias field values. Fig. 2(f) +shows the magnetic field dispersion of SW frequencies at  = 60 where the first anticrossing +in between M1 and M2* appear at Hext = 410 Oe and second one at Hext = 600 Oe. + +3.1.2. Angular Dependence of SW + +The variation of SW modes and their mutual interactions show high dependence on the in- +plane magnetic field orientation. For this reason, -dependence of SW spectra were acquired +at a constant bias field magnitude Hext in the range 0º ≤  ≤ 360º. In Fig. 3(a-d), we have + + + +FIG. 2. Bias field (Hext) dependent SW absorption plots of Py diamond shaped nanodot array are shown +for the bias field orientation () of (a) 5°, (b) 15°, (c) 23°, (d) 30°, (e) 45° and (f) 60°. The surface plots +correspond to the experimental results, while the symbols represent the simulated data. The color map +for the surface plots and the schematic of the external applied field (Hext) are given at the bottom right +corner of the figure. + +0 +400 +800 +1200 +3 +6 +9 +12 + M1 + M2* + M3 + +0 +500 +1000 +1500 + M1 + M3 + + + +Frequency (GHz) +Hext (kOe) +0 +400 +800 +1200 + M1 + M2 + M3 + + = 15 + = 30 +0 +400 +800 +1200 + M1 + M2* + M3 + + = 45 + = 23 +0 +400 +800 +1200 + M1 + M2* + M3 + + = 60 +0 +400 +800 +1200 +3 +6 +9 +12 + M1 + M2 + M3 + + = 5 +x +y +Hext + +(a) +(b) +(c) +(d) +(e) +(f) +Re S11 +Normalized +1 +0 + +presented the -dependence at Hext = 200, 400, 600 and 800 Oe. To show the anticrossing points +we have magnified the relevant regions of the -dependent SW spectra. In the Supplementary +Information figure S4, we have shown the full range of -dependence. At a lower field value +like Hext = 200 Oe, only M1 shows angular dispersion as shown in Fig. 3(a). With an increment +in Hext, two more modes start to show angular dispersion. Here, mode M1 shows a sharp +variation of frequency with a minimum at  = 0, corresponding to the minimum observed in +Fig. 1(d). As we increase the field this sharp modulation gradually transforms into a continuous +angular variation. Fig. 3(b) shows the angular dispersion at Hext = 400 Oe. For  between 50 +and 55, an anticrossing gap appears in between M1 and M2* which is shown by a white dotted +line. At a higher field of Hext = 600 Oe instead of one, two different anticrossings are observed. +The first one appears in between M1 and M3 at  = 40 while the 2nd one appears in between +M2* and M3 at  = 60. With an increment of magnetic field (e.g., 800 Oe) the first anticrossing +shifts towards lower angle (e.g. 35), while the second one gradually disappears as shown in +Fig. 3(d). Due to four fold symmetry[35] of diamond shaped nanodot array these anticrossing +also appear in other three quadrants of angular variation spectra of SW, which is shown in +section S4 of supplementary section. + + + + +3.1.3. Anticrossing Strength +Fig. 4(a) shows the power spectrum measured at Hext = 1060 Oe, which is the anticrossing field +(Hac) for  = 23 configuration. The blue line represents the FMR spectra whereas the red line +represent the fitted spectra using an antisymmetric lorentzian function. Other FMR spectra for +varying anticrossing fields are presented in section S5 of Supplementary Information. The +magnon–magnon coupling strength g is defined as half of the peak-to-peak frequency spacing +at the anticrossing field, which is shown in Fig. 4(a). In order to estimate the strength of +interaction between these two modes, we have extracted the value of g13 and the corresponding +dissipation rates 1, 3 as shown in Fig. 4(a). Here, 1 and 3 are defined as half-width at half- +maximum of the FMR peak of SW mode M1 and M3, respectively. + + + + +FIG. 3. Variation of SW frequency as a function of the azimuthal angle () varying from 0° to 360° for +bias field value fixed at (a) Hext = 200 Oe, (b) 400 Oe, (c) 600 Oe and (d) 800 Oe. The surface plots +correspond to the experimental results, while the symbols represent the simulated data. The colour map +for the surface plots and the schematic of Hext are shown on the right side of the figure. + + + +6 +9 + M2* + M3 + M1 + M2 + + + 0 +-60 +60 +3 +6 +9 + M1 + M2 + M3 + M1 + M2 + M3 + M2* + +0 +-60 +60 +Frequency (GHz) +x +y +Hext + +6 +9 + M2* + M3 + M1 + M2 + +0 +-60 +60 +Azimuthal Angle,  (Degree) +3 +6 +9 + M2 +* + M3 + M1 + M2 + +0 +-60 +60 +(a) +(b) +(c) +(d) +Re S11 +Normalized +1 +0 +200 Oe +400 Oe +600 Oe +800 Oe + + + + + +At  = 23 the extracted value of g13 is 0.592 GHz, while the values of 1 and 3 are found to +be 0.60 GHz and 0.711 GHz, respectively. Since g13  1 and 3, therefore the interaction +between M1 and M3 can be considered as weak coupling. In the opposite case, i.e. when g13 > +1 and 3 it will be considered as strong coupling between two SW branches. We have also +calculated magnon–magnon cooperativity (C), which is defined as C = g2/() (, = 1, 2, +3) and obtained C13 = 0.821 for the coupling between M1 and M3. The extracted value of g, +k, k, and the estimated value of C for anticrossing points corresponds to different bias field + + +g13 +(GHz) +g12 +(GHz) +g23 +(GHz) +1(GHz) +2(GHz) +3(GHz) +C13 +C12 +C23 +23o +0.592 +- +- +0.60 +- +0.711 +0.821 + + +30o +0.82 +- +- +0.423 +- +0.660 +2.515 + + +45o +- +0.745 +0.255 +0.426 +0.645 +0.645 +- +2.019 +0.113 +60o +- +0.915 +0.205 +1.35 +0.69 +0.707 +- +0.878 +0.675 + +Table 1 The extracted values of coupling strength (g), FWHM (2k) and calculated cooperativity factor +(C) for different orientation of bias field at the anticrossing points. Values of g and k are extracted +from the FMR spectra). + + +FIG. 4. Real part of S11 parameter as a function of frequency to highlight the anticrossing field are +shown for  = (a) 23°. The frequency gap in the anticrossing mode reveals the coupling strength g. (b) +Variation of cooperativity factor with the orientation of bias field. It shows that coupling strength is +stronger at  = 30 and 45. The schematic of Hext are shown on the right side of the figure. + + + + + +8 +10 +0.0 +0.3 +0.6 +0.9 + + + = 23 +1062 Oe +Frequency (GHz) +Re S11 (Normalized) +x +y +Hext + +2k1 +2k3 +2g +(a) +20 +40 +60 +0 +1 +2 +3 + C13 + C23 + C12 + + + (Degree) +Cooperativity +(b) + +angles are listed in Table 1. At  = 30 obtained value for g13, 1, 3 and C13 are estimated +0.82, 0.423, 0.66, and 2.515, respectively and here this magnon-magnon coupling falls in the +strong coupling regime. From Table 1, we can see that first anticrossing at  = 45 also shows +strong magnon-magnon coupling with C = 2.019, while the second one shows weak interaction. +At  = 60 both the interactions are in the weak coupling regime. Fig. 4(b) shows the - +dependence of the C where it shows the tunability of coupling strength with the in-plane +magnetic field orientation. It also exhibits that the interaction between different SW branches +show strong coupling in-between 30 to 45 orientation. + +3.2. Micromagnetic Simulation +3.2.1. Static Magnetic Configuration + +In Fig. 1(d) at  = 0, a sharp minimum is observed which gradually vanishes for higher values +of . The answer to this lies in the nanodot structure and its rich and flexible spin configurations +which we have simulated using OOMMF software[36]. Details of the micromagnetic +simulations are given in section S3 of the Supplementary Materials. The simulations reproduce +important features of the experimental SW spectra with nearly identical frequencies and +number of modes besides their relative intensity variations. The simulated static spin textures +within the nanomagnet array for different bias field magnitudes Hext at  = 0 and 45 are shown +in Fig. 5. At  = 0, the nanodot structure shows drastic variation in spin configurations with +Hext. It shows the formation of an S-state at the lower field regime (Hext = 100 Oe) as shown in +Fig. 5. At larger bias fields (e.g., Hext = 800 Oe), the spins are nearly aligned along the bias- +field direction (x-axis) and switch to a leaf-state (Fig. 5). This transformation from S- to leaf- +state occurs for 250 Oe ≤ Hext ≤ 350 Oe, where the SW frequency shows a minimum as a +function of Hext. At  = 45 , this transformation is not observed. Here, for the entire field +range, the static magnetic configuration shows a leaf state. + + + +3.2.2. SW mode Characterization + +To interpret the nature of the SW modes, we have further simulated the spatial profiles of power +and phase of each SW mode by using a home-built MATLAB based code Dotmag[37]. +OOMMF simulation provides magnetization (M (r, t)) information of each rectangular prism- +like cell at different simulation times. By performing discrete Fourier transformation with +respect to time in each of these cells and subsequently extracting the power and phase of the +dynamic magnetization for a desired frequency gives rise to the spatial distribution of the power +phase profile for that particular mode. In Fig. 6, we have shown the power distribution profile +of SW mode at  = 45 orientation for five different fields, Hext = 200 Oe (Hext << Hac), 400 +Oe (Hext < Hac), 475 Oe (Hac), 600 Oe (Hext  Hac) and 1000 Oe (Hext >> Hac), while the phase +profile for each case is shown in the inset. The power profile at Hext = 1000 Oe indicates that +at high bias field only existing mode is M3, which is boosted by all the available energy. With +a gradual decrement of bias field, two additional modes M1 and M2 appear and the power of + + + +FIG. 5. Simulated static magnetic configurations for Py nanodot array at four different bias magnetic- +field magnitude (Hext) at  = 0 and  = 45. We have shown here a single nanodot from the center of +the array for clarity in spin configurations. The nanodot structure shows a drastic variation in spin +configurations with bias magnetic-field strength. + + + + + + + + + + + + + + + + + + + + + +100 Oe +250 Oe +800 Oe +350 Oe + +x +y +Hext + +0 +45 +-Y ++Y +0.0 +0.3 +0.6 +0.9 +1.2 +M1 +M2 +M3 +M4 +M5 +M' + + +0.0 +0.3 +0.6 +0.9 +1.2 + M1 + M2 + M3 + M4 + M5 + M6 + M7 + + +0.0 +0.3 +0.6 +0.9 +1.2 +3 +6 +9 +12 + M1 + M2 + M3 + M4 + M5 + M6 + + +Frequency (GHz) +H1 +H2 +0.0 +0.3 +0.6 +0.9 +1.2 + M* + M1 + M2 + M3 + M4 + M5 + M6 + M7 + + +H3 +0.0 +0.3 +0.6 +0.9 +1.2 + M ' + M1 + M2 + M3 + M4 + M5 + M6 + + +Applied Field Hext (kOe) +0.0 +0.3 +0.6 +0.9 +1.2 +3 +6 +9 +12 + M1 + M2 + M3 + M4 + + +O1 +O2 +O3 +H2 +Fig 2 +Hext +x +y +1 +0 +Re (S11) +Normalised + +M3 is gradually transferred to these two modes. At the anticrossing field, Hext = 475 Oe, M2 +appears as the most intense mode although M1 and M3 have significant power at this field. At +lower fields, this power is gradually transferred to M1, and at 200 Oe, barring M1 other modes + + + +FIG. 6. Simulated spatial distribution of power and phase (in the inset) profiles corresponding to +different SW modes at five different bias field values for  = 45 for the Py nanodot array. The +applied field direction is shown at the bottom left of the figure. Symbols with different colors +represent different SW modes. The color map is shown at the upper right side of the figure. + + + + + + + + + + + + + + + +200 Oe +400 Oe +475 Oe +600 Oe +1000 Oe +M1 +M2* +M3 +20 +0 +Power +(dB) +Phase +(rad) ++ +- +x +y Hext + + = 45 + +disappear. Similar to this energy exchange, the phase profiles also exhibit interchange of mode +behavior. At high bias fields (e.g., 1000 Oe), M3 shows quantized nature in BV-like geometry +with a quantization number n = 3. With a decrease in the field, this mode gradually transforms +into higher-order quantized mode and M2* is transformed into a quantized mode with n = 3. +At Hext = 475 Oe the quantization number of M1, and M3 are n = 5, and 7, respectively, while +for M2*, n = 3, which is identical to the quantization number of M3 at Hext = 1000 Oe. This +transformation of mode quantization number is also seen in-between M1 and M2* as we further +reduce the bias field and finally at Hext = 200 Oe, M1 shows a quantized behavior with n = 3. +This transformation of power as well as mode property from one branch of SW mode to another +at the anticrossing region indicates a strong interaction between these modes. For other +orientation like  = 23, 30 and 60, similar kind of behavior are observed, which are shown +in section S6 of the Supplementary Materials. + +3.2.3. Distribution of Exchange field +To understand the origin of the magnon-magnon coupling and its modulation with bias +magnetic field, we have simulated the spatial distribution of the dipole-exchange field +(Exchange field distribution of each dot, which is modulated by dipolar interaction of nanodot +array) lines at the equilibrium for different bias field orientations. Fig. 7 shows the exchange +field map of nanodots array at eight different fields for  = 45 orientation. Due to inter-dot +dipolar interactions, a dynamic variation of exchange field line with the bias field amplitude +(for better viewing purpose, we just present a single nanodot) is observed. The Supplementary +Movie A1 shows the dynamics of this exchange field in more detail. At lower bias fields (Hext +<< Hac), due to dominating effect of demagnetizing field, spins take a configuration such that +at equilibrium condition the exchange field lines create three different regions within a single +dot. The field lines of center and edge regions are configured in opposite direction as denoted +with yellow and green arrows in Fig. 7(a). As we increase the bias field, the region around the +edge of the dot start to vanish and the center region gradually expands. At a very high bias field +(Hext  Hac), e.g., Hext = 1000 Oe, only the central region with unidirectional field lines are +observed inside a dot. This transformation from three mutually opposite (antiparallel) field-line +configuration to uniform (parallel) configuration occurs for 450 Oe ≤ Hext ≤ 500 Oe, which is +exactly the anticrossing field region for  = 45 orientation. This change in exchange field +profile can be observed much more clearly if we take a linescan along the bias field direction +(white dotted line in Fig. 7(a)) as shown in Fig. 7(b). In the inset, we have magnified the end + +part of the linescan. Here, it is clearly visible that below the anticrossing field (Hext = Hac = 475 +Oe) the linescan has two different local maxima + +which transform into one maximum as we increase Hext. The exchange field profile for other +values of  are shown in section S7 of the Supplementary Materials, where similar +transformation is observed in the anticrossing field region. Our observation of correlation +between these two phenomena indicates that the anticrossing gap appears only when such a +variation of exchange field occurs due to the bias field strength as well as its orientation. The +internal field distribution in presence and absence of the exchange field leads to similar +conclusion, which we have described in section S8 of the Supplementary Materials. + +4. Conclusion +In summary, the interaction between magnons confined in a sole magnonic cavity has been +realized in the strong coupling regime. We have investigated a bias field strength and angle- +dependent magnetization dynamics in diamond-shaped Py nanodot arrays using the broadband +ferromagnetic resonance technique. Our study has demonstrated that the coupling between two +magnon modes is mediated by the exchange coupling inside individual nanodot. Furthermore, +the coupling strength is found to be highly dependent on the orientation and strength of +the bias magnetic field, leading towards the possibility of externally controlled hybrid + + + + +FIG. 7. Exchange field distributions for (a) single nanodot for eight different bias field values at  += 45 . Yellow and green arrows represent the direction of exchange field at the center and edge +position of the nanodot. We have shown here a single nanodot from the center of the array for clarity +in spin configurations. The color bars are shown at the right side of the figure. (b) Linescan of the +simulated exchange field for nanodot array along the field direction. In the inset magnified portion +of simulated exchange field is shown. + + + + + + + + + + + + + + + + + + + + + +360 +420 +480 +540 +0 +250 +500 + 1200 Oe + 550 Oe + 450 Oe + 200 Oe + + +Exchange Field (Oe) +Distance (nm) +x +y +Hext + +(a) +(b) +200 Oe +300 Oe +450 Oe +500 Oe +550 Oe +700 Oe +800 Oe +1000 Oe +-8 +-6 +-4 +-2 + 1200 Oe + 550 Oe + 450 Oe + 200 Oe + + +Power(dB) +0.0 +0.3 +0.6 +0.9 +1.2 +M1 +M2 +M3 +M4 +M5 +M' + + +0.0 +0.3 +0.6 +0.9 +1.2 + M1 + M2 + M3 + M4 + M5 + M6 + M7 + + +0.0 +0.3 +0.6 +0.9 +1.2 +3 +6 +9 +12 + M1 + M2 + M3 + M4 + M5 + M6 + + +Frequency (GHz) +H1 +H2 +0.0 +0.3 +0.6 +0.9 +1.2 + M* + M1 + M2 + M3 + M4 + M5 + M6 + M7 + + +H3 +0.0 +0.3 +0.6 +0.9 +1.2 + M ' + M1 + M2 + M3 + M4 + M5 + M6 + + +Applied Field Hext (kOe) +0.0 +0.3 +0.6 +0.9 +1.2 +3 +6 +9 +12 + M1 + M2 + M3 + M4 + + +O1 +O2 +O3 +H2 +Fig 2 +Hext +x +y +1 +0 +Re (S11) +Normalised + +800 Oe7000e600 0e200 0e500 0emagnonic devices. The experimental results have been well reproduced by micromagnetic +simulation. The power and phase profiles of the resonant modes have been numerically +calculated to gain insight into the spatial nature of the dynamics. The transformation of power +as well as mode property from one branch of SW to another, apparently support the strong +interaction in-between these modes. Numerical study shows that the anticrossing gap appears +when the symmetry of exchange configuration inside each nanodot is broken due to the applied +bias magnetic field. We have also observed mode softening phenomena when the static +magnetic configuration switches from the S-state to the leaf state and with the variation of bias +field angle it gradually disappears. Our findings offer a new approach toward tunable magnon- +magnon coupling in ferromagnetic nanostructures for applications in quantum transduction +using magnons. + + + +5. Acknowledgements + +AB gratefully acknowledges the financial support from S. N. Bose National Centre for +Basic Sciences, India (Grant No. SNB/AB/18-19/211). SB acknowledges Science and +Engineering Research Board (SERB), India for funding (Grant no. CRG/2018/002080). SM +and SC acknowledge S. N. Bose National Centre for Basic Sciences for senior research +fellowship + + +References + +[1] +A. A. Clerk, K. W. Lehnert, P. Bertet, J. R. Petta, and Y. Nakamura, Hybrid quantum systems +with circuit quantum electrodynamics, Nature Physics 16, 257 (2020). +[2] +J. P. Home, D. Hanneke, J. D. Jost, J. M. Amini, D. Leibfried, and D. J. Wineland, Complete +Methods Set for Scalable Ion Trap Quantum Information Processing, 325, 1227 (2009). +[3] +A. Blais, R.-S. Huang, A. Wallraff, S. M. Girvin, and R. J. Schoelkopf, Cavity quantum +electrodynamics for superconducting electrical circuits: An architecture for quantum computation, +Physical Review A 69, 062320 (2004). +[4] +R. P. Feynman, Quantum mechanical computers, Foundations of Physics 16, 507 (1986). +[5] +T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O'Brien, Quantum +computers, Nature 464, 45 (2010). +[6] +H. J. Kimble, The quantum internet, Nature 453, 1023 (2008). +[7] +A. Reiserer and G. Rempe, Cavity-based quantum networks with single atoms and optical +photons, Reviews of Modern Physics 87, 1379 (2015). +[8] +C. L. Degen, F. Reinhard, and P. Cappellaro, Quantum sensing, Reviews of modern physics +89, 035002 (2017). +[9] +Y. Kubo et al., Strong coupling of a spin ensemble to a superconducting resonator, Physical +review letters 105, 140502 (2010). + +[10] +D. Schuster et al., High-cooperativity coupling of electron-spin ensembles to superconducting +cavities, Physical review letters 105, 140501 (2010). +[11] +Ö. O. Soykal and M. Flatté, Strong field interactions between a nanomagnet and a photonic +cavity, Physical review letters 104, 077202 (2010). +[12] +Y. Cao, P. Yan, H. Huebl, S. T. Goennenwein, and G. E. Bauer, Exchange magnon-polaritons +in microwave cavities, Physical Review B 91, 094423 (2015). +[13] +S. Klingler et al., Spin-torque excitation of perpendicular standing spin waves in coupled +YIG/Co heterostructures, Physical review letters 120, 127201 (2018). +[14] +H. Qin, S. J. Hämäläinen, and S. Van Dijken, Exchange-torque-induced excitation of +perpendicular standing spin waves in nanometer-thick YIG films, Scientific reports 8, 1 (2018). +[15] +J. Chen, C. Liu, T. Liu, Y. Xiao, K. Xia, G. E. Bauer, M. Wu, and H. Yu, Strong interlayer +magnon-magnon coupling in magnetic metal-insulator hybrid nanostructures, Physical review letters +120, 217202 (2018). +[16] +J. Chen et al., Excitation of unidirectional exchange spin waves by a nanoscale magnetic +grating, Physical Review B 100, 104427 (2019). +[17] +J. Chen et al., Excitation of unidirectional exchange spin waves by a nanoscale magnetic +grating, Physical Review B 100, 104427 (2019). +[18] +L. Liensberger et al., Exchange-enhanced ultrastrong magnon-magnon coupling in a +compensated ferrimagnet, Physical review letters 123, 117204 (2019). +[19] +D. MacNeill, J. T. Hou, D. R. Klein, P. Zhang, P. Jarillo-Herrero, and L. Liu, Gigahertz +frequency antiferromagnetic resonance and strong magnon-magnon coupling in the layered crystal +crcl 3, Physical review letters 123, 047204 (2019). +[20] +Y. Tabuchi, S. Ishino, T. Ishikawa, R. Yamazaki, K. Usami, and Y. Nakamura, Hybridizing +ferromagnetic magnons and microwave photons in the quantum limit, Physical review letters 113, +083603 (2014). +[21] +G. Agarwal, Vacuum-field Rabi splittings in microwave absorption by Rydberg atoms in a +cavity, Physical review letters 53, 1732 (1984). +[22] +Y. Tabuchi, S. Ishino, A. Noguchi, T. Ishikawa, R. Yamazaki, K. Usami, and Y. Nakamura, +Coherent coupling between a ferromagnetic magnon and a superconducting qubit, Science 349, 405 +(2015). +[23] +R. Hisatomi, A. Osada, Y. Tabuchi, T. Ishikawa, A. Noguchi, R. Yamazaki, K. Usami, and Y. +Nakamura, Bidirectional conversion between microwave and light via ferromagnetic magnons, +Physical Review B 93, 174427 (2016). +[24] +D. Lachance-Quirion, Y. Tabuchi, A. Gloppe, K. Usami, and Y. Nakamura, Hybrid quantum +systems based on magnonics, Applied Physics Express 12, 070101 (2019). +[25] +J. Park, P. Eames, D. Engebretson, J. Berezovsky, and P. Crowell, Spatially resolved +dynamics of localized spin-wave modes in ferromagnetic wires, Physical review letters 89, 277201 +(2002). +[26] +J. Jorzick, S. Demokritov, B. Hillebrands, M. Bailleul, C. Fermon, K. Y. Guslienko, A. +Slavin, D. Berkov, and N. Gorn, Spin wave wells in nonellipsoidal micrometer size magnetic +elements, Physical Review Letters 88, 047204 (2002). +[27] +M. Bailleul, R. Höllinger, and C. Fermon, Microwave spectrum of square Permalloy dots: +Quasisaturated state, Physical Review B 73, 104424 (2006). +[28] +G. Carlotti, Pushing down the lateral dimension of single and coupled magnetic dots to the +nanometric scale: Characteristics and evolution of the spin-wave eigenmodes, Applied Physics +Reviews 6, 031304 (2019). +[29] +Z. Zhang, M. Vogel, M. B. Jungfleisch, A. Hoffmann, Y. Nie, and V. Novosad, Tuning edge- +localized spin waves in magnetic microstripes by proximate magnetic structures, Physical Review B +100, 174434 (2019). +[30] +C. Dai, K. Xie, Z. Pan, and F. Ma, Strong coupling between magnons confined in a single +magnonic cavity, Journal of Applied Physics 127, 203902 (2020). +[31] +K. Adhikari, S. Sahoo, A. K. Mondal, Y. Otani, and A. Barman, Large nonlinear +ferromagnetic resonance shift and strong magnon-magnon coupling in N i 80 F e 20 nanocross array, +Physical Review B 101, 054406 (2020). +[32] +K. Adhikari, S. Choudhury, S. Barman, Y. Otani, and A. Barman, Observation of magnon– + +magnon coupling with high cooperativity in Ni80Fe20 cross-shaped nanoring array, Nanotechnology +32, 395706 (2021). +[33] +S. Choudhury, S. Majumder, S. Barman, Y. Otani, and A. Barman, Active control of mode +crossover and mode hopping of spin waves in a ferromagnetic antidot lattice, Physical Review +Applied 10, 064044 (2018). +[34] +S. Majumder, S. Choudhury, S. Barman, Y. Otani, and A. Barman, Reconfigurable spin-wave +dynamics in two-dimensional quasiperiodic magnonic crystals, Physica E: Low-dimensional Systems +Nanostructures 134, 114901 (2021). +[35] +B. Mahato, S. Choudhury, R. Mandal, S. Barman, Y. Otani, and A. Barman, Tunable +configurational anisotropy in collective magnetization dynamics of Ni80Fe20 nanodot arrays with +varying dot shapes, Journal of Applied Physics 117, 213909 (2015). +[36] +M. Donahue, D. Porter, J. Lau, and R. McMichael, Interagency report NISTIR 6376. National +institute of standards and technology, Gaithersburg, NIST J. Res. 114, 57 (1999). +[37] +D. Kumar, O. Dmytriiev, S. Ponraj, and A. Barman, Numerical calculation of spin wave +dispersions in magnetic nanostructures, Journal of Physics D: Applied Physics 45, 015001 (2011). + + + diff --git a/6NFJT4oBgHgl3EQflSzb/content/tmp_files/load_file.txt b/6NFJT4oBgHgl3EQflSzb/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..33b7749ac38c290638e74435d91788510833e47a --- /dev/null +++ b/6NFJT4oBgHgl3EQflSzb/content/tmp_files/load_file.txt @@ -0,0 +1,614 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf,len=613 +page_content='Tunable Strong Magnon-Magnon Coupling in Two- Dimensional Array of Diamond Shaped Ferromagnetic Nanodots Sudip Majumder1, Samiran Choudhury1, Saswati Barman2, Yoshichika Otani3, 4, Anjan Barman1,* 1Department of Condensed Matter Physics and Material Sciences, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, 700106, Kolkata, India 2Institute for Engineering and Management, Sector V, Salt Lake, 700091, Kolkata, India 3 CEMS-RIKEN, 2-1 Hirosawa, Saitama, 3510198, Wako, Japan 4Institute for Solid State Physics, University of Tokyo, 515 Kashiwanoha, Chiba, 277 8581, Kashiwa, Japan *Email: abarman@bose.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='in Abstract Hybrid magnonics involving coupling between magnons and different quantum particles have been extensively studied during past few years for varied interests including quantum electrodynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' In such systems, magnons in magnetic materials with high spin density are utilized where the “coupling strength” is collectively enhanced by the square root of the number of spins to overcome the weaker coupling between individual spins and the microwave field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' However, achievement of strong magnon-magnon coupling in a confined nanomagnets would be essential for on-chip integration of such hybrid systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Here, through intensive study of interaction between different magnon modes in a Ni80Fe20 (Py) nanodot array, we demonstrate that the intermodal coupling can approach the strong coupling regime with coupling strength up to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='82 GHz and cooperativity of 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Micromagnetic simulations reveal that the intermodal coupling is mediated by the exchange field inside each nanodot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' The coupling strength could be continuously tuned by varying the bias field (Hext) strength and orientation (\uf066), opening routes for external control over hybrid magnonic systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' These findings could greatly enrich the rapidly evolving field of quantum magnonics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Introduction Hybrid quantum systems [1] have recently attracted great attention due to their fundamental importance and potential applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' It provides a new paradigm for the coherent transfer of quantum states from one platform to another to execute quantum information processing [2,3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' This significantly facilitates the research on the fundamental physics of coupling between different platforms which may lead to varied applications of quantum technologies, such as: quantum computing [4,5], quantum communications [6,7], and quantum sensing [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' The introduction of magnons in hybrid systems was initiated from the exploration of spin ensembles coupled to microwave photons [8-10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' The higher densities of spin in magnetic materials and their collective dynamics as magnons, provide ultra-strong coupling with cooperativity up to 103-104 [11,12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' During the last decade, extensive research has been done on magnon-magnon coupling [13-19].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' However, on-chip integration of hybrid systems requires downscaling the dimensions of the systems to the nanometer range.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' The microwave cavity usually has the dimension of millimeters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' The coupling strength (g) is proportional to the square root of the number of spins present in the magnetic material [20,21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' To increase the coupling strength the number of spins in the magnetic material is usually required to be large enough (N \uf03e 1013), thereby restricting the size of the microwave cavity and magnet and the ensuing device miniaturization towards CMOS integration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' To overcome this geometrical limitation of a microwave cavity, it becomes imperative to search for different systems to act as nanometric resonators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' In this context, the recent development of interlayer magnon coupling or exchange-driven magnon-magnon coupling in the magnetic systems has opened a new avenue for quantum magnonics [22-24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' In the last decade, extensive studies have been done using both confined and propagating magnons in the field of magnonics, which emerged as an exciting field of research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' To this end single nanomagnets have been studied extensively due to their geometrically confined rich volume and localized magnetic modes [25-29] in nanometer dimension and their tunability with different external parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Therefore, such systems possess great potential in quantum magnonics with the possibility of developing magnon-based on-chip quantum information processing systems in the GHz and THz frequency range with high energy efficiency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Recently magnon-magnon coupling has been observed experimentally in ferromagnetic nanowire array[15] and in single nanomagnet using micromagnetic simulation[30].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Furthermore, moderate to strong magnon-magnon coupling have also been observed in Ni80Fe20 (Py) nanocross array mediated by dynamic dipolar interaction [31] and anisotropic dipolar interaction[32].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' These studies have opened a new approach for executing and controlling this phenomenon in a large variety of systems by tailoring the geometric and material parameters of these artificially patterned systems and the external bias field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' This leads the quest for optimal solutions for applications in magnon-based quantum information technology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Here, we have explored magon-magnon coupling in diamond-shaped Py nanodot array with the aid of a broadband ferromagnetic resonance (FMR) spectrometer[33,34] and micromagnetic simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Remarkably, we observe an avoided crossing (anticrossing) of magnon modes [1] characteristic of the formation of hybrid system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Anticrossing gap of up to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='82 GHz and the ensuing cooperativity value as high as 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='51 are observed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Micromagnetic simulations reveal that the coupling between two magnon modes is mediated by the exchange field within each nanodot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Furthermore, the coupling strength is found to be highly dependent on the orientation and strength of the bias magnetic field, leading towards the possibility of externally controlled hybrid magnonic devices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Experimental Details The 20-nm-thick diamond shaped Py nanodots, arranged in an array of dimensions 25 μm × 200 μm, were prepared on self-oxidized Si [100] substrate by using electron beam evaporation (EBE), electron beam lithography (EBL), and Ar+ ion milling tools.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' A coplanar waveguide (CPW) made of Au, having 150 nm thickness, 30 μm wide central conducting (signal) line and 50 Ω characteristic impedance (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' 1(a)) was deposited on top of each array for broadband FMR measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' The CPW is separated from the nanodot array by a 60-nm-thick insulating Al2O3 layer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' The fabrication details are described in section S1 of the Supplementary Materials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' 1(b) exhibits the scanning electron microscope (SEM) image of the diamond nanodot array arranged in a square lattice having width and height of the nanodots as 325 nm (dx) and 350 nm (dy) and lattice constant of 400 nm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' The nanomagnet’s lateral dimensions and pitch are shown in the SEM image of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' 1(b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' The SEM image shows that the fabricated structures suffer from slight edge deformations and rounded corners.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' All these deformations have been incorporated in the micromagnetic simulations as described later.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' The applied bias magnetic field orientation is shown in the inset of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' 1(b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' The spin-wave (SW) spectra from the samples were measured using a broadband FMR spectrometer, consisting of a high-frequency Vector Network Analyzer (VNA, Agilent PNA-L, model no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' : N5230C, frequency range: 10 MHz to 50 GHz) and a homemade high-frequency probe station equipped with nonmagnetic ground-signal-ground (GSG)-type picoprobe (GGB Industries, model no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' : 40A-GSG-150- EDP) and a coaxial cable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' One end of the CPW is shorted and the back-reflected signal is collected and fed back to the VNA by the same GSG probe and the coaxial cable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' From the frequency dependent real part of the S-parameter in the reflection geometry (Re (S11)), different SW frequencies are identified, which results in the characteristic SW spectrum of the sample.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Additional details of the experimental setup are given in section S2 of the Supplementary Materials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' (a) Schematic of the experimental geometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' The directions of the bias magnetic field (Hext) and rf magnetic field (hrf) are shown in the schematic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' (b) SEM image of diamond-shaped Ni80Fe20 (Py) nanodots arranged in a square lattice having lattice constant a = 400 nm and nanodot width dx = 325 nm, height dy = 350 nm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' The inset again shows the orientation of Hext with respect to hrf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' (c) Real parts of the forward scattering parameter (S11) representing the FMR spectra at Hext = 400 Oe applied at an azimuthal angle \uf066 = 0°.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' The observed spin-wave (SW) modes are marked by down arrows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' (d) Bias field (Hext) dependent SW absorption spectra of Py nanodots is shown at \uf066 = 0°.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' The surface plots correspond to the experimental results, while the symbols represent the simulated data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' The color map for the surface plots and the schematic of Hext are given at the bottom right corner of the figure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' 3 6 9 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='9 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='2 3 6 9 12 M1 M2 M3 Frequency (GHz) Hext (kOe) Frequency (GHz) Re S11 (Normalized) M1 M2 M3 Hext= 400 Oe (a) (b) (c) (d) 500 nm x y Hext \uf066 dx a dy Re S11 Normalised 1 0 (b) G s G 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Results and Discussion 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Experimental Result 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Field Dependence of SW The SW absorption spectra (Re (S11)) are acquired from FMR measurements for a broad range of bias magnetic field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' 1(c) shows representative raw spectra at Hext = 400 Oe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' At first, the magnetization of the samples are saturated along the +x direction by applying Hext = 1800 Oe, followed by gradual reduction of the field from 1600 Oe to 0 Oe at steps of 20 Oe in a single trace.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' The surface plot in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' 1(d) displays the bias-field-dependent of SW absorption spectra with their maximum power normalized to 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' These surface plots are generated from the individual Re (S11) spectra acquired at a given applied magnetic field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Here, the bright regions represent the experimental data while the symbols represent the micromagnetic simulation results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' The normalized surface plots help to identify three separate branches of SW, among which the lowest frequency branch M1 shows maximum intensity in the entire field regime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' As we decrease the bias field M1 shows a dip (minimum) in f-Hext at Hext ≈ 300 Oe, which indicates a mode softening due to transition in magnetization state of the nanomagnet array.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Other two SW modes M2 and M3 do not show any such transition and monotonically decrease with the reduction in the bias field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' 2 shows the magnetic field dependences of the frequencies at different bias field angles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' The variation of magnetic field orientation creates some remarkable changes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' First, the dip in M1 occurring at ~300 Oe gradually disappears.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' 2(a) shows the f-Hext plot at \uf066 = 5\uf0b0, where the dip shows an upward shift.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' At \uf066 = 15\uf0b0, the dip completely disappears and the M1 shows a monotonic variation of frequency with the field, as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' 2(b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Secondly, the relative intensity of M2 and M3 shows a clear variation with the bias field orientation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' For 5\uf0b0 ≤ \uf066 ≤ 15\uf0b0, M2 gradually losses its intensity at the expense of gradual increment of intensity of M3, which starts to dominate over M2 at \uf066 = 15\uf0b0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' With further increment of angle, M2 further loses its intensity and at \uf066 = 23\uf0b0 it completely disappears.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' 2(c) shows the f-Hext plot at \uf066 = 23\uf0b0 where a clear anticrossing between the branches representing modes M1 and M3 is observed at Hext = 1060 Oe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' The vertical dotted line represents the anticrossing field (Hac) in the f-Hext plot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' The value of Hac gradually shifts towards the lower field regime as we keep increasing \uf066.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' 2(d) shows the magnetic field dispersion of SW frequencies at \uf066 = 30\uf0b0 where an anticrossing is observed at Hext = 920 Oe in between the SW modes M1 and M3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Here, the mid frequency SW mode M2* reappears, though the intensity of this mode is low.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' With further increment of \uf066, this mode becomes more prominent and two different anticrossings are now observed instead of one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' One of those appears in between M1 and M2* and another one in between M2* and M3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' At \uf066 = 45\uf0b0, both of the anticrossings are observed at Hext = 475 Oe as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' 2(e).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' With further increment of \uf066, the first anticrossing shifts towards lower bias magnetic field values, whereas the second one appears in higher bias field values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' 2(f) shows the magnetic field dispersion of SW frequencies at \uf066 = 60\uf0b0 where the first anticrossing in between M1 and M2* appear at Hext = 410 Oe and second one at Hext = 600 Oe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Angular Dependence of SW The variation of SW modes and their mutual interactions show high dependence on the in- plane magnetic field orientation\uf066.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' For this reason, \uf066-dependence of SW spectra were acquired at a constant bias field magnitude Hext in the range 0º ≤ \uf066 ≤ 360º.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' 3(a-d), we have FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Bias field (Hext) dependent SW absorption plots of Py diamond shaped nanodot array are shown for the bias field orientation (\uf066) of (a) 5°, (b) 15°, (c) 23°, (d) 30°, (e) 45° and (f) 60°.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' The surface plots correspond to the experimental results, while the symbols represent the simulated data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' The color map for the surface plots and the schematic of the external applied field (Hext) are given at the bottom right corner of the figure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' 0 400 800 1200 3 6 9 12 M1 M2 M3 0 500 1000 1500 M1 M3 Frequency (GHz) Hext (kOe) 0 400 800 1200 M1 M2 M3 \uf066 = 15 \uf066 = 30 0 400 800 1200 M1 M2 M3 \uf066 = 45 \uf066 = 23 0 400 800 1200 M1 M2 M3 \uf066 = 60 0 400 800 1200 3 6 9 12 M1 M2 M3 \uf066 = 5 x y Hext \uf066 (a) (b) (c) (d) (e) (f) Re S11 Normalized 1 0 presented the \uf066-dependence at Hext = 200, 400, 600 and 800 Oe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' To show the anticrossing points we have magnified the relevant regions of the \uf066-dependent SW spectra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' In the Supplementary Information figure S4, we have shown the full range of \uf066-dependence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' At a lower field value like Hext = 200 Oe, only M1 shows angular dispersion as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' 3(a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' With an increment in Hext, two more modes start to show angular dispersion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Here, mode M1 shows a sharp variation of frequency with a minimum at \uf066 = 0\uf0b0, corresponding to the minimum observed in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' 1(d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' As we increase the field this sharp modulation gradually transforms into a continuous angular variation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' 3(b) shows the angular dispersion at Hext = 400 Oe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' For \uf066 between 50\uf0b0 and 55\uf0b0, an anticrossing gap appears in between M1 and M2* which is shown by a white dotted line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' At a higher field of Hext = 600 Oe instead of one, two different anticrossings are observed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' The first one appears in between M1 and M3 at \uf066 = 40\uf0b0 while the 2nd one appears in between M2* and M3 at \uf066 = 60\uf0b0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' With an increment of magnetic field (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=', 800 Oe) the first anticrossing shifts towards lower angle (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' 35\uf0b0), while the second one gradually disappears as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' 3(d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Due to four fold symmetry[35] of diamond shaped nanodot array these anticrossing also appear in other three quadrants of angular variation spectra of SW, which is shown in section S4 of supplementary section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Anticrossing Strength Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' 4(a) shows the power spectrum measured at Hext = 1060 Oe, which is the anticrossing field (Hac) for \uf066 = 23\uf0b0 configuration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' The blue line represents the FMR spectra whereas the red line represent the fitted spectra using an antisymmetric lorentzian function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Other FMR spectra for varying anticrossing fields are presented in section S5 of Supplementary Information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' The magnon–magnon coupling strength g is defined as half of the peak-to-peak frequency spacing at the anticrossing field, which is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' 4(a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' In order to estimate the strength of interaction between these two modes, we have extracted the value of g13 and the corresponding dissipation rates \uf06b1, \uf06b3 as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' 4(a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Here, \uf06b1 and \uf06b3 are defined as half-width at half- maximum of the FMR peak of SW mode M1 and M3, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Variation of SW frequency as a function of the azimuthal angle (\uf066) varying from 0° to 360° for bias field value fixed at (a) Hext = 200 Oe, (b) 400 Oe, (c) 600 Oe and (d) 800 Oe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' The surface plots correspond to the experimental results, while the symbols represent the simulated data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' The colour map for the surface plots and the schematic of Hext are shown on the right side of the figure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' 6 9 M2 M3 M1 M2 0 60 60 3 6 9 M1 M2 M3 M1 M2 M3 M2* 0 60 60 Frequency (GHz) x y Hext \uf066 6 9 M2 M3 M1 M2 0 60 60 Azimuthal Angle, \uf066 (Degree) 3 6 9 M2 M3 M1 M2 0 60 60 (a) (b) (c) (d) Re S11 Normalized 1 0 200 Oe 400 Oe 600 Oe 800 Oe At \uf066 = 23\uf0b0 the extracted value of g13 is 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='592 GHz, while the values of \uf06b1 and \uf06b3 are found to be 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='60 GHz and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='711 GHz, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Since g13 \uf03c \uf06b1 and \uf06b3, therefore the interaction between M1 and M3 can be considered as weak coupling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' In the opposite case, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' when g13 > \uf06b1 and \uf06b3 it will be considered as strong coupling between two SW branches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' We have also calculated magnon–magnon cooperativity (C), which is defined as C\uf061\uf062 = g2/(\uf06b\uf061\uf06b\uf062) (\uf061,\uf062 = 1, 2, 3) and obtained C13 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='821 for the coupling between M1 and M3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' The extracted value of g\uf061\uf062, k\uf061, k\uf062, and the estimated value of C\uf061\uf062 for anticrossing points corresponds to different bias field g13 (GHz) g12 (GHz) g23 (GHz) \uf06b1(GHz) \uf06b2(GHz) \uf06b3(GHz) C13 C12 C23 23o 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='592 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='60 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='711 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='821 30o 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='82 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='423 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='660 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='515 45o 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='745 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='255 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='426 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='645 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='645 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='019 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='113 60o 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='915 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='205 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='35 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='69 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='707 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='878 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='675 Table 1 The extracted values of coupling strength (g), FWHM (2k) and calculated cooperativity factor (C) for different orientation of bias field at the anticrossing points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Values of g and k are extracted from the FMR spectra).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Real part of S11 parameter as a function of frequency to highlight the anticrossing field are shown for \uf066 = (a) 23°.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' The frequency gap in the anticrossing mode reveals the coupling strength g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' (b) Variation of cooperativity factor with the orientation of bias field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' It shows that coupling strength is stronger at \uf066 = 30\uf0b0 and 45\uf0b0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' The schematic of Hext are shown on the right side of the figure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' 8 10 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='9 \uf066 = 23 1062 Oe Frequency (GHz) Re S11 (Normalized) x y Hext \uf066 2k1 2k3 2g (a) 20 40 60 0 1 2 3 C13 C23 C12 \uf066 (Degree) Cooperativity (b) angles are listed in Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' At \uf066 = 30\uf0b0 obtained value for g13, \uf06b1, \uf06b3 and C13 are estimated 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='82, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='423, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='66, and 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='515, respectively and here this magnon-magnon coupling falls in the strong coupling regime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' From Table 1, we can see that first anticrossing at \uf066 = 45\uf0b0 also shows strong magnon-magnon coupling with C = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='019, while the second one shows weak interaction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' At \uf066 = 60\uf0b0 both the interactions are in the weak coupling regime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' 4(b) shows the \uf066- dependence of the C where it shows the tunability of coupling strength with the in-plane magnetic field orientation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' It also exhibits that the interaction between different SW branches show strong coupling in-between 30\uf0b0 to 45\uf0b0 orientation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Micromagnetic Simulation 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Static Magnetic Configuration In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' 1(d) at \uf066 = 0\uf0b0, a sharp minimum is observed which gradually vanishes for higher values of \uf066.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' The answer to this lies in the nanodot structure and its rich and flexible spin configurations which we have simulated using OOMMF software[36].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Details of the micromagnetic simulations are given in section S3 of the Supplementary Materials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' The simulations reproduce important features of the experimental SW spectra with nearly identical frequencies and number of modes besides their relative intensity variations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' The simulated static spin textures within the nanomagnet array for different bias field magnitudes Hext at \uf066 = 0\uf0b0 and 45\uf0b0 are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' At \uf066 = 0\uf0b0, the nanodot structure shows drastic variation in spin configurations with Hext.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' It shows the formation of an S-state at the lower field regime (Hext = 100 Oe) as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' At larger bias fields (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=', Hext = 800 Oe), the spins are nearly aligned along the bias- field direction (x-axis) and switch to a leaf-state (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' 5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' This transformation from S- to leaf- state occurs for 250 Oe ≤ Hext ≤ 350 Oe, where the SW frequency shows a minimum as a function of Hext.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' At \uf066 = 45\uf0b0 , this transformation is not observed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Here, for the entire field range, the static magnetic configuration shows a leaf state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' SW mode Characterization To interpret the nature of the SW modes, we have further simulated the spatial profiles of power and phase of each SW mode by using a home-built MATLAB based code Dotmag[37].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' OOMMF simulation provides magnetization (M (r, t)) information of each rectangular prism- like cell at different simulation times.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' By performing discrete Fourier transformation with respect to time in each of these cells and subsequently extracting the power and phase of the dynamic magnetization for a desired frequency gives rise to the spatial distribution of the power phase profile for that particular mode.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' 6, we have shown the power distribution profile of SW mode at \uf066 = 45\uf0b0 orientation for five different fields, Hext = 200 Oe (Hext << Hac), 400 Oe (Hext < Hac), 475 Oe (Hac), 600 Oe (Hext \uf03e Hac) and 1000 Oe (Hext >> Hac), while the phase profile for each case is shown in the inset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' The power profile at Hext = 1000 Oe indicates that at high bias field only existing mode is M3, which is boosted by all the available energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' With a gradual decrement of bias field, two additional modes M1 and M2 appear and the power of FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Simulated static magnetic configurations for Py nanodot array at four different bias magnetic- field magnitude (Hext) at \uf066 = 0\uf0b0 and \uf066 = 45\uf0b0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' We have shown here a single nanodot from the center of the array for clarity in spin configurations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' The nanodot structure shows a drastic variation in spin configurations with bias magnetic-field strength.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' 100 Oe 250 Oe 800 Oe 350 Oe \uf066 x y Hext \uf066 0 45 Y +Y 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='9 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content="2 M1 M2 M3 M4 M5 M' 0." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='9 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='2 M1 M2 M3 M4 M5 M6 M7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='9 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='2 3 6 9 12 M1 M2 M3 M4 M5 M6 Frequency (GHz) H1 H2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='9 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='2 M M1 M2 M3 M4 M5 M6 M7 H3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='9 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content="2 M ' M1 M2 M3 M4 M5 M6 Applied Field Hext (kOe) 0." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='9 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='2 3 6 9 12 M1 M2 M3 M4 O1 O2 O3 H2 Fig 2 Hext x y 1 0 Re (S11) Normalised M3 is gradually transferred to these two modes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' At the anticrossing field, Hext = 475 Oe, M2 appears as the most intense mode although M1 and M3 have significant power at this field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' At lower fields, this power is gradually transferred to M1, and at 200 Oe, barring M1 other modes FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Simulated spatial distribution of power and phase (in the inset) profiles corresponding to different SW modes at five different bias field values for \uf066 = 45\uf0b0 for the Py nanodot array.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' The applied field direction is shown at the bottom left of the figure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Symbols with different colors represent different SW modes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' The color map is shown at the upper right side of the figure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' 200 Oe 400 Oe 475 Oe 600 Oe 1000 Oe M1 M2 M3 20 0 Power (dB) Phase (rad) +\uf070 \uf070 x y Hext \uf066 \uf066 = 45 disappear.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Similar to this energy exchange, the phase profiles also exhibit interchange of mode behavior.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' At high bias fields (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=', 1000 Oe), M3 shows quantized nature in BV-like geometry with a quantization number n = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' With a decrease in the field, this mode gradually transforms into higher-order quantized mode and M2* is transformed into a quantized mode with n = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' At Hext = 475 Oe the quantization number of M1, and M3 are n = 5, and 7, respectively, while for M2*, n = 3, which is identical to the quantization number of M3 at Hext = 1000 Oe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' This transformation of mode quantization number is also seen in-between M1 and M2* as we further reduce the bias field and finally at Hext = 200 Oe, M1 shows a quantized behavior with n = 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' This transformation of power as well as mode property from one branch of SW mode to another at the anticrossing region indicates a strong interaction between these modes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' For other orientation like \uf066 = 23\uf0b0, 30\uf0b0 and 60\uf0b0, similar kind of behavior are observed, which are shown in section S6 of the Supplementary Materials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Distribution of Exchange field To understand the origin of the magnon-magnon coupling and its modulation with bias magnetic field, we have simulated the spatial distribution of the dipole-exchange field (Exchange field distribution of each dot, which is modulated by dipolar interaction of nanodot array) lines at the equilibrium for different bias field orientations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' 7 shows the exchange field map of nanodots array at eight different fields for \uf066 = 45\uf0b0 orientation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Due to inter-dot dipolar interactions, a dynamic variation of exchange field line with the bias field amplitude (for better viewing purpose, we just present a single nanodot) is observed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' The Supplementary Movie A1 shows the dynamics of this exchange field in more detail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' At lower bias fields (Hext << Hac), due to dominating effect of demagnetizing field, spins take a configuration such that at equilibrium condition the exchange field lines create three different regions within a single dot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' The field lines of center and edge regions are configured in opposite direction as denoted with yellow and green arrows in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' 7(a).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' As we increase the bias field, the region around the edge of the dot start to vanish and the center region gradually expands.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' At a very high bias field (Hext \uf03e\uf03e Hac), e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=', Hext = 1000 Oe, only the central region with unidirectional field lines are observed inside a dot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' This transformation from three mutually opposite (antiparallel) field-line configuration to uniform (parallel) configuration occurs for 450 Oe ≤ Hext ≤ 500 Oe, which is exactly the anticrossing field region for \uf066 = 45\uf0b0 orientation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' This change in exchange field profile can be observed much more clearly if we take a linescan along the bias field direction (white dotted line in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' 7(a)) as shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' 7(b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' In the inset, we have magnified the end part of the linescan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Here, it is clearly visible that below the anticrossing field (Hext = Hac = 475 Oe) the linescan has two different local maxima which transform into one maximum as we increase Hext.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' The exchange field profile for other values of \uf066 are shown in section S7 of the Supplementary Materials, where similar transformation is observed in the anticrossing field region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Our observation of correlation between these two phenomena indicates that the anticrossing gap appears only when such a variation of exchange field occurs due to the bias field strength as well as its orientation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' The internal field distribution in presence and absence of the exchange field leads to similar conclusion, which we have described in section S8 of the Supplementary Materials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Conclusion In summary, the interaction between magnons confined in a sole magnonic cavity has been realized in the strong coupling regime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' We have investigated a bias field strength and angle- dependent magnetization dynamics in diamond-shaped Py nanodot arrays using the broadband ferromagnetic resonance technique.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Our study has demonstrated that the coupling between two magnon modes is mediated by the exchange coupling inside individual nanodot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Furthermore, the coupling strength is found to be highly dependent on the orientation and strength of the bias magnetic field, leading towards the possibility of externally controlled hybrid FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Exchange field distributions for (a) single nanodot for eight different bias field values at \uf066 = 45\uf0b0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Yellow and green arrows represent the direction of exchange field at the center and edge position of the nanodot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' We have shown here a single nanodot from the center of the array for clarity in spin configurations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' The color bars are shown at the right side of the figure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' (b) Linescan of the simulated exchange field for nanodot array along the field direction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' In the inset magnified portion of simulated exchange field is shown.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' 360 420 480 540 0 250 500 1200 Oe 550 Oe 450 Oe 200 Oe Exchange Field (Oe) Distance (nm) x y Hext \uf066 (a) (b) 200 Oe 300 Oe 450 Oe 500 Oe 550 Oe 700 Oe 800 Oe 1000 Oe 8 6 4 2 1200 Oe 550 Oe 450 Oe 200 Oe Power(dB) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='9 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content="2 M1 M2 M3 M4 M5 M' 0." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='9 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='2 M1 M2 M3 M4 M5 M6 M7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='9 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='2 3 6 9 12 M1 M2 M3 M4 M5 M6 Frequency (GHz) H1 H2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='9 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='2 M M1 M2 M3 M4 M5 M6 M7 H3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='9 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content="2 M ' M1 M2 M3 M4 M5 M6 Applied Field Hext (kOe) 0." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='9 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='2 3 6 9 12 M1 M2 M3 M4 O1 O2 O3 H2 Fig 2 Hext x y 1 0 Re (S11) Normalised 800 Oe7000e600 0e200 0e500 0emagnonic devices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' The experimental results have been well reproduced by micromagnetic simulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' The power and phase profiles of the resonant modes have been numerically calculated to gain insight into the spatial nature of the dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' The transformation of power as well as mode property from one branch of SW to another, apparently support the strong interaction in-between these modes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Numerical study shows that the anticrossing gap appears when the symmetry of exchange configuration inside each nanodot is broken due to the applied bias magnetic field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' We have also observed mode softening phenomena when the static magnetic configuration switches from the S-state to the leaf state and with the variation of bias field angle it gradually disappears.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Our findings offer a new approach toward tunable magnon- magnon coupling in ferromagnetic nanostructures for applications in quantum transduction using magnons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Acknowledgements AB gratefully acknowledges the financial support from S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Bose National Centre for Basic Sciences, India (Grant No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' SNB/AB/18-19/211).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' SB acknowledges Science and Engineering Research Board (SERB), India for funding (Grant no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' CRG/2018/002080).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' SM and SC acknowledge S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Bose National Centre for Basic Sciences for senior research fellowship References [1] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Clerk, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Lehnert, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Bertet, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Petta, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Nakamura, Hybrid quantum systems with circuit quantum electrodynamics, Nature Physics 16, 257 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' [2] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Home, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Hanneke, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Jost, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Amini, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Leibfried, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Wineland, Complete Methods Set for Scalable Ion Trap Quantum Information Processing, 325, 1227 (2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' [3] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Blais, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content='-S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Huang, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Wallraff, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Girvin, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Schoelkopf, Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation, Physical Review A 69, 062320 (2004).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' [4] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Feynman, Quantum mechanical computers, Foundations of Physics 16, 507 (1986).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' [5] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Ladd, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Jelezko, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Laflamme, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Nakamura, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Monroe, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=" O'Brien, Quantum computers, Nature 464, 45 (2010)." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' [6] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Kimble, The quantum internet, Nature 453, 1023 (2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' [7] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Reiserer and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Rempe, Cavity-based quantum networks with single atoms and optical photons, Reviews of Modern Physics 87, 1379 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' [8] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Degen, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Reinhard, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Cappellaro, Quantum sensing, Reviews of modern physics 89, 035002 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' [9] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Kubo et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=', Strong coupling of a spin ensemble to a superconducting resonator, Physical review letters 105, 140502 (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' [10] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Schuster et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=', High-cooperativity coupling of electron-spin ensembles to superconducting cavities, Physical review letters 105, 140501 (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' [11] Ö.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Soykal and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Flatté, Strong field interactions between a nanomagnet and a photonic cavity, Physical review letters 104, 077202 (2010).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' [12] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Cao, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Yan, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Huebl, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Goennenwein, and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Bauer, Exchange magnon-polaritons in microwave cavities, Physical Review B 91, 094423 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' [13] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Klingler et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=', Spin-torque excitation of perpendicular standing spin waves in coupled YIG/Co heterostructures, Physical review letters 120, 127201 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' [14] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Qin, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Hämäläinen, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Van Dijken, Exchange-torque-induced excitation of perpendicular standing spin waves in nanometer-thick YIG films, Scientific reports 8, 1 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' [15] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Chen, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Liu, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Liu, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Xiao, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Xia, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Bauer, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Wu, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Yu, Strong interlayer magnon-magnon coupling in magnetic metal-insulator hybrid nanostructures, Physical review letters 120, 217202 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' [16] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Chen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=', Excitation of unidirectional exchange spin waves by a nanoscale magnetic grating, Physical Review B 100, 104427 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' [17] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Chen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=', Excitation of unidirectional exchange spin waves by a nanoscale magnetic grating, Physical Review B 100, 104427 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' [18] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Liensberger et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=', Exchange-enhanced ultrastrong magnon-magnon coupling in a compensated ferrimagnet, Physical review letters 123, 117204 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' [19] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' MacNeill, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Hou, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Klein, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Zhang, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Jarillo-Herrero, and L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Liu, Gigahertz frequency antiferromagnetic resonance and strong magnon-magnon coupling in the layered crystal crcl 3, Physical review letters 123, 047204 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' [20] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Tabuchi, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Ishino, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Ishikawa, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Yamazaki, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Usami, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Nakamura, Hybridizing ferromagnetic magnons and microwave photons in the quantum limit, Physical review letters 113, 083603 (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' [21] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Agarwal, Vacuum-field Rabi splittings in microwave absorption by Rydberg atoms in a cavity, Physical review letters 53, 1732 (1984).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' [22] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Tabuchi, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Ishino, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Noguchi, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Ishikawa, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Yamazaki, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Usami, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Nakamura, Coherent coupling between a ferromagnetic magnon and a superconducting qubit, Science 349, 405 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' [23] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Hisatomi, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Osada, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Tabuchi, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Ishikawa, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Noguchi, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Yamazaki, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Usami, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Nakamura, Bidirectional conversion between microwave and light via ferromagnetic magnons, Physical Review B 93, 174427 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' [24] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Lachance-Quirion, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Tabuchi, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Gloppe, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Usami, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Nakamura, Hybrid quantum systems based on magnonics, Applied Physics Express 12, 070101 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' [25] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Park, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Eames, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Engebretson, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Berezovsky, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Crowell, Spatially resolved dynamics of localized spin-wave modes in ferromagnetic wires, Physical review letters 89, 277201 (2002).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' [26] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Jorzick, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Demokritov, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Hillebrands, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Bailleul, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Fermon, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Guslienko, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Slavin, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Berkov, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Gorn, Spin wave wells in nonellipsoidal micrometer size magnetic elements, Physical Review Letters 88, 047204 (2002).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' [27] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Bailleul, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Höllinger, and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Fermon, Microwave spectrum of square Permalloy dots: Quasisaturated state, Physical Review B 73, 104424 (2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' [28] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Carlotti, Pushing down the lateral dimension of single and coupled magnetic dots to the nanometric scale: Characteristics and evolution of the spin-wave eigenmodes, Applied Physics Reviews 6, 031304 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' [29] Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Zhang, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Vogel, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Jungfleisch, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Hoffmann, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Nie, and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Novosad, Tuning edge- localized spin waves in magnetic microstripes by proximate magnetic structures, Physical Review B 100, 174434 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' [30] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Dai, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Xie, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Pan, and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Ma, Strong coupling between magnons confined in a single magnonic cavity, Journal of Applied Physics 127, 203902 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' [31] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Adhikari, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Sahoo, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Mondal, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Otani, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Barman, Large nonlinear ferromagnetic resonance shift and strong magnon-magnon coupling in N i 80 F e 20 nanocross array, Physical Review B 101, 054406 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' [32] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Adhikari, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Choudhury, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Barman, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Otani, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Barman, Observation of magnon– magnon coupling with high cooperativity in Ni80Fe20 cross-shaped nanoring array, Nanotechnology 32, 395706 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' [33] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Choudhury, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Majumder, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Barman, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Otani, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Barman, Active control of mode crossover and mode hopping of spin waves in a ferromagnetic antidot lattice, Physical Review Applied 10, 064044 (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' [34] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Majumder, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Choudhury, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Barman, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Otani, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Barman, Reconfigurable spin-wave dynamics in two-dimensional quasiperiodic magnonic crystals, Physica E: Low-dimensional Systems Nanostructures 134, 114901 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' [35] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Mahato, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Choudhury, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Mandal, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Barman, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Otani, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Barman, Tunable configurational anisotropy in collective magnetization dynamics of Ni80Fe20 nanodot arrays with varying dot shapes, Journal of Applied Physics 117, 213909 (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' [36] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Donahue, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Porter, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Lau, and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' McMichael, Interagency report NISTIR 6376.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' National institute of standards and technology, Gaithersburg, NIST J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' 114, 57 (1999).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' [37] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Kumar, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Dmytriiev, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Ponraj, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} +page_content=' Barman, Numerical calculation of spin wave dispersions in magnetic nanostructures, Journal of Physics D: Applied Physics 45, 015001 (2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/6NFJT4oBgHgl3EQflSzb/content/2301.11583v1.pdf'} diff --git a/79E0T4oBgHgl3EQfwQGR/content/tmp_files/2301.02630v1.pdf.txt b/79E0T4oBgHgl3EQfwQGR/content/tmp_files/2301.02630v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..e7260b825b503059783a6eb4ce4675d95f323c25 --- /dev/null +++ b/79E0T4oBgHgl3EQfwQGR/content/tmp_files/2301.02630v1.pdf.txt @@ -0,0 +1,1079 @@ +arXiv:2301.02630v1 [math.AG] 15 Aug 2022 +HEIGHT PAIRING AND NEARBY CYCLES +A. Beilinson +To Yuri Ivanovich Manin with deepest gratitude +Abstract. We prove that, as was conjectured by Spencer Bloch, the Hodge period +of some limit Hodge structures equals the height pairing of algebraic cycles on the +resolution of singularities of the singular fiber. +§1. Introduction: the theorem and the idea of the proof +1.1. The Hodge period. +Suppose we have a Q-Hodge structure E with weights +in [−2, 0] equiped with isomorphisms ι0 : grW +0 E = Q(0), ι−2 : grW +−2E = Q(1). +One defines the Hodge period ⟨E⟩ = ⟨E, ι0, ι−2⟩ ∈ R as follows. +Consider the +R-Hodge structure E ⊗ R. Since the weight filtration on any R-Hodge structure +with two consequitive weights (canonically) splits one has E ⊗ R = G ⊕ grW +−1E ⊗ R +where G is an extension of R(0) by R(1). Our ⟨E⟩ is the class of this extension in +Ext1(R(0), R(1)) = R. +Remark. One computes ⟨E⟩ explicitly as follows. Let ER be E ⊗ R viewed a plain +R-vector space, EC be its complexification. Let 1F 0 ∈ F 0 ⊂ EC be any lifting of +ι−1 +0 (1). Then ⟨E⟩ is the image of 1F 0 in (ER + W−1EC)/(ER + (F 0 ∩ W−1EC)) +∼ +← +W−2EC/W−2ER = C/2πiR +∼ +← R. +1.2. A geometric example. Let Y be a smooth proper equidimensional algebraic +variety over C. We denote by Hi(Y ) the homology of Hi(Y (C), Q) seen as an object +of the category of Q-Hodge structures; ditto for relative homology, etc. Let Zm(Y ) +be the group of algebraic m-cycles on Y with Q-coefficients, Zm(Y )0 := Ker(cl : +Zm(Y ) → H2m(Y )(−m)) be the subgroup of cycles homologically equivalent to +zero. For a closed subset P ⊂ Y let Zm(P) ⊂ Zm(Y ) be the subgroup of cycles +supported on P, Zm(P)0 := Zm(P) ∩ Zm(Y )0. For an m-cycle A on Y we denote +by |A| its support (which is a closed subset of Y ). +Suppose m + m′ = dim Y − 1 and we have A ∈ Zm(Y )0, B ∈ Zm′(Y )0 such that +|A| ∩ |B| = ∅. Set E|A|,|B| := H2m+1(Y ∖ |B|, |A|)(−m). Notice that E|B|,|A| = +E∗ +|A|,|B|(1) by the Poicar´e duality. +Lemma. E|A|,|B| has weights in [−2, 0]. One has grW +−2E|A|,|B| = Zm′(|B|)∗ +0(1), +grW +−1E|A|,|B| = H2m+1(Y )(−m), grW +0 E|A|,|B| = Zm(|A|)0. +Proof. Notice that H2m(|A|)(−m) = Zm(|A|) and H>2m(|A|) = 0. By the Poincar´e +duality Hi(Y, Y ∖|B|)(− dim Y ) = H2 dim Y −i(|B|)∗, hence H2m+2(Y, Y ∖|B|)(−m) = +1991 Mathematics Subject Classification. Primary 14C25; Secondary 14D07. +Key words and phrases. height pairing, nearby cycles, Hodge periods. +Typeset by AMS-TEX +1 + +2 +A. BEILINSON +(H2m′(|B|)(−m′))∗(1) and H<2m+2(Y, Y ∖ |B|) = 0. Now use the long exact ho- +mology sequences for (Y ∖ |B|, |A|) and (Y, Y ∖ |B|). +□ +Denote by EA,B the Hodge structure obtained from H|A|,|B| by pullback by A +and pushforward by B: +(1.2.1) +Zn(|B|)∗ +0(1) +֒→ +E|A|,|B| +։ +Zm(|A|)0 +B ↓ +↑ A +Q(1) +֒→ +EA,B +։ +Q(0) +Our EA,B is as in 1.1, so we have ⟨EA,B⟩ ∈ R. +1.3. The height pairing (cf. [B], [Bl1]). Let k be a subfield of C and suppose that +Y comes from a variety Yk over k, Y = Yk ⊗ C. Let Zm(Yk) ⊂ Zm(Y ) be the +group of algebraic cycles with Q-coefficients on Yk, Zm(Yk)0 := Zm(Yk) ∩ Zm(Y )0, +and let CHm(Yk)0 ⊂ CHm(Yk) be their quotients modulo the rational equivalence +relation. One checks (see §2) that if A, B as above are cycles on Yk then the class +of ⟨EA,B⟩ in R/Q log |k×| depends only on linear equivalence classes of A and B, +and so one has a bilinear height pairing +(1.3.1) +⟨ , ⟩Yk : CHm(Yk)0 ⊗ CHm′(Yk)0 → R/Q log |k×|. +Namely ⟨a, b⟩Yk = ⟨EA,B⟩ where A, B are any cycles on Yk of classes a, b such that +|A| ∩ |B| = ∅. +Remark. If k = Q and we assume some motivic rationality conjectures (see (2.2.1), +(2.2.3) of [B]) then ⟨EA,B⟩ can be corrected (by adding a finite sum of corrections +log(p)⟨EA,B⟩p where p is a prime, ⟨EA,B⟩p is defined using the Gal(Qp)-action on +EA,B ⊗ Qℓ) so that the resulting real number depends only on rational equivalence +classes of A and B. In this manner (1.3.1) lifts naturally to an R-valued pairing. +1.4. Finding elements of Chow groups that are homologically equivalent to zero +is an art. Spencer Bloch described one situation where they naturally arise, and +conjectured that the height pairing of his cycles can be computed in s different way, +namely, as Hodge periods of some nearby cycles. We start with preliminaries. +Let X be a smooth variety over C of pure dimension n ≥ 2, S be a smooth curve, +0 ∈ S be a closed point, and f : X → S be a proper map which is smooth otside +a finite subset {xα} of the fiber X0 = f −1(0). Let Zα be the projectivized tangent +cone to X0 at xα; this is a hypersurface in the projectivization Pα := P(TxαX) of +the tangent space; denote by dα its degree. We assume the next condition: +(∗) All hypersurfaces Zα are smooth. +Let π : Y → X0 be the blowup of X0 at {xα}. Condition (∗) implies that Y is +a smooth variety, and Zα are pairwise disjoint divisors on Y . Set Z := ⊔Zα and +K := Ker(Hn−2(Z) → Hn−2(Y )) = Im(Hn−1(Y, Z) → Hn−2(Z)). If n = 2 then let +K0 ⊂ K be the subgroup of those elements A = ΣAα that deg Aα = 0 for every +α. One has a natural map Hn−1(X0) → Hn−1(Y, Z) defined as the composition +Hn−1(X0) → Hn−1(X0, {xα}) +∼ +← Hn−1(Y, Z). +Lemma. (i) The map Hn−1(X0) → Hn−1(Y, Z) is an isomorphism if n > 2. If +n = 2 it is injective and its image equals the preimage of K0 in Hn−1(Y, Z). +(ii) Hn−1(Y, Z) has weights 1 − n and 2 − n, and grW +2−nHn−1(Y, Z) = K. The map + +HEIGHT PAIRING AND NEARBY CYCLES +3 +Hn−1(Y ) → Hn−1(Y, Z) has image W1−nHn−1(Y, Z). If n is even then Hn−1(Y ) +∼ +→ +W1−nHn−1(Y, Z). +Proof. (i) Replace Hn−1(Y, Z) by Hn−1(X0, {xα}) and use the long exact homology +sequence. (ii) The first assertions follow from the exact homology sequence and +purity of weights on H·(Y ), H·(Z). The last one comes because Hn−1(Z) = 0 if n +is even (since Zα are hypersurfaces). +□ +1.5. Consider a variation of Q-Hodge structures V on S ∖ {0} with fibers Vs = +Hn−1(Xs). One has a nondegenerate intersection pairing ( , ) : V ⊗ V → Q(n − 1). +Choose a parameter t at 0 ∈ S and consider the limiting (a.k.a. nearby cycles) +Hodge structure ψtV. Let ψun +t V be its direct summand where the monodromy acts +unipotently. Since ψun +t +commutes with duality, ( , ) yields self-duality pairing on +it that we denote again by ( , ). One has the log of monodromy morphism N = +NV : ψun +t V(1) → ψun +t V and the specialization morphism sp : ψun +t V → Hn−1(X0). +Let (ψun +t V)N := Coker(NV) be the monodromy coinvariants. The next assertion +follows from the local invariant cycles theorem, see 3.5 for a detailed proof: +Proposition. sp factors through the isomorphism (ψun +t V)N +∼ +→ Hn−1(X0). +Corollary. ψun +t V has weights in [−n, 2 − n]. One has grW +2−nψun +t V = K if n > 2 +and grW +2−nψun +t V = K0 if n = 2. By self-duality, grW +−nψun +t V = (grW +2−nψun +t V)∗(n − 1). +If n is even then grW +1−nψun +t V = Hn−1(Y ). +Proof. Since ψun +t V is self-dual and N is nilpotent, the claim follows from the propo- +sition and the lemma in 1.4. +□ +1.6. Bloch cycles. We are in the setting of 1.4; suppose n is even, n = 2m + 2. Let +A = ΣAα be an m-cycle on Z. We say that A is a Bloch cycle if it is homologically +equivalent to zero on Y , i.e., cl(A) lies in K(−m) ⊂ Hn−2(Z)(−m). If m = 0 then +we demand, in addition, that cl(A) ∈ K0 ⊂ K. +Lemma. If A is a Bloch cycle then each cl(Aα) ∈ Hn−2(Zα)(−m) is primitive. +Proof. The composition Hn−2(Z)(−m) → Hn−2(Y )(−m) → Hn−4(Zα)(−m + 1), +where the second arrow is the pullback by Zα ֒→ Y , sends any class c = Σcα to +cα ∩ c1(O(−1)) (for O(−1) is the normal bundle to Zα in Y ). This composition +kills cl(Aα) since the first arrow does. +□ +If A, B are two Bloch cycles then we denote by Eψ +A,B = Eψ +A,B,t the Hodge struc- +ture obtained from ψun +t V(−m) by pullback by cl(A) and pushforward by cl(B)∗: +(1.6.1) +K∗(m + 1) +→ +ψun +t V(−m) +→ +K(−m) +cl(B)∗ ↓ +↑ cl(A) +Q(1) +֒→ +Eψ +A,B +։ +Q(0) +Our Eψ +A,B is as in 1.1 so we have ⟨Eψ +A,B⟩ ∈ R. +1.7. Examples. Consider the case when we have single singular point x0 ∈ X0 of +f and the singularity at x0 is quadratic. Then the monodromy action on ψtV is +unipotent, the only possible Bloch cycle is the difference A of the rulings of the +quadric Z0, and it is actually a Bloch cycle if and only if the monodromy action on +ψtV is nontrivial or, equivalently, the Hodge structure on Hn−1(X0) is not pure. + +4 +A. BEILINSON +Lemma. (i) If m = 0 then the curve X0 can have either 1 or 2 irreducible compo- +nents, and A is a Bloch cycle if and only if X0 is irreducible. +(ii) If X/S is a family of quadratic hypersurfaces in Pn then A is not a Bloch cycle. +(iii) If X/S is a family of hypersurfaces of degree d on a given smooth projective +variety P then A is a Bloch cycle if d is large enough. +Proof. (i) is clear. (ii) follows since the global monodromy for quadratic hypersur- +faces is ±1, and so it can’t contain non-trivial unipotent local monodromy. +(iii) Consider the corresponding map r : S → B := {hypersurfaces of degree +d on P}. Since X is smooth r is transversal to the locus D ⊂ B of degenerate +hypersurfaces. Replacing S by a germ of another transversal to D that intersects +D near r(0) would not change the topology of X over a small disc around 0. So we +can assume that S is a Zariski open subset of the base of a Lefschetz pencil on P. +Then, since local monodromies of a Lefschetz pencil are all conjugate, triviality of +one local monodromy amounts to triviality of the global monodromy. Thus A is a +Bloch cycle if and only if the global monodromy on V is not trivial. Let us check +that this happens for large enough d. +If R ⊂ P is the axis of our pencil then H·(X) = H·(P) ⊕ H·−2(R)(−1), and so +hn−1,0(P) = hn−1,0(X) which equals hn−1,0(Xs) if the global monodromy is trivial. +Thus the monodromy is not trivial when hn−1,0(Xs) > hn−1,0(P). To finish the +argument it remains to notice that hn−1,0(Xs) ≥ dim(H0(P, Ωn +P (d))/H0(P, Ωn +P )), +and so it tends to ∞ when d → ∞. +□ +1.8. Statement of the theorem. Now suppose we have a subfield k ⊂ C and our +datum is defined over k, i.e., there is Xk/Sk, a closed point 0 of Sk, a parameter t +on Sk at 0, and Bloch cycles A, B on Zk such that X/S, etc., come by base change +k → C. Let a ∈ CHm(Yk)0, b ∈ CHm(Yk)0 be the classes of A and B. The next +result was conjectured by Spencer Bloch: +Theorem. One has ⟨a, b⟩Yk = ⟨Eψ +A,B⟩ mod Q log |k×|. +In case n = 1 the theorem was proven in [BlJS]. +Remark. Suppose we are in the situation of Remark in 1.3. If ⟨Eψ +A,B⟩ is corrected +in the same way as was discussed there, then the theorem lifts to an equality of real +numbers. The proof does not change; we will not discuss it below. +1.9. Reformulation of the theorem that discards Hodge periods; the idea of the +proof. Let A′, B′ be cycles on Yk of classes a, b such that |A′| ∩ |B′| = ∅ (no- +tice that they are, most probably, not supported on Zk). We want to show that +⟨EA′,B′⟩ = ⟨Eψ +A,B⟩ (see 1.2, 1.6). Let us compare the Hodge structures E = EA′,B′ +and Eψ = Eψ +A,B themselves. Their weights lie in [−2, 0], and one has a canonical +identification grW +· E = grW +· Eψ. Indeed, grW +0 E(ψ) = Q(0), grW +−2E(ψ) = Q(1) by the +constructions, and grW +−1E = H2m+1(Y )(−m) = grW +−1E(ψ) by the lemma in 1.2, and +the one in 1.4 combined with the corollary in 1.5. This identification lifts (uniquely) +to W−1E = W−1Eψ and E/W−2E = Eψ/W−2Eψ. Indeed, the classes of extensions +0 → H2m+1(Y )(−m) → E(ψ)/W−2E(ψ) → Q(0) → 0 both equal Deligne cohomol- +ogy class clD(A) (a.k.a. Griffiths’ Abel-Jacobi periods) of A; by duality, the classes +of (the duals to) extensions 0 → Q(1) → W−1E(ψ) → H2m+1(Y )(−m) → 0 both +equal to clD(B) (see loc.cit.). + +HEIGHT PAIRING AND NEARBY CYCLES +5 +Now suppose we have a Q-Hodge structure H of weight −1 and two classes +a ∈ Ext1(Q(0), H), b ∈ Ext1(H, Q(1)). +Consider the set EH +a,b = EH(H)a,b of +all Hodge structures E with weights in [−2, 0] and equipped with identifications +grW +0 E = Q(0), grW +−1E = H, grW +−2E = Q(1) such that the extensions E/W−2E and +W−1E have classes a and b. The group Ext1(Q(0), Q(1)) = C× ⊗ Q acts on EH +a,b by +the Baer sum action, and EH +a,b is a C× ⊗ Q-torsor. Notice that for q ∈ C× one has +⟨q · E⟩ = log |q| + ⟨E⟩. Applying this format to H = H2m+1(Y )(−m), a = clD(A), +b = clD(B) and EA′,B′, Eψ +A,B ∈ EH +a,b we get EA′,B′ − Eψ +A,B ∈ C× ⊗ Q. Now the +theorem in 1.8 follows immediately from the next result (notice that the Hodge +periods and the height pairing play no role here): +Theorem. One has EA′,B′ − Eψ +A,B ∈ k× ⊗ Q ⊂ C× ⊗ Q. +The theorem would be an immediate corollary of the motivic formalism if all +the above constructions could be spelled in motivic world: Indeed, we would have +then a motivic version EM of EH which is an Ext1 +M(Q(0), Q(1)) = k× ⊗ Q-torsor +equipped with the Hodge realization embedding EM ֒→ EH; our EA′,B′, Eψ +A,B +would come from elements of EM, and so their difference lies in k× ⊗ Q. The only +problem is that in the present day formalism of motives, due to Voevodsky, Ayoub, +and Cisinski-D´eglise, the t-structure is not available, so we do not have the motivic +version of separate homology groups like Hi(Y ). The actual proof is an exercise in +spelling out the constructions in a way that makes the t-structure redundant. +I am very grateful to Spencer Bloch for explaining me his conjecture and stimu- +lating discussions (pity Spencer refused to coauthor the article), to Volodya Drinfeld +for valuable comments and discussions, and to Luc Illusie for calling my attention +to the construction of [I] which helped to clearify and simplify the argument. +§2. The height pairing and the construction of EM +a,b ∈ EM +a,b ⊂ EH +a,b +This section is a variation on the theme of [Bl2] and [G]. +2.1. Let C be a stable dg category. It yields two other dg categories C(1) and C(2) +constructed as follows: +An object of C(1) is a closed morphism α : M → N of degree 0 in C. One has +Hom((M, N, α), (M ′, N ′, α′))i = Hom(M, M ′)i ×Hom(N, N ′)i ×Hom(M, N ′)i+1 ⊂ +Hom(Cone(α), Cone(α′))i, and the differential is defined so that the latter embed- +ding is a morphism of complexes; the composition of morphisms is defined in a sim- +ilar way. There are three dg functors C(1) → C which send (M, N, α) to M, N, and +Cone(α) respectively. We can view C(1) as the category of distinguished triangles, +and the rotation yields an autoequivalence ρ : C(1) → C(1) which sends α : M → N +to ρ(α) : N → Cone(α); the inverse autoequivalence is ρ−1(α) : Cone(α)[−1] → M. +An object of C(2) is a datum (P, M, Q, α, β, κ) where P, M, Q are objects of C, +α ∈ Hom(P, M)1, β ∈ Hom(M, Q)1 are closed maps, and κ ∈ Hom(P, Q)1 is such +that d(κ) = βα; we sometimes abbreviate it to (α, β, κ). One can assign to such a +datum an object E = E(α, β, κ) ∈ C which equals P ⊕ M ⊕ Q with α, β, and −κ +added as the components to the differential.1 There is a filtration Q ⊂ Cone(β : +M[−1], Q) ⊂ E, and morphisms in C(2) are the same as morphisms between the +1Thus E = Cone((α, κ) : P [−1] → Cone(β : M[−1] → Q)) = Cone((κ, β) : Cone(α : P [−2] → +M[−1]) → Q). + +6 +A. BEILINSON +corresponding objects E that preserve this filtration. +We have two dg functors +C(2) → C(1) which send to (α, β, κ) to α : P[−1] → M and β : M → Q[1], and +six dg functors C(2) → C which send (α, β, κ) to P, M, Q, Cone(α : P[−1] → M), +Cone(β : M[−1] → Q), and E(α, β, κ) respectively. +The dg category C(3) carries a natural involution σ which sends (P, M, Q, α, β, κ) +to the object (Q[−1], E(α, β, κ), P[1], ασ, βσ, 0) where ασ and βσ are the evident +embedding and projection. +Remark. One can view an object (α, β, κ) ∈ C(2) as an object of C equipped with +a 3-step filtration in two different ways. Namely, this could be E(α, β, κ) equipped +with an evident filtration with successive quotients Q, M, and P. Or this could be +M equipped with a filtration whose successive quotients are P[−1], E(α, β, κ), and +Q[1]. The involution σ exchanges the two perspectives. +2.2. For C as above we denote by C× the ∞-groupoid of its homotopy equivalences, +by C×τ the corresponding 1-truncaded plain groupoid, and by HC the homotopy +category of C. For S, T ∈ C set Exti(S, T ) := HiHom(S, T ) = HomHC(S, T [i]). +Denote by Ext(S, T ) the plain Picard groupoid of extensions that corresponds to +the two-term complex τ [0,1]Hom(S, T ). +For M, N ∈ C let C(1)× +M,N be the ∞-groupoid of collections (α′ : M ′ → N ′, ιM, ιN) +where (α′ : M ′ → N ′) ∈ C(1) and ιM : M → M ′, ιN : N → N ′ are homotopy equiv- +alences. It is equivalent to the Picard ∞-groupoid that corresponds to the complex +τ ≤0Hom(M, N). The 1-truncated plain Picard groupoid C(1)×τ +M,N +corresponds to the +two-term complex τ [−1,0]Hom(M, N). +Similarly, for three objects P, M, Q ∈ C we have the ∞-groupoid C(2)× +P,M,Q whose +objects are data (P ′, M ′, Q′, α′, β′, κ′, ιP , ιM, ιQ) where (P ′, M ′, Q′, α′, β′, κ′) ∈ C(2) +and ιP : P → P ′, ιM : M → M ′, ιQ : Q → Q′ are homotopy equivalences. +The 1-truncated plain groupoid C(2)×τ +P,M,Q contains a normal subgroup Ext0(P, Q) = +HomHC(P, Q). +Let by E = E(M) = E(P, M, Q) be the quotient groupoid. +It +is equivalent to the groupoid of triples (α, β, κ) where α ∈ Hom(P, M)1, β ∈ +Hom(M, Q)1 are closed maps, and κ ∈ Hom(P, Q)1/d(Hom(P, Q)0) is such that +d(κ) = βα; a morphism (α, β, κ) → (α′, β′, κ′) in E is a pair (φ, ψ) where φ ∈ +Hom(P, M)0/d(Hom(P, M)−1), ψ ∈ Hom(M, Q)0/d(Hom(M, Q)−1) are such that +α′ − α = d(φ), β′ − β = d(ψ), κ′ − κ = βφ + ψα + ψd(φ). +The projection C(2) +P,M,Q → C(1) +P [−1],M × C(1) +M,Q[1] yields a map of plain groupoids +E(P, M, Q) → C(1)×τ +P [−1],M × C(1)×τ +M,Q[1] = Ext(P, M) × Ext(M, Q), (α, β, κ) �→ (α, β). +The group Ext1(P, Q) acts on E by translations of κ, and non-empty fibers Eα,β +are Ext1(P, Q)-torsors. +Remark. E(P, M, Q) is naturally functorial with respect to P and Q: every pair +of closed morphisms µ : P1 → P and ν : Q → Q1 yields a map E(P, M, Q) → +E(P1, M, Q1), (α, β, κ) �→ (αµ, νβ, νκµ); is compatible with the Ext1(P, Q)-action +via the map (µ∗, ν∗) : Ext1(P, Q) → Ext1(P1, Q1). +Suppose Ext2(P, Q) = 0. +Then Eα,β are non-empty, and the addition maps +Eα1,β × Eα2,β → Eα1+α2,β, Eα,β1 × Eα,β2 → Eα,β1+β2 define on E the structure of +an Ext1(P, Q)-biextension of (Ext(P, M), Ext(M, Q)). +2.3. In our first example C is the dg category whose homotopy category is the +bounded derived category DH of the category H of Q-Hodge structures, and + +HEIGHT PAIRING AND NEARBY CYCLES +7 +P = Q(0), Q = Q(1). We denote the corresponding E by EH = EH(M). Then +Ext̸=1 +DH(P, Q) = 0 and Ext1 +DH(P, Q) = C× ⊗ Q, so EH is a C× ⊗ Q-biextension of +(Ext(Q(0), M), Ext(M, Q(1))). +Let Ext1 +0(Q(0), M) ⊂ Ext1(Q(0), M), Ext1 +0(M, Q(1)) ⊂ Ext1(M, Q(1)) be the +subgroups of those elements a, b that the maps H0a : Q(0) → H1M, H−1b : +H−1M → Q(1) vanish. Let Ext0(Q(0), M) ⊂ Ext(Q(0), M), etc., be the Picard +groupoids of such extensions. +Lemma. Suppose that Hom(Q(0), H0M) = Hom(H0M, Q(1)) = 0. +(i) The restriction of EH to (Ext0(Q(0), M), Ext0(M, Q(1))) descends to the C×⊗Q- +biextension of (Ext1 +0(Q(0), M), Ext1 +0(M, Q(1))). +(ii) EH is naturally functorial with respect to M: if ϕ : M → M ′ is a morphism, +and we have a′ ∈ Ext1 +0(Q(0), M ′), b′ ∈ Ext1 +0(M ′, Q(1)) with ϕ∗(a) = a′, ϕ∗(b′) = b +then there is a canonical identification EH(M)a,b = EH(M ′)a′,b′. +(iii) The isomorphisms Ext1 +0(Q(0), M) +∼ +→ Ext1(Q(0), H0M), Ext1 +0(M, Q(1)) +∼ +→ Ext1 +(H0M, Q(1)) which assign to an extension its zero cohomology, lifts naturally to an +isomorphism of biextensions H0 : EH(M) +∼ +→ EH(H0M). One has EH0 = H0E. +Proof. Let us prove (i); the rest is clear. We need to check that for every closed α ∈ +Hom1 +0(Q(0), M), β ∈ Hom1 +0(M, Q(1)) the action of Aut(α)×Aut(β) = Hom(Q(0), M) +×Hom(M, Q(1)) on EH +α,β is trivial. +Since H has homological dimension 1 our M is isomorphic to the direct sum of its +homologies and so Aut(α) = Ext1(Q(0), H−1M), Aut(β) = Ext1(H1(M), Q(1)) by +the condition on M. The action of (e, h) ∈ Ext1(Q(0), H−1M)×Ext1(H1(M), Q(1)) +on EH +α,β is the translation by H−1(β)e + hH0(α) which is 0 since α, β ∈ Ext1 +0. +□ +2.4. Lemma. Suppose that H0M is pure of weight −1 (which implies the condition +of the lemma in 2.3). Then the function EH(M) → R, (α, β, κ) �→ ⟨E(α, β, κ)⟩ := +⟨H0E(α, β, κ)⟩, see 1.1, is a natural trivialization of the R-biextension log |EH(M)|. +Proof. Everything said in 2.3 works for the category HR of R-Hodge structures. The +extension of scalars functor H → HR, ? �→? ⊗ R, yields a morphism of our biex- +tensions EH(M) → EHR(M ⊗ R). The map Ext1(Q(0), Q(1)) → Ext1(R(0), R(1)) +equals log | | after the standard identifications of the Ext groups with, respectively, +C× ⊗ Q and R. +Since Ext1(R(0), H0M ⊗ R) = Ext1(H0M ⊗ R, R(1)) = 0 by +the condition on M, one has EHR(M ⊗ R) = EHR(H0M ⊗ R) = R. +The map +EH(M) → EHR(M ⊗ R) = R is ⟨ ⟩ of 1.1. +□ +2.5. Let k ⊂ C be a subfield. Denote by DM(k) the dg category of geometric +Voevodsky Q-motives over k. We have the Hodge realization dg functor DM(k) → +DH, M �→ M H. +Consider the story of 2.2 for C = DM(k) with P = Q(0), +Q = Q(1). As before one has Ext̸=1 +DM(k)(Q(0), Q(1)) = 0, and there is a canonical +identification Ext1(Q(0), Q(1)) = k× ⊗ Q such that the Hodge realization map +between the Ext1’s is the embedding k× ⊗ Q ֒→ C× ⊗ Q. So for any M ∈ DM(k) +we get a k× ⊗ Q-biextension of (Ext1(Q(0), M), Ext1(M, Q(1))) together with the +Hodge realization morphism EM(M) → EH(M) := EH(M H) of the biextensions. +Remark. Since the homomorphism k× ⊗ Q ֒→ C× ⊗ Q is injective, the maps of +torsors EM(M)α,β → EH(M)α,β := EH(M)αH,βH are injective too. +We define Ext1 +0(Q(0), M) ⊂ Ext1 +0(Q(0), M) and Ext1 +0(M, Q(1)) ⊂ Ext1(M, Q(1)) +as preimages of the Ext1 +0 subgroups of the Hodge setting by the Hodge realiza- + +8 +A. BEILINSON +tion maps. +Assume that H0M H is pure of weight −1. +Then (i) and (ii) of +the lemma in 2.3 remain true in the DM(k) setting (with C× replaced by k×): +this follows from loc.cit. by Remark above. Thus we have a k× ⊗ Q-biextension +EM(M) of (Ext1 +0(Q(0), M), Ext1 +0(M, Q(1))) together with a map of biextensions +EM(M) → EH(M), so the lemma in 2.4 provides a natural trivialization of the +R-biextension log |EM(M)|. The image of EM +a,b in R/Q log |k×| depends only on +a, b ∈ Ext1 +0(M, Q(1)) × Ext1 +0(Q(0), M), and we denote it by ⟨a, b⟩M. It is clearly +biadditive with respect to a, b.2 We have defined a canonical height pairing +(2.5.1) +⟨ ⟩M : Ext1 +0(Q(0), M) × Ext1 +0(M, Q(1)) → R/Q log |k×|. +2.6. We return to the situation of 1.3 and set M := M(Yk)(−m)[−1 − 2m] where +M(Yk) is the motive of Yk. One has Ext1(Q(0), M) = CHm(Yk), Ext1(M, Q(1)) = +CHm′(Yk) by the Poincar´e duality, and Ext1 +0 are the subgroups CH(Yk)0 of cycles +homologically equivalent to zero. Therefore we get a k× ⊗ Q-biextension EM of +(CHm(Yk)0, CHm′(Yk)0), the map of biextensions EM → EH, the trivialization of +log |EM|, and the height pairing ⟨ , ⟩M : CHm(Yk)0 × CHm′(Yk)0 → R/Q log |k×|. +By (iii) of the lemma in 2.3 one has H0 : EH(M) +∼ +→ EH(H2m+1(Y )(−m)). For +a ∈ CHm(Yk)0, b ∈ CHm′(Yk)0 pick, as in 1.3, cycles A, B that represent them +such that |A| ∩ |B| = ∅.3 Let us construct (a, b, κA,B) ∈ EM +a,b such that the Hodge +realization EH +A,B of EM +A,B := E(a, b, κA,B) (see 2.1) has zero cohomology H0EH +A,B +equal to the Hodge structure EA,B from 1.3. This would imply that for our M the +height pairing (2.5.1) equals (1.3.1). +The composition of the maps M(|A|) +α→ M(Yk) +β→ M(Yk, Yk ∖ |B|) is naturally +homotopic to 0: indeed, M(Yk, Yk ∖ |B|) := Cone(M(Yk ∖ |B|) → M(Yk)), and the +homotopy κ|A|,|B| is M(|A|) → M(Yk ∖|B|) ⊂ Cone. Thus we have (α, β, κ|A|,|B|) ∈ +DM(2) (see 2.1). Notice that E(α, β, κ|A|,|B|) = M(Yk ∖ |B|, |A|). +One has Ext−2m(Q(m), M(|A|)) = Zm(|A|) := the group of m-cycles supported +on |A| (recall that dim |A| = m), and Ext2m+2(M(Yk, Yk ∖ |B|), Q(m + 1)) = +Zm′(|B|) by the Poincar´e duality. +Therefore we have (αA, Bβ, Bκ|A|,|B|A) = +(Q(m)[2m+1], M(Yk), Q(m)[2m+2], αA, Bβ, Bκ|A|,|B|A) ∈ DM(2). The promised +(a, b, κA,B) ∈ EM +a,b is (αA, Bβ, Bκ|A|,|B|A)(−m)[−1 − 2m]. The fact that H0EH +A,B +equals the Hodge structure EA,B from 1.3 follows from the construction. +§3. The unipotent nearby cycles in the Hodge setting +3.1. A nearby cycles reminder. In this section we play with algebraic varieties over +C. For an algebraic variety X we denote by H(X) the abelian category of perverse +Hodge Q-sheaves of M. Saito on X, by DH(X) its bounded derived category. It sat- +isfies the usual Grothendieck six functors formalism. Below ∗ is the Verdier duality. +Every object of H(X), hence of DH(X), carries a canonical weight filtration. +For F ∈ DH(X) let Γ(X, F), Γc(X, F) ∈ DH be the complex of chains, resp. +chains with compact support, with coefficients in F equipped with the natural +Hodge structure, H· +(c)(X, F) := H·Γ(c)(X, F) ∈ H; set Γ(c)(X) := Γ(c)(X, Q(0)X), +H· +(c)(X) := H· +(c)(X, Q(0)), and denote by ( , ) the Poincar´e duality pairing. Simi- +larly for a closed subvariety A ⊂ X we set ΓA(X) := ΓA(X, Q(0)) ∈ DH, etc. +2Indeed, a morphism from a biextension by a trivial group to a trivialized biextension amounts +to a biadditive pairing. +3Recall that |A|, |B| ⊂ Yk are supports of the cycles. + +HEIGHT PAIRING AND NEARBY CYCLES +9 +Let g : X → A1 be a function on X; set X0 := g−1(0), and let v : X ∖ X0 ֒→ X, +iX0 : X0 ֒→ X be the open and closed embeddings. One has the unipotent nearby +cycles functor ψun +g +: DH(X ∖ X0) → DH(X0) that carries a natural logarithm +of monodromy morphism N = Ng = NF : ψun +g (F)(1) → ψun +g (F) where F ∈ +D(X ∖ X0). It has ´etale local origin with respect to X0. For sheaves on X there +is a natural morphism of functors ι : i∗ +X0 → ψun +g v∗. +There are basic canonical +identifications: +(i) Compatibility with Verdier duality: One has ψun +g (F∗) = (ψun +g F)∗(1)[2]. +(ii) Compatibility with proper direct images: Suppose h : X → T is a proper map +and t is a function on T such that g = th; then one has ψun +t h∗F = h∗ψun +g F. +(iii) One has Cone(NF) = i∗ +X0v∗F(1)[1]. +(iv) For every n > 0 one has ψun +gnF +∼ +→ ψun +g F. +These identifications are mutually compatible; (i) and (ii) are compatible with +the action of N, and (iv) identifies Ngn with nNg. Finally, one has +(v) ψun[−1] is t-exact for the perverse t-structure. +Examples. Suppose that X is smooth of dimension n and F = Q(0)X∖X0. Then +F∗ = F(n)[2n] hence ψun +g (F)∗ = (ψun +g F)(n − 1)[2n − 2]. +(a) If g is smooth then ιQ(0)X : Q(0)X0 +∼ +→ ψun +g F, NF = 0. +(b) Suppose g is semi-stable and X0 has two irreducible components Y and Y ′. By +(a) one has natural morphisms jY ′∖Y !QY ′∖Y → ψun +g F → jY ∖Y ′∗QY ∖Y ′ compatible +with the N-action (we take it that on the left and right object N acts trivially). +They form an exact triangle; its Verdier dual is the same triangle with Y and Y ′ +interchanged. +3.2. We are in the setting of 1.4 and follow the notation there. +Let j : U := X0 ∖ {xα} ֒→ X0 ←֓ {xα} : ⊔ixα be the complementary open +and closed embeddings. Let I be the intersection cohomology sheaf j!∗Q(0)U = +τ ≤n−2j∗Q(0)U 4 on X0; set I+ := π∗Q(0)Y . One has natural self-duality isomor- +phisms I∗ = I(n − 1)[2n − 2], I+∗ = I+(n − 1)[2n − 2] (recall that Y is smooth of +dimension n − 1 and π is proper). +The decomposition theorem for π is easy and explicit: +Proposition. There is a natural orthogonal direct sum decomposition +(3.2.1) +I+ = I ⊕ ⊕αixα∗τ [2,2n−4]Γ(Pα) +compatible with the self-dualities. +Proof. One has a natural orthogonal direct sum decomposition +(3.2.2) +Γ(Zα) = Hn−2 +prim(Zα)[2 − n] ⊕ τ ≤2n−4Γ(Pα) +defined as follows. Consider the embedding Zα ֒→ Pα. The pullback and Gysin +maps Γ(Pα) → Γ(Zα) → Γ(Pα)(1)[2] are mutually dual for the Poincar´e duality +pairings, and their composition in either direction equals to the multiplication by +c1(O(dα)).5 Thus the composition of τ ≤2n−4Γ(Pα) → Γ(Zα) → τ ≥0(Γ(Pα)(1)[2]) is +an isomorphism. This yields a direct sum decomposition Γ(Zα) =?⊕τ ≤2n−4Γ(Pα). +4Below τ is the usual truncation, pτ is the perverse one. +5Since O(dα) is the normal bundle to Zα in Pα. + +10 +A. BEILINSON +Since multiplication by c1(O(dα)) preserves the direct sum decomposition, the only +nonzero cohomology of ? is Hn−2 +prim(Zα) ⊂ Hn−2(Zα), q.e.d. +Consider the embeddings of smooth divisors iZα : Zα ֒→ Y . One has i! +ZαQ(0)Y = +Q(−1)[−2]Zα, i∗ +ZαQ(0)Y = Q(0)Zα, and the composition of the adjunction maps +iZα∗i! +ZαQ(0)Y → Q(0)Y → iZα∗i∗ +ZαQ(0)Y equals the multiplication by c1(O(−1)) +map Q(−1)[−2]Zα → Q(0)Zα.6 Apply π∗; then i! +xαI+ = Γ(Zα)(−1)[−2], i∗ +xαI+ = +Γ(Zα) by base change, and the composition of the adjunctions ixα∗i! +xαI+ → I+ → +ixα∗i∗ +xαI+ is multiplication by c1(O(−1)) map ixα∗Γ(Zα)(−1)[−2] → ixα∗Γ(Zα). +Composing the maps τ ≤2n−6Γ(Pα) ֒→ Γ(Zα) and Γ(Zα) ։ τ [2,2n−4]Γ(Pα) that +come from decomposition (3.2.2) from the left and from the right with the latter ad- +junctions, we get the maps ixα∗(τ ≤2n−6Γ(Pα))(−1)[−2] → I+ → ixα∗τ [2,2n−4]Γ(Pα). +Their composition is an isomorphism, which yields a decomposition I+ = I? ⊕ +ixα∗τ [2,2n−4]Γ(Pα). Since the adjunctions are mutually dual, the decomposition is +orthogonal. +By (3.2.2) one has i! +xαI? = Hn−2 +prim(Zα)(−1)[−n] ⊕ Q(n − 1)[2 − 2n], i∗ +xαI? = +Hn−2 +prim(Zα)[2 − n] ⊕ Q(0). +Thus I?[n − 1] is a perverse sheaf which equals Q(0)[n − 1]U on U and has no +subquotients supported on {xα}, and so I? = I. We are done. +□ +Remarks. (i) The adjunction map Q(0)X0 → π∗Q(0)Y = I+ takes value in I ⊂ I+ +since Hom(Q(0)X0, ixα∗τ [2,2n−4]Γ(Pα)) = 0. +(ii) Set B := ⊕ixα∗Hn−2 +prim(Zα)[1 − n]. By the formula for i∗ +xαI at the end of the +previous paragraph, one has an exact triangle Q(0)X0 → I → B[1]. +3.3. As in 1.5, t is a local coordinate at 0 ∈ S; shrinking S we can assume that +t is defined and invertible on S ∖ {0}, so X0 = (tf)−1(0). Consider the functor +ψun +tf : DH(X ∖ X0) → DH(X0) (see 3.1). Set R := ψun +tf Q(0)X∖X0. By 3.1(i) one +has a canonical self-duality identification R∗ = R(n − 1)[2n − 2] and the mutually +dual maps Q(0)X0 +ι→ R +ι∗ +→ Q(0)∗ +X0(1 − n)[2 − 2n] which are isomorphisms over U. +The next result is due to Illusie [Il]; we will need it in 4.5. The reader can skip +it at the moment and jump directly to section 3.4. +Proposition. For every critical point xα one has canonical isomorphisms +(3.3.1) +i! +xαR = Γc(Pα ∖ Zα), +i∗ +xαR = Γ(Pα ∖ Zα) +interchanged by the duality. The N-action on i! +xαR, i∗ +xαR is trivial. +Proof. (a) The claim is local at xα, so for the proof we remove from X the rest +of critical points, and still call it X by the abuse of notation. Let S♭ → S be the +covering of degree dα obtained by adding t♭ = t1/dα to the sheaf of functions; its +Galois group is µdα. Set X♭ := X×SS♭ and let f ♭ : X♭ → S♭ be the projection. Our +X♭ is a hypersurface {(x, t♭) : (tf)(x) − t♭dα = 0} in X × A1; its only singular point +is (xα, 0). The projectivized tangent cone Qα of X♭ at (xα, 0) is a hypersurface in +P + +α := P(T(xα,0)X × A1). The Galois group µdα acts on X♭ hence on Qα. +(b) Let us check that Qα is a µdα-covering of Pα completely ramified along Zα +and ´etale over its complement, and Qα is smooth. To see this, consider the leading +term [tf]dα(x) (of the Taylor expansion) of tf at xα; then the leading term of +6Since O(−1) is the normal bundle to Zα in Y . + +HEIGHT PAIRING AND NEARBY CYCLES +11 +(tf)(x) − t♭dα at (xα, 0) is [tf]dα(x) − t♭dα. The zeros of [tf]dα is Zα ⊂ Pα, of +[tf]dα(x) − t♭dα is Qα ⊂ P + +α , and so the projection Qα → Pα (x, t♭) �→ x, is as +claimed. The smoothness of Qα follows from that of Zα. +(c) Let π+ : X+ → X♭ be the blowup of X♭ at (xα, 0). By (b) X+ is smooth +and the map f + := f ♭π+ : X+ → S♭ has semistable reduction at 0 ∈ S♭. The +fiber X+ +0 has two irreducible components: one equals Y and the other Qα, and +their intersection equals Zα. The action of µdα on X♭ yields one on X+. The +µdα-action on X+ +0 +fixes Y and acts on Qα as described in (b). +The projection +π+ +0 : X+ +0 → X♭ +0 = X0 contracts Qα to xα. +Set R+ := ψun +tf +Q(0)X+∖X+ +0 , R♭ := ψun +tf ♭Q(0)X♭∖X♭ +0. These are sheaves on X+ +0 +and X♭ +0 = X0 respectively that are naturally µdα-equivariant. +By 3.1(ii) (with +h = π+) one has a natural identification π+ +0∗R+ = R♭ compatible with the µdα- +actions. Since the projection p : X♭ → X is a µdα-torsor over X ∖ X0 one has +Q(0)X∖X0 = (p∗Q(0)X♭∖X♭ +0)µdα , and so, by 3.1(ii) with h = p, one has R = R♭µdα . +Therefore R = (π+ +0∗R+)µdα . +(d) By 3.1(iv) with g = t♭f +, n = dα, one has ψun +tf + = ψun +t♭f +. Our t♭f + is semi- +stable, so we have the exact triangle jY ∖Zα!QY ∖Zα → R+ → jQα∖Zα∗QQα∖Zα +as in Example (b) in 3.1. Applying π+ +0∗ we get an exact triangle j!QU → R♭ → +ixα∗Γ(Qα∖Zα). Passing to µdα-invariants we get, by (b), an exact triangle j!QU → +R → ixα∗Γ(Pα ∖ Zα); here we use the identification Γ(Qα ∖ Zα)µdα +∼ +→ Γ(Pα ∖ Zα) +defined as the composition Γ(Qα ∖ Zα)µdα ⊂ Γ(Qα ∖ Zα) +tr +→ Γ(Pα ∖ Zα). Thus +we get the isomorphism i∗ +xαR +∼ +→ Γ(Pα ∖ Zα) in (3.3.1). The second isomorphism +there comes in the dual manner from the dual exact triangle jQα∖Zα!QQα∖Zα → +R+ → jY ∖Zα∗QY ∖Zα. Since π+ +0∗ commutes with duality, the two isomorphisms are +mutually dual, and we are done. +□ +Let αR be the composition B +∂→ Q(0)X0 +ι→ R where ∂ is the boundary map of the +triangle from Remark (ii) in 3.2, so I = Cone(∂). Let us compute the map i! +xα(αR). +Consider the standard triangle Hn−2 +prim(Zα)[1−n] +δ→ Γc(Pα ∖Zα) +tr +→ Q(1−n)[2−2n] +that comes from (3.2.2). +Lemma. −i! +xα(αR) equals the composition δR of the maps Hn−2 +prim(Zα)[1 − n] +δ→ +Γc(Pα ∖ Zα) +(3.3.1) += +i! +xαR. +Proof. Consider the exact triangle +(3.3.2) +jQα∖Zα!Q(0)Qα∖Zα ⊕ jY ∖Zα!Q(0)Y ∖Zα → Q(0)X+ +0 → Q(0)Zα. +Let (δQ, δY ) : Q(0)Zα[−1] → jQα∖Zα!Q(0)Qα∖Zα ⊕ jY ∖Zα!Q(0)Y ∖Zα be the bound- +ary map. Its composition with the map to Q(0)X+ +0 , and hence with the further +composition with Q(0)X+ +0 +ι→ R+, is 0. +Therefore the sum of the compositions +Q(0)Zα[−1] +δQ +−→ jQα∖Zα! +ι→ R+ and Q(0)Zα[−1] +δY +−→ jY ∖Zα! +ι→ R+ is 0. +Ap- +ply i! +xαπ+ +∗ and consider the restriction of our compositions to Hn−2 +prim(Zα)[1 − n] ⊂ +Γ(Zα)[−1]. For the first one it is δR, for the second one it is i! +xα(αR), and we are +done. +□ + +12 +A. BEILINSON +3.4. Set P := R[n − 1] = ψun +tf Q(0)X∖X0[n − 1]; this is a perverse sheaf on X0; one +has a canonical self-duality identification P∗ = P(n − 1). Consider the perverse +sheaves PN := Ker(N : P → P(−1)), PN := Coker(N : P(1) → P). +Lemma. (i) Q(0)X0[n − 1] is a perverse sheaf of weights n − 1 and n − 2 with +grW +n−1 = I[n − 1], grW +n−2 = ⊕α ixα∗Hn−2 +prim(Zα). +(ii) One has PN = Q(0)X0[n − 1], PN = (Q(0)X0[n − 1])∗(1 − n). +(iii) P has weights in [n − 2, n]. One has Wn−1P = Q(0)X0[n − 1], P/Wn−2P = +(Q(0)X0[n − 1])∗(1 − n), grW +n−2P = ⊕α ixα∗Hn−2 +prim(Zα), grW +n−1P = I[n − 1], grW +n P = +(grW +n−2P)∗(1 − n). +Proof. (i) The exact triangle from Remark (ii) in 3.2 amounts to an exact triangle +⊕ixα∗Hn−2 +prim(Zα) → Q(0)X0[n − 1] → I[n − 1], and we are done since its left and +right terms are pure perverse sheaves of weights n − 2 and n − 1 respectively. +(ii) For any sheaf A on X one has a canonical exact triangle i∗ +X0A → i∗ +X0v∗v∗A → +i! +X0A[1]: Indeed, the map v!v∗A → v∗v∗A factors as composition v!v∗A → A → +v∗v∗A, and so one has an exact triangle Cone(v!v∗A → A) → Cone(v!v∗A → +v∗v∗A) → Cone(A → v∗v∗A) which is supported on X0. +The promised exact +triangle is its restriction to X0. +Now take for A the perverse sheaf Q(0)X[n]. The first term of the triangle is +Q(0)X0[n] which is perverse sheaf shifted by 1, its third term is (Q(0)X0[n−1])∗(−n) +which is a perverse sheaf. Therefore they equal, respectively, pH−1 and pH0 of +i∗ +X0v∗v∗Q(0)X[2n], i.e., of Cone(N : P → P(−1)) by 3.1(iii), and we are done. +(iii) Since N is nilpotent, the weights of P are bounded from below by the +minimum of weights of PN, which is n − 2 by (ii) and (i). By self-duality of P they +are bounded then from above by n, and we have the first assertion. It implies that +Wn−2P ⊂ PN. The rest follows directly from (i), (ii), and self-duality of P. +□ +3.5. Proof of the proposition in 1.5. We use the notation in loc.cit. Injectivity of +sp : (ψun +t H)N → Hn−1(X0) follows from the local invariant cycles theorem. Let us +check the surjectivity. By 3.1(ii) applied to h = f (recall that f is proper) and 3.1(v) +applied to ψun +t , one has ψun +t H = H0(X0, P)(n−1). By 3.4 we have exact sequence of +perverse sheaves 0 → ⊕α ixα∗Hn−2 +prim(Zα)(n−1) → P(n−1) → (Q(0)X0[n−1])∗ → 0. +Its left term has finite support, and so has no cohomology in degrees ̸= 0. Therefore +the map H0(X0, P)(n − 1) → H0(X0, (Q(0)X0[n − 1])∗) = Hn−1(X0) is surjective. +This map equals sp, and we are done. +□ +§4. The motivic setting and the construction of EψM +a,b +∈ EM +a,b +4.1. We are in the setting of 1.8 so k ⊂ C is a subfield and we play with varieties +over k. Changing slightly the notation of 1.3 and 1.8, for a variety Z = Zk we set +ZC := Z ⊗k C. The notation of §3 is preserved except that we equip from now on +all Hodge sheaves and Hodge structures met previously with extra upper index H. +We play with motives (a.k.a. motivic sheaves) over varieties, see [A1] and [CD]. +For a variety Z the category of constructible Q-motives over Z is denoted by +DM(Z). +We use Grothendieck’s six functors formalism for DM as developed +in [CD]. Recall that DM(Spec k) = DM(k) is the category of Voevodsky’s geo- +metric Q-motives over k. +For a variety Z one has M(Z) = πZ!π! +ZQ(0) where +πZ : Z → Spec k is the structure map. For a motivic sheaf F on Z set Γ(Z, F) := +πZ∗F, Γc(Z, F) := πZ!F ∈ DM(k); we write Γ(c)(Z) := Γ(c)(Z, Q(0)Z). There is + +HEIGHT PAIRING AND NEARBY CYCLES +13 +a Hodge realization functor DM(Z) → DH(ZC), F �→ FH, compatible with the +six functors and the Verdier duality ∗. For a smooth Z of dimension d one has +π! +ZQ(0) = Q(d)Z[2d], and so M(Z) = Γc(Z)(d)[2d]. +The formalism of unipoteny nearby cycles in the setting of motivic sheaves was +developed in §§3.4, 3.6 of [A2]. The motivic version of everything said in 3.1 holds +except property (v) (for the t-structure is not available). The Hodge realization +functor commutes with the nearby cycles functors. +4.2. Notation: Notice that Hom(Q(i)[2i], Q(j)[2j]) is 0 if i ̸= j and Q for i = j,7 +and so every object M ∈ M(k) which is isomorphic to a direct sum of motives +Q(i)[2i], i ∈ Z, can be written in a unique manner as ⊕i Vi(i)[2i] where Vi is a +vector space (then Vi = Hom(Q(i)[2i], M)). Set τ ≤2aM := ⊕i≥−a Vi(i)[2i], etc. +We are in the situation of 3.2 in the setting of k-varieties. As in loc.cit., I+ := +π∗Q(0)Y ∈ DM(X0) (so I+H is the corresponding Hodge sheaf from loc.cit.) Since +Y is smooth and π is proper one has a natural self-duality I+∗ = I+(n−1)[2n−2]. +The t-structure in DM is not available, so we define the motivic intersection +cohomology sheaf I using a motivic version of decomposition (3.2.1): +Proposition. There is a natural orthogonal direct sum decomposition in DM(X0) +(4.2.1) +I+ = I ⊕ ⊕αixα∗τ [2,2n−4]Γ(Pα) +whose Hodge realization is (3.2.1) +Proof. It repeats the proof in 3.2 (minus its last paragraph). Namely, we first define +a natural orthogonal decomposition +(4.2.2) +Γ(Zα) = Hn−2 +prim(Zα)[2 − n] ⊕ τ ≤2n−4Γ(Pα) +in DM(xα) = DM(kxα) whose Hodge realization is (3.2.2).8 The construction in +loc.cit. uses only basic six functors functoriality, so we can repeat it literally in the +motivic setting. Then we proceed to define (4.2.1) as in loc.cit. +□ +Set B := ⊕α ixα∗Hn−2 +prim(Zα)[1 − n] ∈ DM(X0). The self-dualities of Γ(Zα) and +of I+, and the above orthogonal decompositions yield natural self-dualities +(4.2.3) +B∗ ∼ +→ B(n − 2)[2n − 2], +I∗ ∼ +→ I(n − 1)[2n − 2]. +4.3. Lemma. (i) The adjunction χ : Q(0)X0 → π∗Q(0)Y = I+ takes values in +I ⊂ I+. +(ii) One has Cone(χ : Q(0)X0 → I) = B[1]. +Proof. (i) Follows since Hom(Q(0)X0, ixα∗τ [2,2n−4]Γ(Pα)) = Hom(Q(0), τ [2,2n−4]Γ(Pα)) += 0. +(ii) Since χ|U = idQ(0)U the cone Cone(χ) is supported on {xα}. Now i∗ +xαCone(χ) = +7This follows since M(Pn) = ⊕i∈[0,n]Q(i)[2i] and End(M(Pn)) = CHn(Pn × Pn) = Q[0,n]. +8So Hn−2 +prim(Zα) is a notation for a motive whose Hodge realization is the primitive cohomology +of Zα; its definition does not involve any cohomology. To construct it explicitly, choose a k-point +z in Pα ∖ Zα. Let πz : Zα → Pn−2 be the corresponding projection; this is a finite map of degree +dα. Then Hn−2 +prim(Zα) is the kernel of the projector d−1 +α πt +zπz acting on M(Zα)(2 − n)[4 − 2n]. + +14 +A. BEILINSON +Cone(i∗ +xα(χ)) equals Hn−2 +prim(Zα)[2 − n] by (4.2.2) and the construction of I, q.e.d. +□ +Remark. Since Exti(Q(0)X0, Q(0)∗ +X0(1−n)[2−2n]) = Exti(Q(0), M(X0)(1−n)[2− +2n]) = CHn−1(X0, −i) we see that Ext0 = Zn−1(X0) and Ext̸=0 = 0, i.e., one has +Hom(Q(0)X0, Q(0)∗ +X0(1 − n)[2 − 2n]) = Zn−1(X0) = Zn−1(U). +Example. One has χ∗χ = ǫ where ǫ : Q(0)X0 → Q(0)∗ +X0(1 − n)[2 − 2n] is the map +that corresponds to the sum of irreducible components cycle (it is enough to check +the assertion on U where it is obvious). +4.4. We are in the situation of 3.3 in the setting of k-varieties. Consider the functor +ψun +tf : DM(X ∖ X0) → DM(X0). There is a canonical morphism ι : i∗ +X0 → ψun +tf v∗ +of functors on DM(X) and its Verdier dual ι∗ : ψun +tf v∗ → i! +X0. Therefore we have +a motivic sheaf R := ψun +tf Q(0)X∖X0 equipped with a natural self-duality R∗ +∼ +→ +R(n − 1)[2n − 2] and mutually dual maps Q(0)X0 +ι→ R +ι∗ +→ Q(0)∗ +X0(1 − n)[2 − 2n] +that are isomorphisms over U. +Let ∂ : B → Q(0)X0 be the boundary map of the triangle from 4.3(ii). +Set +αR := ι∂ : B → R, and let βR be α∗ +R combined with the self-duality identifications +for R and B, so we have +(4.4.1) +B +αR +−→ R +βR +−→ B(−1). +Lemma-construction. The composition βRαR is homotopic to zero. +In fact, +there is a canonical up to a homotopy κR such that d(κR) = βRαR. +Proof. By Remark and Example in 4.3 one has βRαR = ∂∗ι∗ι∂ = ∂∗ǫ∂ = ∂∗χ∗χ∂ = +(χ∂)∗χ∂. Notice that χ∂ is homotopic to 0; choose a homotopy λ, d(λ) = χ∂. Now +set κR := λ∗χ∂. +Independence of κR up to a homotopy from the choice of λ: if λ′ is another +homotopy as above, i.e., d(λ) = d(λ′), then κ′ +R = λ′∗χ∂ = κR + (λ′ − λ)χ∂ = +κR + d((λ − λ′)λ). +□ +Remark. Our κR is self-dual up to homotopy: Indeed, one has κ∗ +R = (χ∂)∗λ = +κR + d(λ∗λ). +4.5. Below we use the notation from 2.1, 2.2. We have defined (αR, βR, κR) ∈ +DM(X0)(2). It yields the objects ER := E(αR, βR, κR) ∈ DM(X0) and (αI, βI, κI) +:= σ(αR, βR, κR) ∈ DM(X0)(2). As follows from Remark in 4.4 and the defini- +tions, the above three objects are naturally self-dual. +Proposition. There is a homotopy equivalence θ : I +∼ +→ ER such that the maps +βIθ : I → B[1], θ−1αI : B(−1)[−1] are a morphism of the triangle in 4.3(ii) and +its dual. Our θ is unitary, i.e., θ∗ = θ−1. +Proof. Recall that we have a natural homotopy equivalence (λ, χ) : Cone(∂ : B → +Q(0)X0) +∼ +→ I (see 4.3(ii)), and ER is the direct sum B[1] ⊕ R ⊕ B(−1)[−1] with +(αR, −κR, βR) added to the differential (see 2.1). Our θ is the composition I +∼ +← +Cone(∂) +θ′ +→ ER where θ′ is the next morphism: its restriction to B[1] ⊂ Cone(∂) +identifies it with the first summand in ER, and its restriction to Q(0)X0 ⊂ Cone(∂) +is (0, ι, −λ∗χ). + +HEIGHT PAIRING AND NEARBY CYCLES +15 +One has θ∗θ = idI: we need to check that θ′∗ρθ′ = (λ, χ)∗(λ, χ) : Cone(∂) → +Cone(∂∗) where ρ : ER +∼ +→ E∗ +R(1 − n)[2 − 2n] is the self-duality for ER. As follows +from Remark in 4.4, ρ is the matrix with the self-dualities for R and B’s on the +diagonal and the only non-zero off-diagonal entry being λ∗λ : B → B∗(1−n)[2−2n]. +The rest is an immediate calculation. +The assertion that βIθ is the morphism of the triangle in 4.3(ii) means that +βIθ′ is the projection Cone(∂) → B[1] which is evident from the construction. The +assertion that αIθ is dual to βIθ follows from the unitarity of θ once we know that +θ is a homotopy equivalence. Let us check it. +Our θ′ is a morphism Cone(B → Q(0)X0) → Cone(B → Cone(βR)[−1]) com- +patible with the projections to B, and so it is enough to check that the map +(ι, −λ∗χ) : Q(0)X0 → Cone(βR)[−1] is a homotopy equivalence. Since ι is a homo- +topy equivalence on U, it is enough to check our claim after applying i∗ +xα. +The story of section 3.3 uses only the six functors formalism and basic facts +from 3.1, so it remains literally true in the motivic setting. Consider the canonical +homotopy equivalence a : i∗ +xαR +∼ +→ Γ(Pα ∖ Zα) of (3.3.1). By the Verdier dual +assertion to the lemma in 3.3, a identifies i∗ +xα(βR) with minus the residue map +r : Γ(Pα ∖ Zα) → Hn−2 +prim(Zα)(−1)[1 − n] ⊂ Γ(Zα)(−1)[−1]. By (4.2.2) we have a +split exact triangle Q(0) → Γ(Pα ∖ Zα) +r→ Hn−2 +prim(Zα)(−1)[1 − n], so a identifies +i∗ +xαCone(βR)[−1]) with Q(0) ⊂ Γ(Pα∖Zα). It follows directly from the construction +of a that ai∗ +xα(ι) coincides with the latter embedding, and we are done. +□ +4.6. Proof of the theorem in 1.9. +We have (αI, βI, κI) ∈ DM(X0)(2), hence +Γ(αI, βI, κI) ∈ DM(2). For two Bloch cycles A, B of classes clA, clB ∈ Hom(Q(0), +Hn−2 +prim(Zα)(m)) we have (cl∗ +A, clB∗)Γ(αI, βI, κI) ∈ EM(Γ(I)(m − 1)[1 − n]) = +EM(Γ(I+)(m − 1)[1 − n]) = EM(M) where M := M(Y )(−m)[−1 − 2m]. By the +construction the Hodge realization embedding EM(M) ֒→ EH(M) = EH(Hm(Y )) +identifies it with Eψ +A,B from 1.6, and we are done. +□ +References +[A1] +J. Ayoub, Les six op´erations de Grothendieck et le formalisme des cycles ´evanescents +dans le monde motivique (I), Ast´erisque 314, SMF, 2007. +[A2] +J. Ayoub, Les six op´erations de Grothendieck et le formalisme des cycles ´evanescents +dans le monde motivique (II), Ast´erisque 315, SMF, 2007. +[B] +A. Beilinson, Height pairing between algebraic cycles, K-theory, Arithmetic and Geom- +etry, Yu. I. Manin (Ed.), Lect. Notes in Math. 1289, Springer, 1987. +[Bl1] +S. Bloch, Height pairings for algebraic cycles, Journal of Pure and Applied Algebra 34 +(1984), 119–145. +[Bl2] +S. Bloch, Cycles and biextensions, Contemporary Mathematics 83 (1989), 19–30. +[BlJS] +S. Bloch, R. de Jong, E. Can Sert˜oz, Heights on curves and limits of Hodge structures, +arXiv:2206.01220 (2022). +[CD] +D.-C. Cisinski, F. D´eglise, Triangulated categories of mixed motives, Springer Mono- +graphs in Mathematics, Springer, 2019. +[G] +S. Gorchinskiy, Notes on the biextension of Chow groups, Motives and algebraic cycles, +Fields Institute Commun., vol. 56, Amer. Math. Soc., 2009, pp. 111–148. +[Il] +L. Illusie, Sur la formule de Picard-Lefschetz, Algebraic geometry 2000, Azumino, +Advanced Studies in Pure Math, vol. 36, Mathematical Society of Japan, 2002, pp. 249– +268. + diff --git a/79E0T4oBgHgl3EQfwQGR/content/tmp_files/load_file.txt b/79E0T4oBgHgl3EQfwQGR/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..bf92d1fd4f99a615c021795669b4de4cc3059237 --- /dev/null +++ b/79E0T4oBgHgl3EQfwQGR/content/tmp_files/load_file.txt @@ -0,0 +1,791 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf,len=790 +page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='02630v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='AG] 15 Aug 2022 HEIGHT PAIRING AND NEARBY CYCLES A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Beilinson To Yuri Ivanovich Manin with deepest gratitude Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' We prove that, as was conjectured by Spencer Bloch, the Hodge period of some limit Hodge structures equals the height pairing of algebraic cycles on the resolution of singularities of the singular fiber.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' §1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Introduction: the theorem and the idea of the proof 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' The Hodge period.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Suppose we have a Q-Hodge structure E with weights in [−2, 0] equiped with isomorphisms ι0 : grW 0 E = Q(0), ι−2 : grW −2E = Q(1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' One defines the Hodge period ⟨E⟩ = ⟨E, ι0, ι−2⟩ ∈ R as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Consider the R-Hodge structure E ⊗ R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Since the weight filtration on any R-Hodge structure with two consequitive weights (canonically) splits one has E ⊗ R = G ⊕ grW −1E ⊗ R where G is an extension of R(0) by R(1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Our ⟨E⟩ is the class of this extension in Ext1(R(0), R(1)) = R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Remark.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' One computes ⟨E⟩ explicitly as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Let ER be E ⊗ R viewed a plain R-vector space, EC be its complexification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Let 1F 0 ∈ F 0 ⊂ EC be any lifting of ι−1 0 (1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Then ⟨E⟩ is the image of 1F 0 in (ER + W−1EC)/(ER + (F 0 ∩ W−1EC)) ∼ ← W−2EC/W−2ER = C/2πiR ∼ ← R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' A geometric example.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Let Y be a smooth proper equidimensional algebraic variety over C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' We denote by Hi(Y ) the homology of Hi(Y (C), Q) seen as an object of the category of Q-Hodge structures;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' ditto for relative homology, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Let Zm(Y ) be the group of algebraic m-cycles on Y with Q-coefficients, Zm(Y )0 := Ker(cl : Zm(Y ) → H2m(Y )(−m)) be the subgroup of cycles homologically equivalent to zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' For a closed subset P ⊂ Y let Zm(P) ⊂ Zm(Y ) be the subgroup of cycles supported on P, Zm(P)0 := Zm(P) ∩ Zm(Y )0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' For an m-cycle A on Y we denote by |A| its support (which is a closed subset of Y ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Suppose m + m′ = dim Y − 1 and we have A ∈ Zm(Y )0, B ∈ Zm′(Y )0 such that |A| ∩ |B| = ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Set E|A|,|B| := H2m+1(Y ∖ |B|, |A|)(−m).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Notice that E|B|,|A| = E∗ |A|,|B|(1) by the Poicar´e duality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Lemma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' E|A|,|B| has weights in [−2, 0].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' One has grW −2E|A|,|B| = Zm′(|B|)∗ 0(1), grW −1E|A|,|B| = H2m+1(Y )(−m), grW 0 E|A|,|B| = Zm(|A|)0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Notice that H2m(|A|)(−m) = Zm(|A|) and H>2m(|A|) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' By the Poincar´e duality Hi(Y, Y ∖|B|)(− dim Y ) = H2 dim Y −i(|B|)∗, hence H2m+2(Y, Y ∖|B|)(−m) = 1991 Mathematics Subject Classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Primary 14C25;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Secondary 14D07.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Key words and phrases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' height pairing, nearby cycles, Hodge periods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Typeset by AMS-TEX 1 2 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' BEILINSON (H2m′(|B|)(−m′))∗(1) and H<2m+2(Y, Y ∖ |B|) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Now use the long exact ho- mology sequences for (Y ∖ |B|, |A|) and (Y, Y ∖ |B|).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' □ Denote by EA,B the Hodge structure obtained from H|A|,|B| by pullback by A and pushforward by B: (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='1) Zn(|B|)∗ 0(1) ֒→ E|A|,|B| ։ Zm(|A|)0 B ↓ ↑ A Q(1) ֒→ EA,B ։ Q(0) Our EA,B is as in 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='1, so we have ⟨EA,B⟩ ∈ R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' The height pairing (cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' [B], [Bl1]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Let k be a subfield of C and suppose that Y comes from a variety Yk over k, Y = Yk ⊗ C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Let Zm(Yk) ⊂ Zm(Y ) be the group of algebraic cycles with Q-coefficients on Yk, Zm(Yk)0 := Zm(Yk) ∩ Zm(Y )0, and let CHm(Yk)0 ⊂ CHm(Yk) be their quotients modulo the rational equivalence relation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' One checks (see §2) that if A, B as above are cycles on Yk then the class of ⟨EA,B⟩ in R/Q log |k×| depends only on linear equivalence classes of A and B, and so one has a bilinear height pairing (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='1) ⟨ , ⟩Yk : CHm(Yk)0 ⊗ CHm′(Yk)0 → R/Q log |k×|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Namely ⟨a, b⟩Yk = ⟨EA,B⟩ where A, B are any cycles on Yk of classes a, b such that |A| ∩ |B| = ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Remark.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' If k = Q and we assume some motivic rationality conjectures (see (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='1), (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='3) of [B]) then ⟨EA,B⟩ can be corrected (by adding a finite sum of corrections log(p)⟨EA,B⟩p where p is a prime, ⟨EA,B⟩p is defined using the Gal(Qp)-action on EA,B ⊗ Qℓ) so that the resulting real number depends only on rational equivalence classes of A and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' In this manner (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='1) lifts naturally to an R-valued pairing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Finding elements of Chow groups that are homologically equivalent to zero is an art.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Spencer Bloch described one situation where they naturally arise, and conjectured that the height pairing of his cycles can be computed in s different way, namely, as Hodge periods of some nearby cycles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' We start with preliminaries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Let X be a smooth variety over C of pure dimension n ≥ 2, S be a smooth curve, 0 ∈ S be a closed point, and f : X → S be a proper map which is smooth otside a finite subset {xα} of the fiber X0 = f −1(0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Let Zα be the projectivized tangent cone to X0 at xα;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' this is a hypersurface in the projectivization Pα := P(TxαX) of the tangent space;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' denote by dα its degree.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' We assume the next condition: (∗) All hypersurfaces Zα are smooth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Let π : Y → X0 be the blowup of X0 at {xα}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Condition (∗) implies that Y is a smooth variety, and Zα are pairwise disjoint divisors on Y .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Set Z := ⊔Zα and K := Ker(Hn−2(Z) → Hn−2(Y )) = Im(Hn−1(Y, Z) → Hn−2(Z)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' If n = 2 then let K0 ⊂ K be the subgroup of those elements A = ΣAα that deg Aα = 0 for every α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' One has a natural map Hn−1(X0) → Hn−1(Y, Z) defined as the composition Hn−1(X0) → Hn−1(X0, {xα}) ∼ ← Hn−1(Y, Z).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Lemma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' (i) The map Hn−1(X0) → Hn−1(Y, Z) is an isomorphism if n > 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' If n = 2 it is injective and its image equals the preimage of K0 in Hn−1(Y, Z).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' (ii) Hn−1(Y, Z) has weights 1 − n and 2 − n, and grW 2−nHn−1(Y, Z) = K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' The map HEIGHT PAIRING AND NEARBY CYCLES 3 Hn−1(Y ) → Hn−1(Y, Z) has image W1−nHn−1(Y, Z).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' If n is even then Hn−1(Y ) ∼ → W1−nHn−1(Y, Z).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' (i) Replace Hn−1(Y, Z) by Hn−1(X0, {xα}) and use the long exact homology sequence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' (ii) The first assertions follow from the exact homology sequence and purity of weights on H·(Y ), H·(Z).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' The last one comes because Hn−1(Z) = 0 if n is even (since Zα are hypersurfaces).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' □ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Consider a variation of Q-Hodge structures V on S ∖ {0} with fibers Vs = Hn−1(Xs).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' One has a nondegenerate intersection pairing ( , ) : V ⊗ V → Q(n − 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Choose a parameter t at 0 ∈ S and consider the limiting (a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' nearby cycles) Hodge structure ψtV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Let ψun t V be its direct summand where the monodromy acts unipotently.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Since ψun t commutes with duality, ( , ) yields self-duality pairing on it that we denote again by ( , ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' One has the log of monodromy morphism N = NV : ψun t V(1) → ψun t V and the specialization morphism sp : ψun t V → Hn−1(X0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Let (ψun t V)N := Coker(NV) be the monodromy coinvariants.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' The next assertion follows from the local invariant cycles theorem, see 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='5 for a detailed proof: Proposition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' sp factors through the isomorphism (ψun t V)N ∼ → Hn−1(X0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Corollary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' ψun t V has weights in [−n, 2 − n].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' One has grW 2−nψun t V = K if n > 2 and grW 2−nψun t V = K0 if n = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' By self-duality, grW −nψun t V = (grW 2−nψun t V)∗(n − 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' If n is even then grW 1−nψun t V = Hn−1(Y ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Since ψun t V is self-dual and N is nilpotent, the claim follows from the propo- sition and the lemma in 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' □ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Bloch cycles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' We are in the setting of 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='4;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' suppose n is even, n = 2m + 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Let A = ΣAα be an m-cycle on Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' We say that A is a Bloch cycle if it is homologically equivalent to zero on Y , i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=', cl(A) lies in K(−m) ⊂ Hn−2(Z)(−m).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' If m = 0 then we demand, in addition, that cl(A) ∈ K0 ⊂ K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Lemma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' If A is a Bloch cycle then each cl(Aα) ∈ Hn−2(Zα)(−m) is primitive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' The composition Hn−2(Z)(−m) → Hn−2(Y )(−m) → Hn−4(Zα)(−m + 1), where the second arrow is the pullback by Zα ֒→ Y , sends any class c = Σcα to cα ∩ c1(O(−1)) (for O(−1) is the normal bundle to Zα in Y ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' This composition kills cl(Aα) since the first arrow does.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' □ If A, B are two Bloch cycles then we denote by Eψ A,B = Eψ A,B,t the Hodge struc- ture obtained from ψun t V(−m) by pullback by cl(A) and pushforward by cl(B)∗: (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='1) K∗(m + 1) → ψun t V(−m) → K(−m) cl(B)∗ ↓ ↑ cl(A) Q(1) ֒→ Eψ A,B ։ Q(0) Our Eψ A,B is as in 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='1 so we have ⟨Eψ A,B⟩ ∈ R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Examples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Consider the case when we have single singular point x0 ∈ X0 of f and the singularity at x0 is quadratic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Then the monodromy action on ψtV is unipotent, the only possible Bloch cycle is the difference A of the rulings of the quadric Z0, and it is actually a Bloch cycle if and only if the monodromy action on ψtV is nontrivial or, equivalently, the Hodge structure on Hn−1(X0) is not pure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' 4 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' BEILINSON Lemma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' (i) If m = 0 then the curve X0 can have either 1 or 2 irreducible compo- nents, and A is a Bloch cycle if and only if X0 is irreducible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' (ii) If X/S is a family of quadratic hypersurfaces in Pn then A is not a Bloch cycle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' (iii) If X/S is a family of hypersurfaces of degree d on a given smooth projective variety P then A is a Bloch cycle if d is large enough.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' (i) is clear.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' (ii) follows since the global monodromy for quadratic hypersur- faces is ±1, and so it can’t contain non-trivial unipotent local monodromy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' (iii) Consider the corresponding map r : S → B := {hypersurfaces of degree d on P}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Since X is smooth r is transversal to the locus D ⊂ B of degenerate hypersurfaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Replacing S by a germ of another transversal to D that intersects D near r(0) would not change the topology of X over a small disc around 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' So we can assume that S is a Zariski open subset of the base of a Lefschetz pencil on P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Then, since local monodromies of a Lefschetz pencil are all conjugate, triviality of one local monodromy amounts to triviality of the global monodromy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Thus A is a Bloch cycle if and only if the global monodromy on V is not trivial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Let us check that this happens for large enough d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' If R ⊂ P is the axis of our pencil then H·(X) = H·(P) ⊕ H·−2(R)(−1), and so hn−1,0(P) = hn−1,0(X) which equals hn−1,0(Xs) if the global monodromy is trivial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Thus the monodromy is not trivial when hn−1,0(Xs) > hn−1,0(P).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' To finish the argument it remains to notice that hn−1,0(Xs) ≥ dim(H0(P, Ωn P (d))/H0(P, Ωn P )), and so it tends to ∞ when d → ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' □ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Statement of the theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Now suppose we have a subfield k ⊂ C and our datum is defined over k, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=', there is Xk/Sk, a closed point 0 of Sk, a parameter t on Sk at 0, and Bloch cycles A, B on Zk such that X/S, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=', come by base change k → C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Let a ∈ CHm(Yk)0, b ∈ CHm(Yk)0 be the classes of A and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' The next result was conjectured by Spencer Bloch: Theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' One has ⟨a, b⟩Yk = ⟨Eψ A,B⟩ mod Q log |k×|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' In case n = 1 the theorem was proven in [BlJS].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Remark.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Suppose we are in the situation of Remark in 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' If ⟨Eψ A,B⟩ is corrected in the same way as was discussed there, then the theorem lifts to an equality of real numbers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' The proof does not change;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' we will not discuss it below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Reformulation of the theorem that discards Hodge periods;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' the idea of the proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Let A′, B′ be cycles on Yk of classes a, b such that |A′| ∩ |B′| = ∅ (no- tice that they are, most probably, not supported on Zk).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' We want to show that ⟨EA′,B′⟩ = ⟨Eψ A,B⟩ (see 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='2, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Let us compare the Hodge structures E = EA′,B′ and Eψ = Eψ A,B themselves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Their weights lie in [−2, 0], and one has a canonical identification grW E = grW Eψ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Indeed, grW 0 E(ψ) = Q(0), grW −2E(ψ) = Q(1) by the constructions, and grW −1E = H2m+1(Y )(−m) = grW −1E(ψ) by the lemma in 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='2, and the one in 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='4 combined with the corollary in 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' This identification lifts (uniquely) to W−1E = W−1Eψ and E/W−2E = Eψ/W−2Eψ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Indeed, the classes of extensions 0 → H2m+1(Y )(−m) → E(ψ)/W−2E(ψ) → Q(0) → 0 both equal Deligne cohomol- ogy class clD(A) (a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Griffiths’ Abel-Jacobi periods) of A;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' by duality, the classes of (the duals to) extensions 0 → Q(1) → W−1E(ψ) → H2m+1(Y )(−m) → 0 both equal to clD(B) (see loc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='cit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' HEIGHT PAIRING AND NEARBY CYCLES 5 Now suppose we have a Q-Hodge structure H of weight −1 and two classes a ∈ Ext1(Q(0), H), b ∈ Ext1(H, Q(1)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Consider the set EH a,b = EH(H)a,b of all Hodge structures E with weights in [−2, 0] and equipped with identifications grW 0 E = Q(0), grW −1E = H, grW −2E = Q(1) such that the extensions E/W−2E and W−1E have classes a and b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' The group Ext1(Q(0), Q(1)) = C× ⊗ Q acts on EH a,b by the Baer sum action, and EH a,b is a C× ⊗ Q-torsor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Notice that for q ∈ C× one has ⟨q · E⟩ = log |q| + ⟨E⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Applying this format to H = H2m+1(Y )(−m), a = clD(A), b = clD(B) and EA′,B′, Eψ A,B ∈ EH a,b we get EA′,B′ − Eψ A,B ∈ C× ⊗ Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Now the theorem in 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='8 follows immediately from the next result (notice that the Hodge periods and the height pairing play no role here): Theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' One has EA′,B′ − Eψ A,B ∈ k× ⊗ Q ⊂ C× ⊗ Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' The theorem would be an immediate corollary of the motivic formalism if all the above constructions could be spelled in motivic world: Indeed, we would have then a motivic version EM of EH which is an Ext1 M(Q(0), Q(1)) = k× ⊗ Q-torsor equipped with the Hodge realization embedding EM ֒→ EH;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' our EA′,B′, Eψ A,B would come from elements of EM, and so their difference lies in k× ⊗ Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' The only problem is that in the present day formalism of motives, due to Voevodsky, Ayoub, and Cisinski-D´eglise, the t-structure is not available, so we do not have the motivic version of separate homology groups like Hi(Y ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' The actual proof is an exercise in spelling out the constructions in a way that makes the t-structure redundant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' I am very grateful to Spencer Bloch for explaining me his conjecture and stimu- lating discussions (pity Spencer refused to coauthor the article), to Volodya Drinfeld for valuable comments and discussions, and to Luc Illusie for calling my attention to the construction of [I] which helped to clearify and simplify the argument.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' §2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' The height pairing and the construction of EM a,b ∈ EM a,b ⊂ EH a,b This section is a variation on the theme of [Bl2] and [G].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Let C be a stable dg category.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' It yields two other dg categories C(1) and C(2) constructed as follows: An object of C(1) is a closed morphism α : M → N of degree 0 in C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' One has Hom((M, N, α), (M ′, N ′, α′))i = Hom(M, M ′)i ×Hom(N, N ′)i ×Hom(M, N ′)i+1 ⊂ Hom(Cone(α), Cone(α′))i, and the differential is defined so that the latter embed- ding is a morphism of complexes;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' the composition of morphisms is defined in a sim- ilar way.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' There are three dg functors C(1) → C which send (M, N, α) to M, N, and Cone(α) respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' We can view C(1) as the category of distinguished triangles, and the rotation yields an autoequivalence ρ : C(1) → C(1) which sends α : M → N to ρ(α) : N → Cone(α);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' the inverse autoequivalence is ρ−1(α) : Cone(α)[−1] → M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' An object of C(2) is a datum (P, M, Q, α, β, κ) where P, M, Q are objects of C, α ∈ Hom(P, M)1, β ∈ Hom(M, Q)1 are closed maps, and κ ∈ Hom(P, Q)1 is such that d(κ) = βα;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' we sometimes abbreviate it to (α, β, κ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' One can assign to such a datum an object E = E(α, β, κ) ∈ C which equals P ⊕ M ⊕ Q with α, β, and −κ added as the components to the differential.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='1 There is a filtration Q ⊂ Cone(β : M[−1], Q) ⊂ E, and morphisms in C(2) are the same as morphisms between the 1Thus E = Cone((α, κ) : P [−1] → Cone(β : M[−1] → Q)) = Cone((κ, β) : Cone(α : P [−2] → M[−1]) → Q).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' 6 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' BEILINSON corresponding objects E that preserve this filtration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' We have two dg functors C(2) → C(1) which send to (α, β, κ) to α : P[−1] → M and β : M → Q[1], and six dg functors C(2) → C which send (α, β, κ) to P, M, Q, Cone(α : P[−1] → M), Cone(β : M[−1] → Q), and E(α, β, κ) respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' The dg category C(3) carries a natural involution σ which sends (P, M, Q, α, β, κ) to the object (Q[−1], E(α, β, κ), P[1], ασ, βσ, 0) where ασ and βσ are the evident embedding and projection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Remark.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' One can view an object (α, β, κ) ∈ C(2) as an object of C equipped with a 3-step filtration in two different ways.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Namely, this could be E(α, β, κ) equipped with an evident filtration with successive quotients Q, M, and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Or this could be M equipped with a filtration whose successive quotients are P[−1], E(α, β, κ), and Q[1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' The involution σ exchanges the two perspectives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' For C as above we denote by C× the ∞-groupoid of its homotopy equivalences, by C×τ the corresponding 1-truncaded plain groupoid, and by HC the homotopy category of C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' For S, T ∈ C set Exti(S, T ) := HiHom(S, T ) = HomHC(S, T [i]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Denote by Ext(S, T ) the plain Picard groupoid of extensions that corresponds to the two-term complex τ [0,1]Hom(S, T ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' For M, N ∈ C let C(1)× M,N be the ∞-groupoid of collections (α′ : M ′ → N ′, ιM, ιN) where (α′ : M ′ → N ′) ∈ C(1) and ιM : M → M ′, ιN : N → N ′ are homotopy equiv- alences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' It is equivalent to the Picard ∞-groupoid that corresponds to the complex τ ≤0Hom(M, N).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' The 1-truncated plain Picard groupoid C(1)×τ M,N corresponds to the two-term complex τ [−1,0]Hom(M, N).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Similarly, for three objects P, M, Q ∈ C we have the ∞-groupoid C(2)× P,M,Q whose objects are data (P ′, M ′, Q′, α′, β′, κ′, ιP , ιM, ιQ) where (P ′, M ′, Q′, α′, β′, κ′) ∈ C(2) and ιP : P → P ′, ιM : M → M ′, ιQ : Q → Q′ are homotopy equivalences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' The 1-truncated plain groupoid C(2)×τ P,M,Q contains a normal subgroup Ext0(P, Q) = HomHC(P, Q).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Let by E = E(M) = E(P, M, Q) be the quotient groupoid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' It is equivalent to the groupoid of triples (α, β, κ) where α ∈ Hom(P, M)1, β ∈ Hom(M, Q)1 are closed maps, and κ ∈ Hom(P, Q)1/d(Hom(P, Q)0) is such that d(κ) = βα;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' a morphism (α, β, κ) → (α′, β′, κ′) in E is a pair (φ, ψ) where φ ∈ Hom(P, M)0/d(Hom(P, M)−1), ψ ∈ Hom(M, Q)0/d(Hom(M, Q)−1) are such that α′ − α = d(φ), β′ − β = d(ψ), κ′ − κ = βφ + ψα + ψd(φ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' The projection C(2) P,M,Q → C(1) P [−1],M × C(1) M,Q[1] yields a map of plain groupoids E(P, M, Q) → C(1)×τ P [−1],M × C(1)×τ M,Q[1] = Ext(P, M) × Ext(M, Q), (α, β, κ) �→ (α, β).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' The group Ext1(P, Q) acts on E by translations of κ, and non-empty fibers Eα,β are Ext1(P, Q)-torsors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Remark.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' E(P, M, Q) is naturally functorial with respect to P and Q: every pair of closed morphisms µ : P1 → P and ν : Q → Q1 yields a map E(P, M, Q) → E(P1, M, Q1), (α, β, κ) �→ (αµ, νβ, νκµ);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' is compatible with the Ext1(P, Q)-action via the map (µ∗, ν∗) : Ext1(P, Q) → Ext1(P1, Q1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Suppose Ext2(P, Q) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Then Eα,β are non-empty, and the addition maps Eα1,β × Eα2,β → Eα1+α2,β, Eα,β1 × Eα,β2 → Eα,β1+β2 define on E the structure of an Ext1(P, Q)-biextension of (Ext(P, M), Ext(M, Q)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' In our first example C is the dg category whose homotopy category is the bounded derived category DH of the category H of Q-Hodge structures, and HEIGHT PAIRING AND NEARBY CYCLES 7 P = Q(0), Q = Q(1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' We denote the corresponding E by EH = EH(M).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Then Ext̸=1 DH(P, Q) = 0 and Ext1 DH(P, Q) = C× ⊗ Q, so EH is a C× ⊗ Q-biextension of (Ext(Q(0), M), Ext(M, Q(1))).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Let Ext1 0(Q(0), M) ⊂ Ext1(Q(0), M), Ext1 0(M, Q(1)) ⊂ Ext1(M, Q(1)) be the subgroups of those elements a, b that the maps H0a : Q(0) → H1M, H−1b : H−1M → Q(1) vanish.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Let Ext0(Q(0), M) ⊂ Ext(Q(0), M), etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=', be the Picard groupoids of such extensions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Lemma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Suppose that Hom(Q(0), H0M) = Hom(H0M, Q(1)) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' (i) The restriction of EH to (Ext0(Q(0), M), Ext0(M, Q(1))) descends to the C×⊗Q- biextension of (Ext1 0(Q(0), M), Ext1 0(M, Q(1))).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' (ii) EH is naturally functorial with respect to M: if ϕ : M → M ′ is a morphism, and we have a′ ∈ Ext1 0(Q(0), M ′), b′ ∈ Ext1 0(M ′, Q(1)) with ϕ∗(a) = a′, ϕ∗(b′) = b then there is a canonical identification EH(M)a,b = EH(M ′)a′,b′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' (iii) The isomorphisms Ext1 0(Q(0), M) ∼ → Ext1(Q(0), H0M), Ext1 0(M, Q(1)) ∼ → Ext1 (H0M, Q(1)) which assign to an extension its zero cohomology, lifts naturally to an isomorphism of biextensions H0 : EH(M) ∼ → EH(H0M).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' One has EH0 = H0E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Let us prove (i);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' the rest is clear.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' We need to check that for every closed α ∈ Hom1 0(Q(0), M), β ∈ Hom1 0(M, Q(1)) the action of Aut(α)×Aut(β) = Hom(Q(0), M) ×Hom(M, Q(1)) on EH α,β is trivial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Since H has homological dimension 1 our M is isomorphic to the direct sum of its homologies and so Aut(α) = Ext1(Q(0), H−1M), Aut(β) = Ext1(H1(M), Q(1)) by the condition on M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' The action of (e, h) ∈ Ext1(Q(0), H−1M)×Ext1(H1(M), Q(1)) on EH α,β is the translation by H−1(β)e + hH0(α) which is 0 since α, β ∈ Ext1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' □ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Lemma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Suppose that H0M is pure of weight −1 (which implies the condition of the lemma in 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Then the function EH(M) → R, (α, β, κ) �→ ⟨E(α, β, κ)⟩ := ⟨H0E(α, β, κ)⟩, see 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='1, is a natural trivialization of the R-biextension log |EH(M)|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Everything said in 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='3 works for the category HR of R-Hodge structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' The extension of scalars functor H → HR, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' �→?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' ⊗ R, yields a morphism of our biex- tensions EH(M) → EHR(M ⊗ R).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' The map Ext1(Q(0), Q(1)) → Ext1(R(0), R(1)) equals log | | after the standard identifications of the Ext groups with, respectively, C× ⊗ Q and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Since Ext1(R(0), H0M ⊗ R) = Ext1(H0M ⊗ R, R(1)) = 0 by the condition on M, one has EHR(M ⊗ R) = EHR(H0M ⊗ R) = R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' The map EH(M) → EHR(M ⊗ R) = R is ⟨ ⟩ of 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' □ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Let k ⊂ C be a subfield.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Denote by DM(k) the dg category of geometric Voevodsky Q-motives over k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' We have the Hodge realization dg functor DM(k) → DH, M �→ M H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Consider the story of 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='2 for C = DM(k) with P = Q(0), Q = Q(1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' As before one has Ext̸=1 DM(k)(Q(0), Q(1)) = 0, and there is a canonical identification Ext1(Q(0), Q(1)) = k× ⊗ Q such that the Hodge realization map between the Ext1’s is the embedding k× ⊗ Q ֒→ C× ⊗ Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' So for any M ∈ DM(k) we get a k× ⊗ Q-biextension of (Ext1(Q(0), M), Ext1(M, Q(1))) together with the Hodge realization morphism EM(M) → EH(M) := EH(M H) of the biextensions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Remark.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Since the homomorphism k× ⊗ Q ֒→ C× ⊗ Q is injective, the maps of torsors EM(M)α,β → EH(M)α,β := EH(M)αH,βH are injective too.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' We define Ext1 0(Q(0), M) ⊂ Ext1 0(Q(0), M) and Ext1 0(M, Q(1)) ⊂ Ext1(M, Q(1)) as preimages of the Ext1 0 subgroups of the Hodge setting by the Hodge realiza- 8 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' BEILINSON tion maps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Assume that H0M H is pure of weight −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Then (i) and (ii) of the lemma in 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='3 remain true in the DM(k) setting (with C× replaced by k×): this follows from loc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='cit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' by Remark above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Thus we have a k× ⊗ Q-biextension EM(M) of (Ext1 0(Q(0), M), Ext1 0(M, Q(1))) together with a map of biextensions EM(M) → EH(M), so the lemma in 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='4 provides a natural trivialization of the R-biextension log |EM(M)|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' The image of EM a,b in R/Q log |k×| depends only on a, b ∈ Ext1 0(M, Q(1)) × Ext1 0(Q(0), M), and we denote it by ⟨a, b⟩M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' It is clearly biadditive with respect to a, b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='2 We have defined a canonical height pairing (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='1) ⟨ ⟩M : Ext1 0(Q(0), M) × Ext1 0(M, Q(1)) → R/Q log |k×|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' We return to the situation of 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='3 and set M := M(Yk)(−m)[−1 − 2m] where M(Yk) is the motive of Yk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' One has Ext1(Q(0), M) = CHm(Yk), Ext1(M, Q(1)) = CHm′(Yk) by the Poincar´e duality, and Ext1 0 are the subgroups CH(Yk)0 of cycles homologically equivalent to zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Therefore we get a k× ⊗ Q-biextension EM of (CHm(Yk)0, CHm′(Yk)0), the map of biextensions EM → EH, the trivialization of log |EM|, and the height pairing ⟨ , ⟩M : CHm(Yk)0 × CHm′(Yk)0 → R/Q log |k×|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' By (iii) of the lemma in 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='3 one has H0 : EH(M) ∼ → EH(H2m+1(Y )(−m)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' For a ∈ CHm(Yk)0, b ∈ CHm′(Yk)0 pick, as in 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='3, cycles A, B that represent them such that |A| ∩ |B| = ∅.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='3 Let us construct (a, b, κA,B) ∈ EM a,b such that the Hodge realization EH A,B of EM A,B := E(a, b, κA,B) (see 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='1) has zero cohomology H0EH A,B equal to the Hodge structure EA,B from 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' This would imply that for our M the height pairing (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='1) equals (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' The composition of the maps M(|A|) α→ M(Yk) β→ M(Yk, Yk ∖ |B|) is naturally homotopic to 0: indeed, M(Yk, Yk ∖ |B|) := Cone(M(Yk ∖ |B|) → M(Yk)), and the homotopy κ|A|,|B| is M(|A|) → M(Yk ∖|B|) ⊂ Cone.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Thus we have (α, β, κ|A|,|B|) ∈ DM(2) (see 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Notice that E(α, β, κ|A|,|B|) = M(Yk ∖ |B|, |A|).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' One has Ext−2m(Q(m), M(|A|)) = Zm(|A|) := the group of m-cycles supported on |A| (recall that dim |A| = m), and Ext2m+2(M(Yk, Yk ∖ |B|), Q(m + 1)) = Zm′(|B|) by the Poincar´e duality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Therefore we have (αA, Bβ, Bκ|A|,|B|A) = (Q(m)[2m+1], M(Yk), Q(m)[2m+2], αA, Bβ, Bκ|A|,|B|A) ∈ DM(2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' The promised (a, b, κA,B) ∈ EM a,b is (αA, Bβ, Bκ|A|,|B|A)(−m)[−1 − 2m].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' The fact that H0EH A,B equals the Hodge structure EA,B from 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='3 follows from the construction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' §3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' The unipotent nearby cycles in the Hodge setting 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' A nearby cycles reminder.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' In this section we play with algebraic varieties over C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' For an algebraic variety X we denote by H(X) the abelian category of perverse Hodge Q-sheaves of M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Saito on X, by DH(X) its bounded derived category.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' It sat- isfies the usual Grothendieck six functors formalism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Below ∗ is the Verdier duality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Every object of H(X), hence of DH(X), carries a canonical weight filtration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' For F ∈ DH(X) let Γ(X, F), Γc(X, F) ∈ DH be the complex of chains, resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' chains with compact support, with coefficients in F equipped with the natural Hodge structure, H· (c)(X, F) := H·Γ(c)(X, F) ∈ H;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' set Γ(c)(X) := Γ(c)(X, Q(0)X), H· (c)(X) := H· (c)(X, Q(0)), and denote by ( , ) the Poincar´e duality pairing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Simi- larly for a closed subvariety A ⊂ X we set ΓA(X) := ΓA(X, Q(0)) ∈ DH, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' 2Indeed, a morphism from a biextension by a trivial group to a trivialized biextension amounts to a biadditive pairing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' 3Recall that |A|, |B| ⊂ Yk are supports of the cycles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' HEIGHT PAIRING AND NEARBY CYCLES 9 Let g : X → A1 be a function on X;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' set X0 := g−1(0), and let v : X ∖ X0 ֒→ X, iX0 : X0 ֒→ X be the open and closed embeddings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' One has the unipotent nearby cycles functor ψun g : DH(X ∖ X0) → DH(X0) that carries a natural logarithm of monodromy morphism N = Ng = NF : ψun g (F)(1) → ψun g (F) where F ∈ D(X ∖ X0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' It has ´etale local origin with respect to X0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' For sheaves on X there is a natural morphism of functors ι : i∗ X0 → ψun g v∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' There are basic canonical identifications: (i) Compatibility with Verdier duality: One has ψun g (F∗) = (ψun g F)∗(1)[2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' (ii) Compatibility with proper direct images: Suppose h : X → T is a proper map and t is a function on T such that g = th;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' then one has ψun t h∗F = h∗ψun g F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' (iii) One has Cone(NF) = i∗ X0v∗F(1)[1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' (iv) For every n > 0 one has ψun gnF ∼ → ψun g F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' These identifications are mutually compatible;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' (i) and (ii) are compatible with the action of N, and (iv) identifies Ngn with nNg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Finally, one has (v) ψun[−1] is t-exact for the perverse t-structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Examples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Suppose that X is smooth of dimension n and F = Q(0)X∖X0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Then F∗ = F(n)[2n] hence ψun g (F)∗ = (ψun g F)(n − 1)[2n − 2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' (a) If g is smooth then ιQ(0)X : Q(0)X0 ∼ → ψun g F, NF = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' (b) Suppose g is semi-stable and X0 has two irreducible components Y and Y ′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' By (a) one has natural morphisms jY ′∖Y !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='QY ′∖Y → ψun g F → jY ∖Y ′∗QY ∖Y ′ compatible with the N-action (we take it that on the left and right object N acts trivially).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' They form an exact triangle;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' its Verdier dual is the same triangle with Y and Y ′ interchanged.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' We are in the setting of 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='4 and follow the notation there.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Let j : U := X0 ∖ {xα} ֒→ X0 ←֓ {xα} : ⊔ixα be the complementary open and closed embeddings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Let I be the intersection cohomology sheaf j!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='∗Q(0)U = τ ≤n−2j∗Q(0)U 4 on X0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' set I+ := π∗Q(0)Y .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' One has natural self-duality isomor- phisms I∗ = I(n − 1)[2n − 2], I+∗ = I+(n − 1)[2n − 2] (recall that Y is smooth of dimension n − 1 and π is proper).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' The decomposition theorem for π is easy and explicit: Proposition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' There is a natural orthogonal direct sum decomposition (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='1) I+ = I ⊕ ⊕αixα∗τ [2,2n−4]Γ(Pα) compatible with the self-dualities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' One has a natural orthogonal direct sum decomposition (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='2) Γ(Zα) = Hn−2 prim(Zα)[2 − n] ⊕ τ ≤2n−4Γ(Pα) defined as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Consider the embedding Zα ֒→ Pα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' The pullback and Gysin maps Γ(Pα) → Γ(Zα) → Γ(Pα)(1)[2] are mutually dual for the Poincar´e duality pairings, and their composition in either direction equals to the multiplication by c1(O(dα)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='5 Thus the composition of τ ≤2n−4Γ(Pα) → Γ(Zα) → τ ≥0(Γ(Pα)(1)[2]) is an isomorphism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' This yields a direct sum decomposition Γ(Zα) =?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='⊕τ ≤2n−4Γ(Pα).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' 4Below τ is the usual truncation, pτ is the perverse one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' 5Since O(dα) is the normal bundle to Zα in Pα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' 10 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' BEILINSON Since multiplication by c1(O(dα)) preserves the direct sum decomposition, the only nonzero cohomology of ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' is Hn−2 prim(Zα) ⊂ Hn−2(Zα), q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Consider the embeddings of smooth divisors iZα : Zα ֒→ Y .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' One has i!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' ZαQ(0)Y = Q(−1)[−2]Zα, i∗ ZαQ(0)Y = Q(0)Zα, and the composition of the adjunction maps iZα∗i!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' ZαQ(0)Y → Q(0)Y → iZα∗i∗ ZαQ(0)Y equals the multiplication by c1(O(−1)) map Q(−1)[−2]Zα → Q(0)Zα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='6 Apply π∗;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' then i!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' xαI+ = Γ(Zα)(−1)[−2], i∗ xαI+ = Γ(Zα) by base change, and the composition of the adjunctions ixα∗i!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' xαI+ → I+ → ixα∗i∗ xαI+ is multiplication by c1(O(−1)) map ixα∗Γ(Zα)(−1)[−2] → ixα∗Γ(Zα).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Composing the maps τ ≤2n−6Γ(Pα) ֒→ Γ(Zα) and Γ(Zα) ։ τ [2,2n−4]Γ(Pα) that come from decomposition (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='2) from the left and from the right with the latter ad- junctions, we get the maps ixα∗(τ ≤2n−6Γ(Pα))(−1)[−2] → I+ → ixα∗τ [2,2n−4]Γ(Pα).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Their composition is an isomorphism, which yields a decomposition I+ = I?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' ⊕ ixα∗τ [2,2n−4]Γ(Pα).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Since the adjunctions are mutually dual, the decomposition is orthogonal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' By (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='2) one has i!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' xαI?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' = Hn−2 prim(Zα)(−1)[−n] ⊕ Q(n − 1)[2 − 2n], i∗ xαI?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' = Hn−2 prim(Zα)[2 − n] ⊕ Q(0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Thus I?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' [n − 1] is a perverse sheaf which equals Q(0)[n − 1]U on U and has no subquotients supported on {xα}, and so I?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' = I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' We are done.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' □ Remarks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' (i) The adjunction map Q(0)X0 → π∗Q(0)Y = I+ takes value in I ⊂ I+ since Hom(Q(0)X0, ixα∗τ [2,2n−4]Γ(Pα)) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' (ii) Set B := ⊕ixα∗Hn−2 prim(Zα)[1 − n].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' By the formula for i∗ xαI at the end of the previous paragraph, one has an exact triangle Q(0)X0 → I → B[1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' As in 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='5, t is a local coordinate at 0 ∈ S;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' shrinking S we can assume that t is defined and invertible on S ∖ {0}, so X0 = (tf)−1(0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Consider the functor ψun tf : DH(X ∖ X0) → DH(X0) (see 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Set R := ψun tf Q(0)X∖X0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' By 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='1(i) one has a canonical self-duality identification R∗ = R(n − 1)[2n − 2] and the mutually dual maps Q(0)X0 ι→ R ι∗ → Q(0)∗ X0(1 − n)[2 − 2n] which are isomorphisms over U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' The next result is due to Illusie [Il];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' we will need it in 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' The reader can skip it at the moment and jump directly to section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Proposition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' For every critical point xα one has canonical isomorphisms (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='1) i!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' xαR = Γc(Pα ∖ Zα), i∗ xαR = Γ(Pα ∖ Zα) interchanged by the duality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' The N-action on i!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' xαR, i∗ xαR is trivial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' (a) The claim is local at xα, so for the proof we remove from X the rest of critical points, and still call it X by the abuse of notation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Let S♭ → S be the covering of degree dα obtained by adding t♭ = t1/dα to the sheaf of functions;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' its Galois group is µdα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Set X♭ := X×SS♭ and let f ♭ : X♭ → S♭ be the projection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Our X♭ is a hypersurface {(x, t♭) : (tf)(x) − t♭dα = 0} in X × A1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' its only singular point is (xα, 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' The projectivized tangent cone Qα of X♭ at (xα, 0) is a hypersurface in P + α := P(T(xα,0)X × A1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' The Galois group µdα acts on X♭ hence on Qα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' (b) Let us check that Qα is a µdα-covering of Pα completely ramified along Zα and ´etale over its complement, and Qα is smooth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' To see this, consider the leading term [tf]dα(x) (of the Taylor expansion) of tf at xα;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' then the leading term of 6Since O(−1) is the normal bundle to Zα in Y .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' HEIGHT PAIRING AND NEARBY CYCLES 11 (tf)(x) − t♭dα at (xα, 0) is [tf]dα(x) − t♭dα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' The zeros of [tf]dα is Zα ⊂ Pα, of [tf]dα(x) − t♭dα is Qα ⊂ P + α , and so the projection Qα → Pα (x, t♭) �→ x, is as claimed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' The smoothness of Qα follows from that of Zα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' (c) Let π+ : X+ → X♭ be the blowup of X♭ at (xα, 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' By (b) X+ is smooth and the map f + := f ♭π+ : X+ → S♭ has semistable reduction at 0 ∈ S♭.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' The fiber X+ 0 has two irreducible components: one equals Y and the other Qα, and their intersection equals Zα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' The action of µdα on X♭ yields one on X+.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' The µdα-action on X+ 0 fixes Y and acts on Qα as described in (b).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' The projection π+ 0 : X+ 0 → X♭ 0 = X0 contracts Qα to xα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Set R+ := ψun tf +Q(0)X+∖X+ 0 , R♭ := ψun tf ♭Q(0)X♭∖X♭ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' These are sheaves on X+ 0 and X♭ 0 = X0 respectively that are naturally µdα-equivariant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' By 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='1(ii) (with h = π+) one has a natural identification π+ 0∗R+ = R♭ compatible with the µdα- actions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Since the projection p : X♭ → X is a µdα-torsor over X ∖ X0 one has Q(0)X∖X0 = (p∗Q(0)X♭∖X♭ 0)µdα , and so, by 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='1(ii) with h = p, one has R = R♭µdα .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Therefore R = (π+ 0∗R+)µdα .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' (d) By 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='1(iv) with g = t♭f +, n = dα, one has ψun tf + = ψun t♭f +.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Our t♭f + is semi- stable, so we have the exact triangle jY ∖Zα!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='QY ∖Zα → R+ → jQα∖Zα∗QQα∖Zα as in Example (b) in 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Applying π+ 0∗ we get an exact triangle j!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='QU → R♭ → ixα∗Γ(Qα∖Zα).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Passing to µdα-invariants we get, by (b), an exact triangle j!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='QU → R → ixα∗Γ(Pα ∖ Zα);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' here we use the identification Γ(Qα ∖ Zα)µdα ∼ → Γ(Pα ∖ Zα) defined as the composition Γ(Qα ∖ Zα)µdα ⊂ Γ(Qα ∖ Zα) tr → Γ(Pα ∖ Zα).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Thus we get the isomorphism i∗ xαR ∼ → Γ(Pα ∖ Zα) in (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' The second isomorphism there comes in the dual manner from the dual exact triangle jQα∖Zα!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='QQα∖Zα → R+ → jY ∖Zα∗QY ∖Zα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Since π+ 0∗ commutes with duality, the two isomorphisms are mutually dual, and we are done.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' □ Let αR be the composition B ∂→ Q(0)X0 ι→ R where ∂ is the boundary map of the triangle from Remark (ii) in 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='2, so I = Cone(∂).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Let us compute the map i!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' xα(αR).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Consider the standard triangle Hn−2 prim(Zα)[1−n] δ→ Γc(Pα ∖Zα) tr → Q(1−n)[2−2n] that comes from (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Lemma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' −i!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' xα(αR) equals the composition δR of the maps Hn−2 prim(Zα)[1 − n] δ→ Γc(Pα ∖ Zα) (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='1) = i!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' xαR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Consider the exact triangle (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='2) jQα∖Zα!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='Q(0)Qα∖Zα ⊕ jY ∖Zα!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='Q(0)Y ∖Zα → Q(0)X+ 0 → Q(0)Zα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Let (δQ, δY ) : Q(0)Zα[−1] → jQα∖Zα!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='Q(0)Qα∖Zα ⊕ jY ∖Zα!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='Q(0)Y ∖Zα be the bound- ary map.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Its composition with the map to Q(0)X+ 0 , and hence with the further composition with Q(0)X+ 0 ι→ R+, is 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Therefore the sum of the compositions Q(0)Zα[−1] δQ −→ jQα∖Zα!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' ι→ R+ and Q(0)Zα[−1] δY −→ jY ∖Zα!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' ι→ R+ is 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Ap- ply i!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' xαπ+ ∗ and consider the restriction of our compositions to Hn−2 prim(Zα)[1 − n] ⊂ Γ(Zα)[−1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' For the first one it is δR, for the second one it is i!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' xα(αR), and we are done.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' □ 12 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' BEILINSON 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Set P := R[n − 1] = ψun tf Q(0)X∖X0[n − 1];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' this is a perverse sheaf on X0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' one has a canonical self-duality identification P∗ = P(n − 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Consider the perverse sheaves PN := Ker(N : P → P(−1)), PN := Coker(N : P(1) → P).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Lemma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' (i) Q(0)X0[n − 1] is a perverse sheaf of weights n − 1 and n − 2 with grW n−1 = I[n − 1], grW n−2 = ⊕α ixα∗Hn−2 prim(Zα).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' (ii) One has PN = Q(0)X0[n − 1], PN = (Q(0)X0[n − 1])∗(1 − n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' (iii) P has weights in [n − 2, n].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' One has Wn−1P = Q(0)X0[n − 1], P/Wn−2P = (Q(0)X0[n − 1])∗(1 − n), grW n−2P = ⊕α ixα∗Hn−2 prim(Zα), grW n−1P = I[n − 1], grW n P = (grW n−2P)∗(1 − n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' (i) The exact triangle from Remark (ii) in 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='2 amounts to an exact triangle ⊕ixα∗Hn−2 prim(Zα) → Q(0)X0[n − 1] → I[n − 1], and we are done since its left and right terms are pure perverse sheaves of weights n − 2 and n − 1 respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' (ii) For any sheaf A on X one has a canonical exact triangle i∗ X0A → i∗ X0v∗v∗A → i!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' X0A[1]: Indeed, the map v!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='v∗A → v∗v∗A factors as composition v!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='v∗A → A → v∗v∗A, and so one has an exact triangle Cone(v!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='v∗A → A) → Cone(v!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='v∗A → v∗v∗A) → Cone(A → v∗v∗A) which is supported on X0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' The promised exact triangle is its restriction to X0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Now take for A the perverse sheaf Q(0)X[n].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' The first term of the triangle is Q(0)X0[n] which is perverse sheaf shifted by 1, its third term is (Q(0)X0[n−1])∗(−n) which is a perverse sheaf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Therefore they equal, respectively, pH−1 and pH0 of i∗ X0v∗v∗Q(0)X[2n], i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=', of Cone(N : P → P(−1)) by 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='1(iii), and we are done.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' (iii) Since N is nilpotent, the weights of P are bounded from below by the minimum of weights of PN, which is n − 2 by (ii) and (i).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' By self-duality of P they are bounded then from above by n, and we have the first assertion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' It implies that Wn−2P ⊂ PN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' The rest follows directly from (i), (ii), and self-duality of P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' □ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Proof of the proposition in 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' We use the notation in loc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='cit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Injectivity of sp : (ψun t H)N → Hn−1(X0) follows from the local invariant cycles theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Let us check the surjectivity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' By 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='1(ii) applied to h = f (recall that f is proper) and 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='1(v) applied to ψun t , one has ψun t H = H0(X0, P)(n−1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' By 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='4 we have exact sequence of perverse sheaves 0 → ⊕α ixα∗Hn−2 prim(Zα)(n−1) → P(n−1) → (Q(0)X0[n−1])∗ → 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Its left term has finite support, and so has no cohomology in degrees ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Therefore the map H0(X0, P)(n − 1) → H0(X0, (Q(0)X0[n − 1])∗) = Hn−1(X0) is surjective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' This map equals sp, and we are done.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' □ §4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' The motivic setting and the construction of EψM a,b ∈ EM a,b 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' We are in the setting of 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='8 so k ⊂ C is a subfield and we play with varieties over k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Changing slightly the notation of 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='3 and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='8, for a variety Z = Zk we set ZC := Z ⊗k C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' The notation of §3 is preserved except that we equip from now on all Hodge sheaves and Hodge structures met previously with extra upper index H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' We play with motives (a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' motivic sheaves) over varieties, see [A1] and [CD].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' For a variety Z the category of constructible Q-motives over Z is denoted by DM(Z).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' We use Grothendieck’s six functors formalism for DM as developed in [CD].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Recall that DM(Spec k) = DM(k) is the category of Voevodsky’s geo- metric Q-motives over k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' For a variety Z one has M(Z) = πZ!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='π!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' ZQ(0) where πZ : Z → Spec k is the structure map.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' For a motivic sheaf F on Z set Γ(Z, F) := πZ∗F, Γc(Z, F) := πZ!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='F ∈ DM(k);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' we write Γ(c)(Z) := Γ(c)(Z, Q(0)Z).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' There is HEIGHT PAIRING AND NEARBY CYCLES 13 a Hodge realization functor DM(Z) → DH(ZC), F �→ FH, compatible with the six functors and the Verdier duality ∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' For a smooth Z of dimension d one has π!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' ZQ(0) = Q(d)Z[2d], and so M(Z) = Γc(Z)(d)[2d].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' The formalism of unipoteny nearby cycles in the setting of motivic sheaves was developed in §§3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='4, 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='6 of [A2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' The motivic version of everything said in 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='1 holds except property (v) (for the t-structure is not available).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' The Hodge realization functor commutes with the nearby cycles functors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Notation: Notice that Hom(Q(i)[2i], Q(j)[2j]) is 0 if i ̸= j and Q for i = j,7 and so every object M ∈ M(k) which is isomorphic to a direct sum of motives Q(i)[2i], i ∈ Z, can be written in a unique manner as ⊕i Vi(i)[2i] where Vi is a vector space (then Vi = Hom(Q(i)[2i], M)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Set τ ≤2aM := ⊕i≥−a Vi(i)[2i], etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' We are in the situation of 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='2 in the setting of k-varieties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' As in loc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='cit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=', I+ := π∗Q(0)Y ∈ DM(X0) (so I+H is the corresponding Hodge sheaf from loc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='cit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=') Since Y is smooth and π is proper one has a natural self-duality I+∗ = I+(n−1)[2n−2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' The t-structure in DM is not available, so we define the motivic intersection cohomology sheaf I using a motivic version of decomposition (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='1): Proposition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' There is a natural orthogonal direct sum decomposition in DM(X0) (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='1) I+ = I ⊕ ⊕αixα∗τ [2,2n−4]Γ(Pα) whose Hodge realization is (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='1) Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' It repeats the proof in 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='2 (minus its last paragraph).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Namely, we first define a natural orthogonal decomposition (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='2) Γ(Zα) = Hn−2 prim(Zα)[2 − n] ⊕ τ ≤2n−4Γ(Pα) in DM(xα) = DM(kxα) whose Hodge realization is (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='8 The construction in loc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='cit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' uses only basic six functors functoriality, so we can repeat it literally in the motivic setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Then we proceed to define (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='1) as in loc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='cit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' □ Set B := ⊕α ixα∗Hn−2 prim(Zα)[1 − n] ∈ DM(X0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' The self-dualities of Γ(Zα) and of I+, and the above orthogonal decompositions yield natural self-dualities (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='3) B∗ ∼ → B(n − 2)[2n − 2], I∗ ∼ → I(n − 1)[2n − 2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Lemma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' (i) The adjunction χ : Q(0)X0 → π∗Q(0)Y = I+ takes values in I ⊂ I+.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' (ii) One has Cone(χ : Q(0)X0 → I) = B[1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' (i) Follows since Hom(Q(0)X0, ixα∗τ [2,2n−4]Γ(Pα)) = Hom(Q(0), τ [2,2n−4]Γ(Pα)) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' (ii) Since χ|U = idQ(0)U the cone Cone(χ) is supported on {xα}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Now i∗ xαCone(χ) = 7This follows since M(Pn) = ⊕i∈[0,n]Q(i)[2i] and End(M(Pn)) = CHn(Pn × Pn) = Q[0,n].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' 8So Hn−2 prim(Zα) is a notation for a motive whose Hodge realization is the primitive cohomology of Zα;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' its definition does not involve any cohomology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' To construct it explicitly, choose a k-point z in Pα ∖ Zα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Let πz : Zα → Pn−2 be the corresponding projection;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' this is a finite map of degree dα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Then Hn−2 prim(Zα) is the kernel of the projector d−1 α πt zπz acting on M(Zα)(2 − n)[4 − 2n].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' 14 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' BEILINSON Cone(i∗ xα(χ)) equals Hn−2 prim(Zα)[2 − n] by (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='2) and the construction of I, q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' □ Remark.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Since Exti(Q(0)X0, Q(0)∗ X0(1−n)[2−2n]) = Exti(Q(0), M(X0)(1−n)[2− 2n]) = CHn−1(X0, −i) we see that Ext0 = Zn−1(X0) and Ext̸=0 = 0, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=', one has Hom(Q(0)X0, Q(0)∗ X0(1 − n)[2 − 2n]) = Zn−1(X0) = Zn−1(U).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Example.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' One has χ∗χ = ǫ where ǫ : Q(0)X0 → Q(0)∗ X0(1 − n)[2 − 2n] is the map that corresponds to the sum of irreducible components cycle (it is enough to check the assertion on U where it is obvious).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' We are in the situation of 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='3 in the setting of k-varieties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Consider the functor ψun tf : DM(X ∖ X0) → DM(X0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' There is a canonical morphism ι : i∗ X0 → ψun tf v∗ of functors on DM(X) and its Verdier dual ι∗ : ψun tf v∗ → i!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' X0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Therefore we have a motivic sheaf R := ψun tf Q(0)X∖X0 equipped with a natural self-duality R∗ ∼ → R(n − 1)[2n − 2] and mutually dual maps Q(0)X0 ι→ R ι∗ → Q(0)∗ X0(1 − n)[2 − 2n] that are isomorphisms over U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Let ∂ : B → Q(0)X0 be the boundary map of the triangle from 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='3(ii).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Set αR := ι∂ : B → R, and let βR be α∗ R combined with the self-duality identifications for R and B, so we have (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='1) B αR −→ R βR −→ B(−1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Lemma-construction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' The composition βRαR is homotopic to zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' In fact, there is a canonical up to a homotopy κR such that d(κR) = βRαR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' By Remark and Example in 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='3 one has βRαR = ∂∗ι∗ι∂ = ∂∗ǫ∂ = ∂∗χ∗χ∂ = (χ∂)∗χ∂.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Notice that χ∂ is homotopic to 0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' choose a homotopy λ, d(λ) = χ∂.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Now set κR := λ∗χ∂.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Independence of κR up to a homotopy from the choice of λ: if λ′ is another homotopy as above, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=', d(λ) = d(λ′), then κ′ R = λ′∗χ∂ = κR + (λ′ − λ)χ∂ = κR + d((λ − λ′)λ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' □ Remark.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Our κR is self-dual up to homotopy: Indeed, one has κ∗ R = (χ∂)∗λ = κR + d(λ∗λ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Below we use the notation from 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='1, 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' We have defined (αR, βR, κR) ∈ DM(X0)(2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' It yields the objects ER := E(αR, βR, κR) ∈ DM(X0) and (αI, βI, κI) := σ(αR, βR, κR) ∈ DM(X0)(2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' As follows from Remark in 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='4 and the defini- tions, the above three objects are naturally self-dual.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Proposition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' There is a homotopy equivalence θ : I ∼ → ER such that the maps βIθ : I → B[1], θ−1αI : B(−1)[−1] are a morphism of the triangle in 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='3(ii) and its dual.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Our θ is unitary, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=', θ∗ = θ−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Recall that we have a natural homotopy equivalence (λ, χ) : Cone(∂ : B → Q(0)X0) ∼ → I (see 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='3(ii)), and ER is the direct sum B[1] ⊕ R ⊕ B(−1)[−1] with (αR, −κR, βR) added to the differential (see 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Our θ is the composition I ∼ ← Cone(∂) θ′ → ER where θ′ is the next morphism: its restriction to B[1] ⊂ Cone(∂) identifies it with the first summand in ER, and its restriction to Q(0)X0 ⊂ Cone(∂) is (0, ι, −λ∗χ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' HEIGHT PAIRING AND NEARBY CYCLES 15 One has θ∗θ = idI: we need to check that θ′∗ρθ′ = (λ, χ)∗(λ, χ) : Cone(∂) → Cone(∂∗) where ρ : ER ∼ → E∗ R(1 − n)[2 − 2n] is the self-duality for ER.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' As follows from Remark in 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='4, ρ is the matrix with the self-dualities for R and B’s on the diagonal and the only non-zero off-diagonal entry being λ∗λ : B → B∗(1−n)[2−2n].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' The rest is an immediate calculation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' The assertion that βIθ is the morphism of the triangle in 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='3(ii) means that βIθ′ is the projection Cone(∂) → B[1] which is evident from the construction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' The assertion that αIθ is dual to βIθ follows from the unitarity of θ once we know that θ is a homotopy equivalence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Let us check it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Our θ′ is a morphism Cone(B → Q(0)X0) → Cone(B → Cone(βR)[−1]) com- patible with the projections to B, and so it is enough to check that the map (ι, −λ∗χ) : Q(0)X0 → Cone(βR)[−1] is a homotopy equivalence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Since ι is a homo- topy equivalence on U, it is enough to check our claim after applying i∗ xα.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' The story of section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='3 uses only the six functors formalism and basic facts from 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='1, so it remains literally true in the motivic setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Consider the canonical homotopy equivalence a : i∗ xαR ∼ → Γ(Pα ∖ Zα) of (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' By the Verdier dual assertion to the lemma in 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='3, a identifies i∗ xα(βR) with minus the residue map r : Γ(Pα ∖ Zα) → Hn−2 prim(Zα)(−1)[1 − n] ⊂ Γ(Zα)(−1)[−1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' By (4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='2) we have a split exact triangle Q(0) → Γ(Pα ∖ Zα) r→ Hn−2 prim(Zα)(−1)[1 − n], so a identifies i∗ xαCone(βR)[−1]) with Q(0) ⊂ Γ(Pα∖Zα).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' It follows directly from the construction of a that ai∗ xα(ι) coincides with the latter embedding, and we are done.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' □ 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Proof of the theorem in 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' We have (αI, βI, κI) ∈ DM(X0)(2), hence Γ(αI, βI, κI) ∈ DM(2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' For two Bloch cycles A, B of classes clA, clB ∈ Hom(Q(0), Hn−2 prim(Zα)(m)) we have (cl∗ A, clB∗)Γ(αI, βI, κI) ∈ EM(Γ(I)(m − 1)[1 − n]) = EM(Γ(I+)(m − 1)[1 − n]) = EM(M) where M := M(Y )(−m)[−1 − 2m].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' By the construction the Hodge realization embedding EM(M) ֒→ EH(M) = EH(Hm(Y )) identifies it with Eψ A,B from 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='6, and we are done.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' □ References [A1] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Ayoub, Les six op´erations de Grothendieck et le formalisme des cycles ´evanescents dans le monde motivique (I), Ast´erisque 314, SMF, 2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' [A2] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Ayoub, Les six op´erations de Grothendieck et le formalisme des cycles ´evanescents dans le monde motivique (II), Ast´erisque 315, SMF, 2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' [B] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Beilinson, Height pairing between algebraic cycles, K-theory, Arithmetic and Geom- etry, Yu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Manin (Ed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' ), Lect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Notes in Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' 1289, Springer, 1987.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' [Bl1] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Bloch, Height pairings for algebraic cycles, Journal of Pure and Applied Algebra 34 (1984), 119–145.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' [Bl2] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Bloch, Cycles and biextensions, Contemporary Mathematics 83 (1989), 19–30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' [BlJS] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Bloch, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' de Jong, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Can Sert˜oz, Heights on curves and limits of Hodge structures, arXiv:2206.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='01220 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' [CD] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content='-C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Cisinski, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' D´eglise, Triangulated categories of mixed motives, Springer Mono- graphs in Mathematics, Springer, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' [G] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Gorchinskiy, Notes on the biextension of Chow groups, Motives and algebraic cycles, Fields Institute Commun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' 56, Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=', 2009, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' 111–148.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' [Il] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' Illusie, Sur la formule de Picard-Lefschetz, Algebraic geometry 2000, Azumino, Advanced Studies in Pure Math, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' 36, Mathematical Society of Japan, 2002, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} +page_content=' 249– 268.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/79E0T4oBgHgl3EQfwQGR/content/2301.02630v1.pdf'} diff --git a/89E4T4oBgHgl3EQfDAsR/vector_store/index.faiss b/89E4T4oBgHgl3EQfDAsR/vector_store/index.faiss new file mode 100644 index 0000000000000000000000000000000000000000..39c3e7b069b88428f1e93f4c030fa1a15d558302 --- /dev/null +++ b/89E4T4oBgHgl3EQfDAsR/vector_store/index.faiss @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:8fe77e9914630554285c709198ce967381cbc785ee97e34cff81e5e2b22a9fdd +size 5767213 diff --git a/89E4T4oBgHgl3EQfDAsR/vector_store/index.pkl b/89E4T4oBgHgl3EQfDAsR/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..fe24ddb59cac8a8edf81e2bb45ba5e9bb25a79b3 --- /dev/null +++ b/89E4T4oBgHgl3EQfDAsR/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:a263164f26e513f80e0360149b5dd2aa7e4d98cdf4773bcf12c8760374089eb5 +size 189042 diff --git a/99AyT4oBgHgl3EQfRPYW/vector_store/index.pkl b/99AyT4oBgHgl3EQfRPYW/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..ffaff37eed2da19d6fb88710dfc3f4fd15f8e176 --- /dev/null +++ b/99AyT4oBgHgl3EQfRPYW/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:ee64f6c4c69e2857cd893d76e558709d617e4f464639cd9a3bd0ce05c417c099 +size 118902 diff --git a/9NFRT4oBgHgl3EQfqTc6/content/2301.13616v1.pdf b/9NFRT4oBgHgl3EQfqTc6/content/2301.13616v1.pdf new file mode 100644 index 0000000000000000000000000000000000000000..376f5e6fdaa65959d8c2a2b4dd462cf2faf2031a --- /dev/null +++ b/9NFRT4oBgHgl3EQfqTc6/content/2301.13616v1.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:49ec0b277626a017dc0caefb3d0f4ef26c8e00c4acd7281355bc831cb5020336 +size 1355035 diff --git a/9NFRT4oBgHgl3EQfqTc6/vector_store/index.pkl b/9NFRT4oBgHgl3EQfqTc6/vector_store/index.pkl new file mode 100644 index 0000000000000000000000000000000000000000..b52e10737a8a77ad3022ecdac212813d4901e111 --- /dev/null +++ b/9NFRT4oBgHgl3EQfqTc6/vector_store/index.pkl @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:17eb68d0731074ab64fa9aa10ba4244c5eecdf772fac8bc8555c2c62881e7966 +size 203528 diff --git a/9dE1T4oBgHgl3EQfUQOY/content/tmp_files/2301.03088v1.pdf.txt b/9dE1T4oBgHgl3EQfUQOY/content/tmp_files/2301.03088v1.pdf.txt new file mode 100644 index 0000000000000000000000000000000000000000..ae0b47e611661204a382f149ce7d46949ef0f92d --- /dev/null +++ b/9dE1T4oBgHgl3EQfUQOY/content/tmp_files/2301.03088v1.pdf.txt @@ -0,0 +1,12737 @@ + +A Verification Framework for Component +Based Modeling and Simulation +“Putting the pieces together” + +Imran Mahmood + + + + + + + + + + +Doctoral thesis in Electronics and Computer Systems +Stockholm, Sweden 2013 + + +KTH +VETENSKAP +OCHKONST +6 +KTH Informations- och +kommunikationsteknik +Page +2 + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +ISBN 978-91-7501-628-3 +TRITA-ICT/ECS AVH 13:01 +ISSN 1653-6363 +ISRN KTH/ICT/ECS/AVH-13/01-SE + + +KTH School of Information and +Communication Technology +SE-164 40 Kista +Sweden + + + +Akademisk avhandling som med tillstand av Kungliga Tekniska högskolan +framlägges till offentlig granskning för avläggande av teknologie doktorsexamen +tisdagen den 26 feb 2013 kl 14.00 i Sal E, Forum, Isafjordsgatan 39, Kista. + + Imran Mahmood, February 2013. + +Tryck: Universitetservice US AB + + + +Page +3 + +Acknowledgement +I would like to dedicate this manuscript to my loved ones, including some dignitaries, +my parents who recently passed away, my guardians Mr. & Mrs. Sajid Latif who +raised me well to make me see this day and most important of all: my beloved wife +and my little daughter. Their sacrifice for being apart and for my long absence cannot +be compensated for anything. + +I offer my deepest gratitude to my supervisor Professor Rassul Ayani for this +devotion and support. Instead of just giving me the directions he actually grabbed my +hand and took me to the destination like a true guide. I am honored to work under +his supervision. I am thankful to Assoc. Professor Vladimir Vlassov who gave sound +advice and provided valuable contributions in my research. I offer my affectionate +tribute to the esteemed palace of knowledge, the Royal Institute of Technology, and +specially the school of Information and Communication Technology. + +I am thankful for continuous support and encouragement from Dr. Farshad Moradi +from Swedish Defense Research agency (FOI). I am grateful for the constructive +critics I received from my opponent Dr. Gary Tan and the member of the evaluation +committee Dr. Oliver Dale. + +I am very grateful for the Higher Education Commission of Pakistan to provide +entire financial support for my studies. I thank Mrs. Mumtaz Begum for her support. +I would like to offer special thanks to Mr. Awais Ali Sohrawardi and Dr. B. +Muhammad for their moral support during my study period. I thank all my +colleagues, friends and especially the cricket team for wonderful time. + +Finally I thank Sweden for its hospitality, care and warm memories. + + + + +Imran Mahmood +January 2013, Stockholm + + + + + + + +Page +4 + +Abstract + +The discipline of component-based modeling and simulation offers promising gains +including reduction in development cost, time, and system complexity. This +paradigm is very profitable as it promotes the use and reuse of modular components +and is auspicious for effective development of complex simulations. It however is +confronted by a series of research challenges when it comes to actually practise this +methodology. One of such important issue is Composability verification. In modeling +and simulation (M&S), composability is the capability to select and assemble +components in various combinations to satisfy specific user requirements. Therefore +to ensure the correctness of a composed model, it is verified with respect to its +requirements specifications. +There are different approaches and existing component modeling frameworks that +support composability. Though in our observation most of the component modeling +frameworks possess none or weak built-in support for the composability verification. +One such framework is Base Object Model (BOM) which fundamentally poses a +satisfactory potential for effective model composability and reuse. However it falls +short of required semantics, necessary modeling characteristics and built-in +evaluation techniques, which are essential for modeling complex system behavior and +reasoning about the validity of the composability at different levels. +In this thesis a comprehensive verification framework is proposed to contend with +some important issues in composability verification and a verification process is +suggested to verify composability of different kinds of systems models, such as +reactive, real-time and probabilistic systems. With an assumption that all these +systems are concurrent in nature in which different composed components interact +with each other simultaneously, the requirements for the extensive techniques for the +structural and behavioral analysis becomes increasingly challenging. The proposed +verification framework provides methods, techniques and tool support for verifying +composability at its different levels. These levels are defined as foundations of +consistent model composability. Each level is discussed in detail and an approach is +presented to verify composability at that level. In particular we focus on the +Dynamic-Semantic Composability level due to its significance in the overall +composability correctness and also due to the level of difficulty it poses in the +process. In order to verify composability at this level we investigate the application of +three different approaches namely (i) Petri Nets based Algebraic Analysis (ii) Colored +Petri Nets (CPN) based State-space Analysis and (iii) Communicating Sequential +Processes based Model Checking. All the three approaches attack the problem of +verifying dynamic-semantic composability in different ways however they all share +the same aim i.e., to confirm the correctness of a composed model with respect to its +requirement specifications. Beside the operative integration of these approaches in +our framework, we also contributed in the improvement of each approach for +effective applicability in the composability verification. Such as applying algorithms +for automating Petri Net algebraic computations, introducing a state-space reduction +technique in CPN based state-space analysis, and introducing function libraries to +perform verification tasks and help the modeler with ease of use during the +composability verification. We also provide detailed examples of using each approach +with different models to explain the verification process and their functionality. +Lastly we provide a comparison of these approaches and suggest guidelines for + + +Page +5 + +choosing the right one based on the nature of the model and the available +information. With a right choice of an approach and following the guidelines of our +component-based M&S life-cycle a modeler can easily construct BOM based +composed models and can verify them with respect to the requirement specifications. + + + +Keywords: +Modeling +and +Simulation, +Component-based +development, +Composability, +Semantic +Composability, Dynamic-Semantic Composability, Verification, Correctness, Petri Nets Analysis, +Algebraic Techniques, Colored Petri Nets, State-space Analysis, Communicating Sequential +Processes, Model Checking. + + + + +Page +6 + +Table of Contents + +Acknowledgement ..................................................................................................................... 3 +Abstract...................................................................................................................................... 4 +Table of Contents ...................................................................................................................... 6 +List of Figures ........................................................................................................................... 9 +List of Tables ............................................................................................................................ 11 +List of Acronyms....................................................................................................................... 13 +Chapter 1 ................................................................................................................................... 16 +Introduction .............................................................................................................................. 16 +1.1 +Background and the opening perspective ......................................................................................... 16 +1.1.1 +Component based Software Engineering .............................................................................. 17 +1.1.2 +Component based Modeling & Simulation ........................................................................... 18 +1.1.3 +Modeling and Analysis using Petri Nets ................................................................................ 19 +1.1.4 +Modeling and Analysis using Process Algebra ..................................................................... 19 +1.1.5 +Model Verification ..................................................................................................................... 19 +1.2 +Summary of the opening perspective ................................................................................................ 20 +1.3 +Preliminaries ........................................................................................................................................... 20 +1.3.1 +Definition 1: Set of Components ............................................................................................ 20 +1.3.2 +Definition 2: Requirement Specification ............................................................................... 20 +1.3.3 +Definition 3: Composition & Composability Pattern ......................................................... 21 +1.3.4 +Definition 4: Satisfiability Operator........................................................................................ 21 +1.4 +Problem Statement ............................................................................................................................... 21 +1.5 +Approach ................................................................................................................................................ 22 +1.5.1 +Problem Domain ....................................................................................................................... 22 +1.5.2 +Solution Domain ........................................................................................................................ 22 +1.5.3 +Solution Statement ..................................................................................................................... 24 +1.6 +Scope of the Thesis ............................................................................................................................... 24 +1.6.1 +Correctness.................................................................................................................................. 24 +1.6.2 +Validation .................................................................................................................................... 24 +1.6.3 +Emergence................................................................................................................................... 25 +1.6.4 +Generalization ............................................................................................................................ 25 +1.7 +Summary of the Contributions ........................................................................................................... 25 +1.8 +Structure of the Thesis ......................................................................................................................... 26 +Chapter 2 .................................................................................................................................. 28 +Component Based Modeling and Simulation .......................................................................... 28 +2.1 +Composability in M&S ......................................................................................................................... 28 +2.2 +A Brief History of Composability and related work ....................................................................... 29 +2.2.1 +Initiation ...................................................................................................................................... 29 +2.2.2 +Theoretical evolution ................................................................................................................ 29 +2.2.3 +Standards & Frameworks ......................................................................................................... 29 +2.2.4 +Technological Advances ........................................................................................................... 29 +2.2.5 +Composability verification and Validation ............................................................................ 30 +2.3 +Theory of Composability ..................................................................................................................... 30 +2.4 +Concepts related to Composability .................................................................................................... 32 +2.4.1 +Composability vs. Reusability .................................................................................................. 32 +2.4.2 +Composability vs. Interoperability .......................................................................................... 33 +2.5 +Composability Levels ........................................................................................................................... 34 +2.5.1 +Syntactic level: ............................................................................................................................ 35 +2.5.2 +Static-Semantic level: ................................................................................................................. 35 +2.5.3 +Dynamic-Semantic level: .......................................................................................................... 35 +2.5.4 +Pragmatic level: ........................................................................................................................... 36 +2.6 +Composability frameworks.................................................................................................................. 36 +2.6.1 +Discrete Event System Specification (DEVS) ...................................................................... 37 +2.7 +Base Object Model (BOM) framework ............................................................................................. 38 +2.7.1 +Structure of BOM ...................................................................................................................... 39 +2.7.2 +BOM Assembly .......................................................................................................................... 41 + + +Page +7 + +2.7.3 +Model Mapping and Object Model Definition ..................................................................... 42 +2.7.4 +Formal specification for the Compositon of BOM ............................................................. 42 +2.7.5 +Summary ...................................................................................................................................... 45 +Chapter 3 .................................................................................................................................. 46 +Executable Modeling Formalisms ........................................................................................... 46 +3.1 +Petri Nets ................................................................................................................................................ 46 +3.1.1 +PN Definitions and Concept ................................................................................................... 47 +3.1.2 +Petri net graph ............................................................................................................................ 47 +3.1.3 +Properties of PN ........................................................................................................................ 49 +3.1.4 +PN Analysis ................................................................................................................................. 51 +3.1.5 +PN Classes ................................................................................................................................... 58 +3.2 +Communicating Sequential Processes ............................................................................................... 62 +3.2.1 +Basic Concepts and Definitions .............................................................................................. 62 +3.2.2 +CSP Analysis Techniques ......................................................................................................... 64 +3.2.3 +Temporal Logics ........................................................................................................................ 65 +3.2.4 +Time CSP .................................................................................................................................... 66 +3.2.5 +Probabilistic Systems ................................................................................................................. 66 +3.2.6 +CSP Implementation Tools ...................................................................................................... 67 +3.2.7 +Process Analysis Toolkit (PAT) .............................................................................................. 67 +3.3 +Summary ................................................................................................................................................. 68 +Chapter 4 .................................................................................................................................. 69 +Verification and Analysis .......................................................................................................... 69 +4.1 +Some Basic Concepts in Modeling and Simulation ........................................................................ 70 +4.1.1 +Verification and Validation in a Modeling Process .............................................................. 71 +4.2 +The Principles of Top-Down Refinement ....................................................................................... 73 +4.3 +Verification techniques ........................................................................................................................ 74 +4.3.1 +Informal Techniques ................................................................................................................. 74 +4.3.2 +Static Analysis: ............................................................................................................................ 75 +4.3.3 +Dynamic Analysis:...................................................................................................................... 76 +4.3.4 +Formal Analysis .......................................................................................................................... 76 +4.4 +Summary ................................................................................................................................................. 77 +Chapter 5 .................................................................................................................................. 79 +Proposed Methodology and the Verification Framework ........................................................ 79 +5.1 +Component-based Modeling & Simulation life-cycle ..................................................................... 79 +5.2 +Inception ................................................................................................................................................. 80 +5.3 +Modeling ................................................................................................................................................. 81 +5.4 +Execution ............................................................................................................................................... 82 +5.5 +Analysis ................................................................................................................................................... 82 +5.6 +Composability Verification Framework ............................................................................................ 83 +5.6.1 +Discovery Matching and Composition (DMC) .................................................................... 83 +5.6.2 +Structural and Behavioral Evaluation ..................................................................................... 84 +5.6.3 +Static Analysis ............................................................................................................................. 84 +5.6.4 +Dynamic Analysis....................................................................................................................... 90 +5.7 +PN Algebraic Technique...................................................................................................................... 93 +5.7.1 +BOM to PNML Transformation ............................................................................................ 93 +5.7.2 +PN Algebraic computations ..................................................................................................... 93 +5.7.3 +Property Verification Method.................................................................................................. 95 +5.8 +CPN based State-Space Analysis Technique .................................................................................... 96 +5.8.1 +BOM Extension ......................................................................................................................... 97 +5.8.2 +E-BOM to CPN Component Transformation ..................................................................... 99 +5.8.3 +Verification of the composed CPN model ........................................................................ 105 +5.9 +CSP based Model Checking Technique ......................................................................................... 110 +5.9.1 +BOM Extension ...................................................................................................................... 110 +5.9.2 +E-BOM to CSP# Transformation ....................................................................................... 112 +5.9.3 +Verification of the composed CPN model ........................................................................ 113 +5.10 +Summary ........................................................................................................................................ 115 +Chapter 6 ................................................................................................................................ 116 +Composability Verification Process ........................................................................................ 116 +6.1 +Composability Verification Process ................................................................................................ 116 +6.1.1 +Formulation of Simuland, Requirements and Conceptual Model.................................. 126 + + +Page +8 + +6.1.2 +Syntactic Matching Process ................................................................................................... 127 +6.1.3 +Static-Semantic Matching Process ....................................................................................... 127 +6.1.4 +State-machine Matching Process .......................................................................................... 127 +6.1.5 +Approach Selection for Dynamic-Semantic Composability Verification ..................... 127 +6.1.6 +PN Algebraic Technique ....................................................................................................... 128 +6.1.7 +State-Space Analysis Technique ........................................................................................... 128 +6.1.8 +Model Checking ...................................................................................................................... 128 +6.2 +Summary .............................................................................................................................................. 129 +Chapter 7 ................................................................................................................................ 130 +Fairness verification using PN Algebraic Techniques ........................................................... 130 +7.1 +Fairness ................................................................................................................................................ 130 +7.2 +Fairness Verification .......................................................................................................................... 131 +7.3 +Manufacturing system ....................................................................................................................... 132 +7.3.1 +Scenario I .................................................................................................................................. 132 +7.3.2 +Scenario II ................................................................................................................................ 138 +7.4 +Summary .............................................................................................................................................. 141 +Chapter 8 ................................................................................................................................ 142 +Model Verification using State-space Analysis techniques .................................................... 142 +8.1 +Combat Modeling .............................................................................................................................. 142 +8.1.1 +Situated Environment ............................................................................................................ 142 +8.1.2 +Moving ...................................................................................................................................... 142 +8.1.3 +Looking (or sensing) ............................................................................................................... 143 +8.1.4 +Shooting .................................................................................................................................... 143 +8.1.5 +Communication: ...................................................................................................................... 143 +8.2 +Field Artillery ...................................................................................................................................... 144 +8.2.1 +Simuland ................................................................................................................................... 145 +8.2.2 +Field Artillery Model .............................................................................................................. 145 +8.2.3 +Requirement Specification..................................................................................................... 148 +8.3 +Verification of the FA model using CPN State-Space Analysis ................................................ 149 +8.3.1 +Static and Dynamic Analysis ................................................................................................. 149 +8.3.2 +BOM to E-BOM extension .................................................................................................. 149 +8.3.3 +E-BOM to CPN Transformation ........................................................................................ 153 +8.3.4 +Composition of CPN Components ..................................................................................... 158 +8.3.5 +State space Analysis ................................................................................................................ 159 +8.4 +State Space Reduction ....................................................................................................................... 162 +8.5 +Summary .............................................................................................................................................. 164 +Chapter 9 ................................................................................................................................ 165 +Model Verification using CSP based Model Checking Technique ........................................ 165 +9.1 +Field Artillery Scenario ...................................................................................................................... 165 +9.2 +Requirement Specification ................................................................................................................ 168 +9.3 +Verification using Model Checking ................................................................................................ 169 +9.3.1 +Static and Dynamic Analysis ................................................................................................. 169 +9.3.2 +BOM to E-BOM extension .................................................................................................. 169 +9.3.3 +E-BOM to CSP# Transformation ....................................................................................... 171 +9.3.4 +Model Checking of Field Artillery Model ........................................................................... 174 +9.4 +Summary .............................................................................................................................................. 176 +Chapter 10 ............................................................................................................................... 177 +Summary and Conclusion....................................................................................................... 177 +10.1 +Guidelines for choosing an approach ....................................................................................... 181 +10.1.1 +PN Algebraic Technique .................................................................................................. 181 +10.1.2 +CPN based State-Space analysis Technique ................................................................. 182 +10.1.3 +CSP based Model Checking Technique ........................................................................ 182 +10.2 +Thesis Contributions.................................................................................................................... 183 +10.3 +Conclusions ................................................................................................................................... 185 +10.4 +Future Directions ......................................................................................................................... 186 +References .............................................................................................................................. 187 + + + + + +Page +9 + +List of Figures +Figure 1: A model as computable function (acquired from [34]) .................................................................. 30 +Figure 2: Sequence of executions (acquired from [50]) .................................................................................. 31 +Figure 3: Composed Model (acquired from [50]) ........................................................................................... 31 +Figure 4: Generic vs. Specific component design ............................................................................................ 32 +Figure 5: Black Box, Glass Box, White Box ..................................................................................................... 33 +Figure 6 Syntactic vs. Semantic Composability (acquired from [38]) ........................................................... 34 +Figure 7: Ping-Pong DEVS [Wikipedia] ............................................................................................................ 38 +Figure 8: BOM structure ...................................................................................................................................... 39 +Figure 9: BOM Assembly ..................................................................................................................................... 41 +Figure 10: (a) PingPong BOM in BOM Works ................................................................................................ 41 +Figure 11: Composed BOM ................................................................................................................................ 44 +Figure 12: Transition firing sequence (acquired from [68]) .......................................................................... 49 +Figure 13: Petri Net Analysis Techniques ......................................................................................................... 51 +Figure 14: Producer Consumer Example .......................................................................................................... 53 +Figure 15: M0 to M3 throguh firing sequece σ = t2, t1, t2 ............................................................................. 54 +Figure 16: Seasons in a year (acquired from [68]) ............................................................................................ 54 +Figure 17: (a) PN Model (b) Reachability Graph (acquired from [68]) ........................................................ 56 +Figure 18: Producer Consumer PN Model and its Coverability Graph ...................................................... 56 +Figure 19: A CPN Model ..................................................................................................................................... 59 +Figure 20: Hierarchical Colored Petri Net ........................................................................................................ 60 +Figure 21: Modeling Process (acquired from [108]) ........................................................................................ 71 +Figure 22: Modeling Process (acquired from [29]) .......................................................................................... 72 +Figure 23: Simulation study life-cycle (acquired from [28]) ........................................................................... 73 +Figure 24: Verification Techniques .................................................................................................................... 74 +Figure 25: CBM&S life-cycle ............................................................................................................................... 79 +Figure 26: Simuland using UML Diagrams ....................................................................................................... 80 +Figure 27: Implemenation and Simulation ........................................................................................................ 83 +Figure 28: Discovery, Matching, Composition (DMC) .................................................................................. 84 +Figure 29: Syntactic Matching ............................................................................................................................. 85 +Figure 30: Some of the sub-classes of Data Type ontololgy .......................................................................... 88 +Figure 31: Semantic Matching Technique ......................................................................................................... 88 +Figure 32: Static-Semantic Matching .................................................................................................................. 90 +Figure 33: SCXML format ................................................................................................................................... 91 +Figure 34: State-machine Matching Process ..................................................................................................... 92 +Figure 35: BOM to PN transformation ............................................................................................................. 93 +Figure 36: PN Algebraic Technique ................................................................................................................... 96 +Figure 37: Buffer Extended finite state-machine [120] ................................................................................... 97 +Figure 38: BOM and E-BOM comparison ....................................................................................................... 99 +Figure 39: CPN-CM represention of Queue component ............................................................................ 103 +Figure 40: CPN State-space analysis ............................................................................................................... 106 +Figure 41: State-space Analysis Technique .................................................................................................... 108 +Figure 42: CSP based Model Checking Technique ....................................................................................... 115 +Figure 43: Formulation of Simuland ............................................................................................................... 117 +Figure 44: Syntactic Matching Process............................................................................................................ 118 +Figure 45: Static-Semantic Matching Process ................................................................................................ 119 +Figure 46: State-machine Matching Process .................................................................................................. 120 +Figure 47: Approach Selection | PN Algebraic Technique ........................................................................ 121 +Figure 48: PN Algebraic Technique (continued) .......................................................................................... 122 +Figure 49: Implementation ................................................................................................................................ 122 +Figure 50: State-Space Analysis Technique .................................................................................................... 123 +Figure 51: State-Space Analysis Technique (continued) .............................................................................. 124 +Figure 52: Model Checking ............................................................................................................................... 125 +Figure 53: Model Checking (continued) ......................................................................................................... 126 +Figure 54: Manufacturing System (acquired from [124]) ............................................................................. 132 +Figure 55: Manufacturing System BOM based Composed Model ............................................................ 134 +Figure 56: State-machine matching of manufacturing system .................................................................... 136 +Figure 57: PN model of the manufacturing System ..................................................................................... 136 + + +Page +10 + +Figure 58: Modified manufacturing system composed BOM .................................................................... 139 +Figure 59: Modified PN model of the manufacturing System ................................................................... 140 +Figure 60: Activities of Combat Modeling ..................................................................................................... 144 +Figure 61: Elements of Field Artliiery & Indirect Fire ................................................................................ 145 +Figure 62: Field Artillery Composed BOM.................................................................................................... 148 +Figure 63: State-machine Matching of Field Artillery Model...................................................................... 149 +Figure 64: Observer CPN Component ........................................................................................................... 154 +Figure 65: Field CPN Component .................................................................................................................. 155 +Figure 66: BHQ CPN Component ................................................................................................................. 156 +Figure 67: Battery CPN Component............................................................................................................... 157 +Figure 68: FDC CPN Component .................................................................................................................. 158 +Figure 69: Field Artillery CPN Composed Model ........................................................................................ 159 +Figure 70: State space of Field Artillery CPN Model ................................................................................... 160 +Figure 71: Reduced State-Space graph of Field Artillery Model ................................................................ 163 +Figure 72: Field Artillery Composed Model .................................................................................................. 168 +Figure 73: State-machine Matching of Field Artillery Model...................................................................... 169 +Figure 74: Global code Block of Field Artillery Model ............................................................................... 171 +Figure 75: CSP representation of Observer Component ............................................................................ 172 +Figure 76: CSP representation of BHQ Component ................................................................................... 172 +Figure 77: CSP representation of Battery Component ................................................................................ 173 +Figure 78: CSP representation of Field Component .................................................................................... 173 +Figure 79: Field Artillery Composed Model .................................................................................................. 174 +Figure 80: Field Artillery Verificataion Assertions........................................................................................ 174 +Figure 81: Verification Result of assertion 1 .................................................................................................. 175 +Figure 82: Verification result of assertion 2 ................................................................................................... 175 +Figure 83: Field Artillery Verificataion Assertions with TOT .................................................................... 175 +Figure 84: Verification result of assertion 3 ................................................................................................... 176 + + + + + +Page +11 + +List of Tables +Table 1: Entity A .................................................................................................................................................... 43 +Table 2: Entity B .................................................................................................................................................... 44 +Table 3: Composed BOM .................................................................................................................................... 44 +Table 4: Incidence Martic A ................................................................................................................................ 53 +Table 5: State equation .......................................................................................................................................... 53 +Table 6: Informal Verification Techniques ....................................................................................................... 75 +Table 7: Static Analysis Techniques ................................................................................................................... 75 +Table 8: Dynamic Analysis Techniques ............................................................................................................. 76 +Table 9: Formal Analysis Techniques ................................................................................................................ 77 +Table 10: Mandatory constraints in composability verification..................................................................... 81 +Table 11: Semantic Matching Algorithm ........................................................................................................... 89 +Table 12: State-machine Matching algorithm ................................................................................................... 91 +Table 13: Incidence Matrix Calculation ............................................................................................................. 94 +Table 14: Place-Invariants .................................................................................................................................... 95 +Table 15: Transformation Rules....................................................................................................................... 102 +Table 16: Compositional State-space generation algorithm ........................................................................ 109 +Table 17: Time functions in E-BOM .............................................................................................................. 111 +Table 18: Probability Distribution Functions ................................................................................................ 111 +Table 19: E-BOM to CSP# transformation rules......................................................................................... 113 +Table 20: Some examples of PAT Assertions ............................................................................................... 114 +Table 21: Formal definition of Machine1 Base-BOM ................................................................................. 133 +Table 22: Formal definition of Machine2 Base-BOM ................................................................................. 133 +Table 23: Formal definition of Robot Base-BOM........................................................................................ 134 +Table 24: Formal definition of Manufacturing System composed BOM ................................................. 134 +Table 25: Syntactic Matching ............................................................................................................................ 135 +Table 26: Static-Semantic Matching ................................................................................................................ 135 +Table 27: Initial Marking and Incidence Matrix (Scenaro I) ....................................................................... 137 +Table 28: P-Invariants and T-Invariants (Scenaro I) .................................................................................... 137 +Table 29: B-Fairness Verification .................................................................................................................... 138 +Table 30: Formal definition of Controller Base-BOM ................................................................................ 139 +Table 31: Manufacturing System composed BOM....................................................................................... 139 +Table 32: Initial Marking and Incidence Matrix (Scenaro II)...................................................................... 140 +Table 33: P-Invariants and T-Invariants (Scenaro II) .................................................................................. 140 +Table 34: Observer Basic-BOM ....................................................................................................................... 146 +Table 35: Field Basic-BOM............................................................................................................................... 146 +Table 36: BHQ Basic-BOM .............................................................................................................................. 147 +Table 37: FDC Basic-BOM .............................................................................................................................. 147 +Table 38: Battery (1,2,3) Basic-BOM .............................................................................................................. 147 +Table 39: Field Artillery Composed BOM ..................................................................................................... 147 +Table 40: Observer E-BOM ............................................................................................................................. 150 +Table 41: Field E-BOM ..................................................................................................................................... 151 +Table 42: BHQ E-BOM .................................................................................................................................... 152 +Table 43: FDC E-BOM ..................................................................................................................................... 152 +Table 44: Battery E-BOM ................................................................................................................................. 153 +Table 45: Reduction Statisitics .......................................................................................................................... 163 +Table 46: Observer Basic-BOM ....................................................................................................................... 166 +Table 47: Field Basic-BOM............................................................................................................................... 166 +Table 48: BHQ Basic-BOM .............................................................................................................................. 167 +Table 49: Battery (1,2,3) Basic-BOM .............................................................................................................. 167 +Table 50: Field Artillery Composed BOM ..................................................................................................... 167 +Table 51: Observer E-BOM ............................................................................................................................. 169 +Table 52: Field E-BOM ..................................................................................................................................... 170 +Table 53: BHQ E-BOM .................................................................................................................................... 170 +Table 54: BHQ E-BOM .................................................................................................................................... 171 +Table 55: Kinds of properties that can be verified ....................................................................................... 178 +Table 56: Type of the models that can be verified ....................................................................................... 179 +Table 57: Scalability ............................................................................................................................................ 179 + + +Page +12 + +Table 58: Infinite Model Verification .............................................................................................................. 179 +Table 59: Usability .............................................................................................................................................. 180 +Table 60: Automation ........................................................................................................................................ 180 + + + + +Page +13 + +List of Acronyms +ABV +Assertion-based Verification +Ac +Communicating Arcs +ACP +Algebra of Communicating Processes +ALSP +Aggregate Level Simulation Protocol +AOI +Area-of-Interest +AP +Atomic propositions +API +Application programming interface +ARC +Adelaide Refinement Checker +ASV +State-variable arc +AT +Transiting arc +BB +Basic BOM +BDD +Binary Decision Diagram +BHQ +Battalion Headquarters +BHQSM +Battalion Headquarters State-machine +BID +Battery ID +BL +Behavioral Layer +BOM +Base Object Model +CB +Composed BOM +CBM&S +Component Based Modeling and Simulation +CBSE +Component Based Software Engineering +CBT +Composable Behavioral Technologies +CCA +Common Component Architecture +CCP +Color set of communicating port +CCS +Milner's Calculus of Communicating Systems +CL +Communication Layer +CM +Conceptual Model +CODES +Composable Discrete-Event scalable Simulation +COST +Component Oriented Simulation Toolkit +CP +Communicating Port +CPN +Colored Petri Nets +CPN-CM +Colored Petri Nets Component Model +CPN-ML +ML scripting language for Colored Petri Nets +CSP +Hoare's Communicating Sequential Processes +CSV +Color set of State variable +CTL +Computation Tree Logic +DEDS +Discrete Event Dynamic Systems +DES +Discrete Event Systems +DEVS +Discrete Event System Specification +DIS +Distributed Interactive Simulation +DMC +Discovery, Matching & Composition +DOT +DOT file format +EC +Event Controller +EFSM +Extended Finite State-machine +EIC +DEVS input port couplings +EOC +DEVS output port couplings +EXPR +Expression +FA +Field Artillery +FD +Field Data +FDC +Fire Direction Center +FSM +Finite State-Machine +HLA +High Level Architecture +HPC +High Performance Computing +IC +DEVS Internal Coupling +IDE +Integrated Development Environment + + +Page +14 + +INT +Integer +ISV +Initialization function of State-variable +JCSP +Java based Communicating Sequential Process +JSIMS +Joint Simulation System +JUNG +Java Universal Network Graph library +LCIM +Levels of Conceptual Interoperability +LTL +Linear Temporal Logic +LVC +Live, virtual, or constructive Simulation +MBSC +Model based simulation composition +MCT +Model Coupling Toolkit +MDF +Matrix Definitional Form +MDP +Markov Decision Processes +MOCCA +Component based Grid Environment +MPD +Markov decision processes +MUSCLE +A Multi-scale Coupling Library and Environment +NET +Network +OMT +High Level Architecture Object Model Template +OSA +Open Simulation Architecture +OWL +Web Ontology Language +PAT +Process Analysis Toolkit +PIPE +Platform Independent Petri Net Editor +PLTL +Probabilistic Linear Temporal Logic +PN +Petri Net +PNML +Petri Net Markup Language +POI +BOM Pattern Of Interplay +RS +Requirement Specifications +SAT +Boolean Satisfiability +SCT +Semantic Composability Theory +SCXML +State Chart extensible markup language +SE +Software Engineering +SIMNET +Simulation Networking +SISO +Simulation Interoperability Standards Organization +SL +Structural Layer +SM +Syntactic Matching +SML +Scripting language +SMM +State-Machine Matching +SSM +Static-Semantic Matching +SV +State Variable +SVIN +Input State Variable +SVOUT +Output State Variable +TCSP +Timed Communicating Sequential Processes +TENA +Test and Training Enabling Architecture +TOT +Time On Target +UML +Unified Modeling Language +VCP +Communication Port Variable +V&V +Verification and Validation +VVA +Verification, Validation and Accreditation +VVT +Verification, Validation and Testing +XML +Extensible Marking Language +XMSF +Extensible Modeling and Simulation Framework +XT +Firing Vector + + + + + + + +Page +15 + +Part I +Episteme + + + + + + +Epistêmê in Greek means “to know”. It is the theoretical knowledge; a principled system of +understanding; fundamental body of ideas and collective presuppositions that determine the +knowledge which is intellectually certain at any particular period of time; Pure-Science; episteme deals +with “what” and “why” of the subject. + + +Part-I covers the epistemology of the research under discussion where the theory, +concepts, principles, paradigms, philosophy and rationale of the problem domain and +the solution domain are sketched. In essence Part-I contains theoretical knowledge +and the background information required to understand the problem and proposed +solution discussed in the second part. + + + + + +“If you can't explain it simply, you don't understand it well +enough”. +- Albert Einstein + + + + +Page +16 + +Chapter 1 +Introduction + +This chapter provides the opening statement and general information about the research presented in +this thesis. It outlines background, history, the formal definition and the basic philosophy of the +problem under question and covers the motivation, goals and scope of the research and the +contributions of the thesis. In the end, a section on the thesis organization is rendered. + +1.1 +Background and the opening perspective +Over the last fifty years, there has been a revolutionary development influencing +almost all of the sciences. This progress is mainly instigated by the astonishing +growth of the use of the digital computers and the subsequent rise of the age of +computer simulations [1]. It is the emergence and widespread availability of +computing power and resources that have made possible the new dimension of +experimentation with complex models and their simulations [2]. Computer +simulations are now widely used in various scientific disciplines and application +domains. They are used for studying complex systems and gaining insight into the +operation of an existing system without disturbing the actual system. Furthermore +they are used for testing new concepts of the systems before implementation, +visualizing and predicting behavior of a future system. Besides, they are used for +analyzing and solving problems, drawing conclusions and aiding the process of +crucial decision making [3]. Therefore computer simulation is regarded as third +branch of science [4] and stands alongside of the first two branches namely theory and +experimentation. +Modeling and Simulation (M&S) is a discipline with its own body of knowledge, +theory, and research methodology [4]. The goals of M&S are aligned with the +systems theory, and include modeling & analysis, design & synthesis, control, +performance evaluation and optimization of a real system. The M&S community has +demonstrated a longstanding focus on providing support for these goals. With the +advent of the net-centric era of methods and technologies in designing complex +simulation systems, the focus of M&S industry has been driven by the most +recognized potential benefits of reduced development cost, time and system +complexity [5]. This is because M&S development process is costly, time consuming, +resource intensive. Models can be large, complex and require a great deal of time, +resource and domain specific expertise to develop. Beside this, an enormous effort is +required to evaluate that the model is correct and meets its requirements. Therefore +M&S community has taken a deep interest in the quality design principles and their +underlying supportive theories to alleviate these challenges. It has been realized that +constructing a model from scratch each time it is needed is inefficient. Instead, the +practice of model reuse has been increasingly appreciated and is inspired from the +vision of software reuse, which was originally introduced in 1968 [6]. Apparently this +approach looks very appealing however it poses many obstacles in implementing, +such as lack of flexibility and adaptability in design, difficulty of integration, +mismatched interface, incomplete specification etc. [7]. These obstacles are + +Chapter 1 + +Introduction + +Page +17 + +considered elusive research challenges and are now the primary research interests of +the software engineering and M&S communities [8] +1.1.1 Component based Software Engineering +Component-based software engineering (CBSE) has been identified as a key enabler +in the construction of complex systems by combining software components that are +already developed and prepared for integration [8]. +Software Component +A software component is defined as a unit of composition which is independently developed +and can be combined with other components to build larger units. It must have clearly +specified interfaces to communicate with its environment while the implementation must be +encapsulated in the component and is not directly reachable from the environment [9], and +therefore can be easily used by the third party without having to know implementation details +[8], [10]. + +Building software from components contributes to a major paradigm shift in +software engineering. The basic philosophy behind the idea of component-based +development is to carry out the software development process by (quickly) +producing software applications through assembling prefabricated software +components and to archive these interoperable software components in form of an +increasingly large repository for further reuse [11]. CBSE promotes the principle of +modularity. That essentially helps to master the complexity of the reality by +decomposing it into parts [12] and enables the designer to use and reuse appropriate +parts for different purposes. These parts are the sub-systems built in a component- +based fashion. These subsystem components may have been separately developed by +different teams. They may also have been developed for different purposes unrelated +to the current context of the usage. CBSE has many advantages, such as effective +management of complexity, logical separation, reduced time and cost, increased +productivity, improved quality, a greater degree of consistency, increased +dependability, and a wider range of usability. In addition, the growing connectivity of +real world problems is reflected in the requirement to compose cross domain +solutions [13], and therefore support knowledge sharing to a wider user community. +CBSE is therefore a discipline of software engineering that deals with the +composition of components to construct software systems which are capable of +performing functions according to the user’s requirements [14]. +In CBSE, component integration and component composition are two distinguished +terms. Component integration is merely the task of connecting components together +whereas composition also includes reasoning about the semantic behavior of the +resulting assembly [14]. With the advent of component technology the integration +problems are becoming a difficulty of the past. Instead more crucial problems of +predicting the emergent behavior of assemblies and the problem of reasoning about +how well components will play together are now in debate. Component composition +supports this type of reasoning and provides a foundation for fundamental reasoning +to justifying validity of the resulting assemblies, their run-time compatibility and +emergent behavior. The main reason for the difference between integration and +composition is due to the fact that component interfaces do not provide enough +information to determine how well the composed components will play together +[14]. An interface can only help to determine if the component can be connected to + +Chapter 1 + +Introduction + +Page +18 + +some other component but cannot supports reasoning about emergent properties of +the assemblies [14], [15]. Component composition promises such rationale; however +is still a subject of open research. +1.1.2 Component based Modeling & Simulation +Inspired by the discipline of component based software engineering, M&S +community has also started to develop simulation models by reusing previously +developed and validated “simulation components”, and composing them in a new +simulation model according to the desired user objectives [16], [17], [18], [19], [20]. +The basic and effective strategy for tackling any large and complex simulation +problem is “divide and conquer.” One major idea in component-based simulation +development is to create models that are themselves self-contained and +independently deployable. Thus different simulationist will be able to work on +different components independently, without needing much communication among +each other, (and particularly without the need to share the classified domain +knowledge) and yet the components will work together seamlessly. In addition, +during the maintenance phase, it is possible to modify some of the components +without affecting all of the others [21]. +In simulation community the research on component based development falls under +the rubric of composability [22], where simulation models are considered to be the +building blocks and are referred as “model-components”. +Model Component1 +A model component is an independent element of a simulation model that conforms to certain +component standard, has well-defined functionalities (inputs/outputs) and behaviors, +presented through its interface describing its communication with other components and a +formalized description of its internal behavior. A model component is not a stand-alone +component, but can be independently deployed, and it is subject to third-party composition +with or without modification [19]. + +In component based development, some basic reusable model components are +composed together to create complex and sophisticated simulations, without +building them from scratch. The model components can be composed if their inputs +and outputs physically match each other however it is difficult to say whether this +combination is meaningful. Besides it cannot be said for sure if it will perform +according to the desired requirements unless the correctness of the composability is +checked. +Composability is the property of the models, as it essentially contends with the +alignment of issues on the modeling level [13], where it is viewed as creation of +complex models by selection and integration of basic reusable model-components. A +set of components can be integrated if their inputs and outputs are compatible, but +in order to guarantee that their combination is valid in the required executable +scenarios, we study the degree of composability. +With a slightly greater number of components, which are somewhat complex in +nature, the composability becomes an increasingly challenging problem. In the + +1The term Model component should be differentiated from the term Component Model, which in +text refers to the underlying technology being used by the component based software engineering +platforms such as CORBA, EJB etc. + +Chapter 1 + +Introduction + +Page +19 + +presence of functional and non-functional application requirements it poses severe +implications on the effort involved in verifying the requirements, and increasing +dynamism. Even though, the individual components are pre-verified; their +verification is usually done in a limited context, with assumptions that may not hold +after composition. As a result, the complexity of system verification grows +exponentially with the number of applications [23]2. +1.1.3 Modeling and Analysis using Petri Nets +Petri nets (PN) is a mechanism of modeling complex systems, in which states and +events can be manipulated according to certain rules and explicit conditions. PN +formalism was introduced by Carl Adam Petri in 1962. It provides an elegant and +useful graphical and mathematical formalism for modeling concurrent systems and +their behaviors [24]. +PN graphs are quite suitable for representing Discrete Event Systems (DES) in +which operations depend on potentially complex control schemes. PN graphs are +intuitive and capture a lot of structural and behavioral information about the system. +Another motivation for considering PN for the modeling of DES is the body of +analysis techniques that have been developed for over three decades and are used for +reasoning about structural and behavioral properties of PN models. These +techniques include reachability analysis, state-space analysis, and model-checking as +well as linear-algebraic techniques [25]. +The PN research has been developed in two directions for the past three decades: (i) +PN theory that focused on the development of basic tools, techniques and concepts +needed for the PN application; (ii) Applied PN theory which is mainly concerned +with the PN application for the modeling of systems and their analysis. Successful +work in this direction requires good knowledge of the application area in which PN +are applied and PN theories and techniques [26]. +1.1.4 Modeling and Analysis using Process Algebra + +Process Algebra is an algebraic approach for the modeling and analytical study of +concurrent processes. It has a diverse family of algebraic formalisms for modeling +concurrent systems. These formalisms comprise of algebraic language for the +specification of processes and provide calculi in form of algebraic laws that allow +process descriptions to be manipulated and analyzed, and permit formal reasoning +about their correctness and equivalence [27]. The main Process algebraic formalisms +are: + CCS, Milner's Calculus of Communicating Systems + CSP, Hoare's Communicating Sequential Processes + ACP, Algebra of Communicating Processes + LOTOS, Language Of Temporal Ordering Specification +1.1.5 Model Verification +In M&S, verification is concerned with building the model right. It is typically +defined as a process of determining whether the model has been implemented +correctly [28] and whether it is consistent with its specifications [29]. In principle, + +2 Even though the referred text corresponds to the electronic components which are physically +composable, however the problem of composability complexity is the same and is mutually +understood by different communities. + +Chapter 1 + +Introduction + +Page +20 + +verification is concerned with the accuracy of transforming the model’s requirements +into a conceptual model and the conceptual model into an executable model [29]. +The distinction of a conceptual model and executable model is of great importance +and is a fundamental principle in M&S. A conceptual model is abstract description of +a real system [30], captured based on given requirements and modeling objectives. +This is later refined and implemented into a more concrete executable model. In +these terms, conceptual modeling is a subset of model design [31]. Conceptual +modeling is about moving from a problem situation, through model requirements to +a definition of what is going to be modeled, and is independent of its implementation +details [30], which are later addressed in form of an executable model. +1.2 +Summary of the opening perspective +In essence, component-based approach is highly favored in M&S community for +building large and complex models. But to ensure that the model is correct and +meets its requirement specifications, a substantial effort is required to evaluate its +degree of composability. In M&S community, the discipline of Model Verification +provides basic concepts and fundamental principles for the compressive study of the +degree of composability and reasoning its correctness with respect to the given +specifications. However the existing component-based simulation frameworks offer +limited built-in extensive verification techniques or none at all. Therefore third party +approaches such as PN analysis techniques and process algebra are considered for +the thorough examination of composed models at various levels of depth. +The sub-topics: (i) Component-Based Modeling & Simulation, (ii) PN /CSP Analysis +and (iii) Model-Verification are the elementary pillars and theoretical foundations of +this thesis and are expanded in details in chapter 2, 3 & 4 respectively. +1.3 +Preliminaries +Based on the previous discussion, the formal definition of the problem of this thesis +is furnished in this section. In order to define the problem statement, following +definitions are used: +1.3.1 Definition 1: Set of Components +Let C = {c1, c2, c3 …, cn} be a given set of components discovered and selected from +a component repository R, as per the abstraction of the real-system. +1.3.2 Definition 2: Requirement Specification +The Requirement specification of the system model is defined as a tuple: +RS = 〈O, S〉 where: +O = {o1, o2, o3 …, on} is a set of objectives (or goals) and +S = {s1, s2, s3 …, sn} is a set of system constraints (or system properties). +Objective: +An objective oi ∈ O can be defined as a reachable “final-state” of the +composed model or an aggregated desirable output (a data value or event) +produced by the composed model which cannot be produced by individual +components. + +Chapter 1 + +Introduction + +Page +21 + +System Constraint: +In modeling terms, a system constraint si ∈ S is defined as a system property +that must be satisfied; for instance a good state; which must be reached or a +bad state; which must be avoided (never be reached) during the execution. +The notions of constraints are different from Objectives, because they can be +necessary requirements but not the ultimate goals. E.g., a manufacturing system +should not only produce the desired products (objective) but also fulfill safety +requirements (constraints). +1.3.3 Definition 3: Composition & Composability Pattern +Let CM〈c1, c2, c3 …, cn〉 be a composition of a set of given components C, composed +using a particular composability pattern P. A pattern describes how the components +are attached to each other, i.e., the topology of the components. And provide +important information for composability verification. A pattern of composability can +be sequential, parallel, fork, join, iterative, or composite. +1.3.4 Definition 4: Satisfiability Operator +For each element in the requirement specification RS, a Satisfiability operator╞ maps +a given composed model CM to a Boolean (True or False) formally described as +follows: +• CM〈c1, c2, c3 …, cn〉 ╞ i oi∈O → true | false +• CM〈c1, c2, c3 …, cn〉 ╞ j sj∈S → true | false +For each relation ╞ i we define a verification function (algorithm or theorem) based +on which the satisfiability operator maps the resultant value. This verification +function determines whether a given composed model satisfies a required property. +1.4 +Problem Statement +Based on the above definitions the problem statement is defined as follows: +“Given a composed model CM, composed from a set of components C using +a pattern P, and the requirement specification RS, can we verify that CM fulfills +all the objectives and satisfy all the constraints given in the requirement +specification”. + +Formally: + +This problem statement is considered as an initial point and basis of the research +presented in this thesis proposal. In this work it will be shown how a modeler can +correctly compose component models and verify the composition at different levels +through utilization of our proposed verification framework. +CM=Compose ([c1, c2, c3 …, cn], P) ∧ RS=〈O, S〉 → {CM ╞𝒊 ∀oi ∈ O ∧ CM ╞𝒋 ∀sj ∈ S} +(1.1) + +Chapter 1 + +Introduction + +Page +22 + +1.5 +Approach +In this section an overview of the approach and methodology is presented. Based on +the software engineering principle, this section is divided into two main parts (i) +Problem Domain and (ii) Solution Domain. +1.5.1 Problem Domain +Problem domain (or problem space) is an engineering term referring to all +information that defines the problem and its constraints. It includes the goals +that the problem-owner 3 wishes to achieve, the context within which the +problem exists, and all rules that define required essential functions or other +aspects of any solution product. It represents the environment in which a +solution will have to operate [Wikipedia]. + +All the information provided in this thesis related to modeling & Simulation, +component-based model development, conceptual modeling, model components, +composability, model-verification and the problem of composability correctness +correspond to the problem-domain. In particular, Chapter 2 covers the main aspect +of the problem domain where the component based modeling and simulation is +discussed in detail. Following sub-sections briefly describe the selected method of +specification of the problem domain. +Base Object Model (BOM) as Composability Framework +BOM is selected in this thesis as a component specification standard which can be +used as a foundation for developing model components at conceptual level. They are +composed and are subjected to the composability verification process to evaluate +that they satisfy given requirements, hence represent component framework of the +problem domain. +Requirement Specification Template +A “Requirement Specification Template” is defined which is used to formulate +requirement specifications. It essentially contains a set of objectives and constraints +(of standard or scenario-specific properties), which are required to be satisfied for the +proof of correctness of the composed model. +1.5.2 Solution Domain +Solution domain (or solution space) is a term referring to all information that +defines the proposed solution of the problem. It includes the concepts, +principles, methods, techniques, algorithms, programs, software architects, +frameworks, processes and recommended practices, which help in solving the +problem under study. + +Following sub-section gives a brief overview of the approach used in this thesis: + +3 A problem owner can be the customer, solution buyer, organization or a prospective target +community. A problem owner sees the problem as an opportunity, whereas the solution engineer sees +the problem for which he/she has to provide a solution. + +Chapter 1 + +Introduction + +Page +23 + +Multi-tier Composability Verification +The composed model undergoes multiple iterations for composability verification at +different levels. Each level corresponds to a tier in the verification process. When the +composability at a particular level is successfully verified, next level is iterated. When +all the levels are completed, the components are said to be fully composable. These +levels are discussed in detail in chapter 2. The verification of these levels is discussed +in chapter 5. +PN Formalism +PN formalism (and specially the Colored Petri Nets extension) is chosen for creating +executable models of the BOM based conceptual models. The proposed framework +automatically transforms BOM components in form of an executable PNML 4 or +CPN-based component which can be executed or undergo a verification process +using the corresponding PN execution environment. +CSP Formalism +CSP5 formalism with an extension of Timed-CSP is picked as another executable +modeling language for BOM based conceptual models. The proposed framework +transforms BOM components into executable CSP process components and +composed for execution and verification. +Automatic Transformation Tools + +An automatic transformation tool is proposed, which transforms a BOM component +model into the selected executable modeling formalism such as PNML, CPN based +or CSP based executable model. It may also be required to provide additional details, +which cannot be modeled or represented by BOM. +Dynamic Analysis Approach +Three main dynamic analysis approaches are selected for composability verification +of BOM base composed models at dynamic-semantic composability level: +Algebraic analysis approach +This approach is used to transform a BOM composition into a classical PN model +using PNML format and verifies the properties using PN algebra. +State-space analysis approach +This approach is based on using Colored Petri Nets and State-Space analysis. CPN +tool is a strong simulation and verification tool. State-space analysis is a very accurate +correctness reasoning technique; however it is costly in terms of computational +power and memory. Therefore a reduction technique is also proposed to reduce a +state-space graph of a composed model, in order to avoid state-space explosion. +Model Checking approach +CSP based model checking is used for the formal verification of BOM based +composed model. In formal logic, model checking designates the problem of +determining whether a formula or a correctness property ϕ defined using LTL, CTL6 +or similar property specification formalism, evaluates to true or false in an + +4 Petri Net Markup Language +5 Communicating Sequential Process +6 Linear Temporal Logic, Computational Tree Logic + +Chapter 1 + +Introduction + +Page +24 + +interpretation of a system K, written as K ╞ ϕ. Efficient algorithms are selected to +determine whether K ╞ ϕ holds [32]. +In summary, these three approaches are extensively being used in formal verification +for over a couple of decades and therefore equipped with rich theoretical +foundations and practical tools and techniques. We however believe that they are +being considered in this thesis for the composability verification of BOM based +models (or for that matter any M&S composition framework) for the first time and +will prove to be very promising and effective. A basic foundation is built using these +approaches in this thesis, and their usage are shown though appropriate examples. +Also necessary guidelines are provided for developing new verification methods +using these approaches and tools, in order to address various verification issues. +This research aims to propose a multi-tier verification life cycle for defining, +development, +archiving, +discovering, +matching, +selection +and +composing, +transforming, executing, verifying and finally reasoning about the correctness of the +composed models. This life-cycle extensively relies on the integrated component +development, composition and verification framework that is being proposed in this +research. This life-cycle follows our proposed process to perform verification of a +composed model at different levels. This life-cycle can be adapted by M&S +practitioners for rapid model construction, analysis, refinements and reuse and thus it +will boost the process of modeling and simulation of complex dynamic systems. + +1.5.3 Solution Statement +Based on the proposed approach the solution statement is described as follows: +“A verified composed model guarantees that the selected components are +composable at all composability levels, and they meet the requirement +specification by satisfying given objectives and fulfilling the required +constraints”. +A correctly composed model, promotes reuse of base components thus support +rapid model development and can be reused as yet another component later on. +1.6 +Scope of the Thesis +In this section, the scope and the boundaries of the thesis are outlined. +1.6.1 Correctness +In this thesis, “Correctness” is the main focus of the research. The approach, +methods, process and framework mainly deal with the correctness issue of the +composability verification. The other issues such as performance, efficiency and cost +estimation of the solution are currently beyond the scope of this thesis and +considered as future work. +1.6.2 Validation +Validation is a vital part of model evaluation and always goes hand in hand with +verification. However it is beyond the scope of this thesis. Although we believe that, +our framework is flexible and open-ended. Therefore it can accommodate necessary +extensions to support validation with a minor effort. + +Chapter 1 + +Introduction + +Page +25 + +1.6.3 Emergence +Emergent behavior due to composition of sub-systems is an important and open +research topic in the composability domain. We however do not address this issue in +this thesis and consider it a future work. +1.6.4 Generalization +Currently, the proposed approach is based on Base Object Model, only as a +demonstration of how our approach can be applied on an existing component +standard. However the framework presented in this thesis is open-ended and can be +generalized to accommodate any other component standard. Furthermore, +heterogenic composability can also be supported. We however do not address +generalization issues in this thesis. +1.7 +Summary of the Contributions +The existing work in the area of component based modeling and simulation is +fragmentary in nature, especially when the verification of component composability +of model at a conceptual level is concerned. Furthermore, even though different +composability verification approaches exist, but they have not been studied in depth +at different granular levels. +In this research, composability of BOM based model is studied in depth, focusing +mainly on the different levels. A multi-tier component based verification life-cycle is +proposed that tackles key issues of such as model development, discovery, selection, +matching, composition, requirement specification, transformation, implementation, +execution, analysis and most importantly verification. +In terms of verification, the major contributions of this thesis include development +of a composability verification framework, which integrates different methods, and +techniques to support different tasks in the composability verification process of a +composed model. These different tasks are categorized in different phase of a +proposed component based modeling and simulation (CBM&S) life-cycle. We +propose methods for evaluating structural and behavioral consistency of the +composed BOMs. For structural evaluation we propose a set of static analysis +techniques to verify that the components can be correctly connected and their +communication is semantically consistent, meaningful and is understood as intended. +For behavioral consistency of the composition we suggest a state-machine matching +technique. It verifies that the components can correctly interact with each other in a +right causal order to reach final states. For the further evaluation of the behavioral +composability our framework incorporates three main approaches: (a) PN Algebraic +technique (b) CPN-based State-space analysis technique and (c) CSP based model +checking. For each approach we develop automatic transformation tool that +transforms a BOM based composed model into the executable model of the +corresponding approach. We present three different case studies for the proof of +concept and for the evaluation of our verification framework. +We also suggest various extensions in each approach to suit the needs of +composability verification. For instance we propose algorithms for automation of the +PN algebraic approach. Also a CPN based component model is proposed for the +State-space algebraic approach in order to describe a BOM component (or any other +simulation component) in form of an executable model that can be executed using + +Chapter 1 + +Introduction + +Page +26 + +CPN execution environment. We also introduce a State-space reduction technique +for the CPN based state-space analysis approach to avoid the risk of state-space +explosion. For the CSP based model checking approach we propose an external +function library for methods to support various modeling tasks such as definition of +probability distribution functions for probabilistic system models. + +1.8 +Structure of the Thesis +This thesis is divided into two main parts: + +Part I Episteme: This part mainly covers the theoretical concepts, principles and +discussions. It comprises of chapters 1, 2, 3 & 4. + +Chapter 1: Introduction: +Chapter 1 gives a bird’s eye view of the research presented in this thesis. It addresses +the concept, historical background and the basic philosophy of composability. The +problem is defined and the approach is briefly introduced. A section on the scope of +the thesis and main contributions are also presented. + +Chapter 2: Component Based Modeling and Simulation: +Chapter 2 introduces and discusses component based modeling and simulation in +details, as it is the foundation of the problem domain. This chapter mainly covers the +theory, issues, different levels, framework and the formalism of model composition. +It also introduces Base Object Model (BOM) in details as a choice of Model +composition standard of this thesis. +Chapter 3: Executable Modeling Formalism +This chapter provides introduction, theory, basic definition and classification of PN +and CSP as executable modeling formalisms and regarded as solution domain. It also +describes basic concepts of the analysis techniques that are used later in this thesis. +Chapter 4: Verification and Analysis +Chapter 4 discusses theory and principles of verification. It also categorizes some of +the important verification techniques that are used in this thesis. + + + +Part II Techne: This part contains practical aspects including approaches, methods, +tools, development frameworks and lifecycle. It also contains examples related to our +proposed solutions for the proof of concept. It comprises of chapters 5, 6, 7, 8 & 9. + +Chapter 5: Proposed Approach and Framework +Chapter 5 is the center of the thesis as it provides the most important details of our +contributions. It describes the proposed verification framework and verification life- +cycle. It covers our proposed methods, techniques, algorithms, procedures as our + +Chapter 1 + +Introduction + +Page +27 + +contributions at different phases of composability verification process. These phases +and their concerning activities are outlined as composability verification life-cycle. + +Chapter 6: Composability Verification Process +This chapter presents the proposed composability verification process. It provides +essential guidelines of how to use our proposed composability verification +framework (discussed in chapter 5). It uses work flow diagrams to describe the +overall process and gives necessary guidelines to the modeler at each step. + +Chapter 7: Fairness verification using PN Algebraic Technique +Chapter 7 describes a case study of a manufacturing system as an example to explain +how the proposed framework helps to verify fairness property in a composed +system. The purpose of this chapter is to practically demonstrate algebraic +verification method. + +Chapter 8: Model verification using State-space analysis technique +Chapter 8 covers an example of the verification of a Field Artillery Model. It +practically demonstrates how state-space analysis is used to verify a composed +system. The field artillery model is introduced in detail along with requirement +specifications and it is shown how the proposed approach can help to verify its +composability. + +Chapter 9: Model Checking +This chapter demonstrates an example of verification using CSP based Model +Checking. The field artillery model discussed in chapter 8 is modified into a real-time +probabilistic system and is verified using CSP based model checking. + + + +Chapter 10: Conclusion and Future work +This chapter provides summary and conclusion, discussion and future work of the +thesis. + + + +Page +28 + +Chapter 2 +Component Based Modeling and +Simulation + +Composability is an important quality characteristic and an effective means to achieve several benefits +in M&S discipline, but in reality, it is a challenging and daunting problem. The community has +conducted active research on its theoretical and practical intricacies. In theory, composability is +studied under various facets and views primarily distinguished, by its different “layers” or “levels” as +identified by different research groups. Whereas in practice, various practical challenges associated +with it are investigated. Most important of these issues are component specification, development, +integration, composability verification and validation, collectively referred to as phases of a +Component based life-cycle. In this chapter both theoretical and practical aspects of composability are +discussed in detail. + +2.1 +Composability in M&S +In M&S applications, composability has been defined in different ways. Much of +these definitions have been collected by A. Tolk in his article [13]. Harkrider and +Lunceford defined composability as: +The ability to create, configure, initialize, test, and validate an exercise by logically assembling +a unique simulation execution from a pool of reusable system components in order to meet a +specific set of objectives [33]. +Kasputis and Ng defined composability as: +The ability to compose models across a variety of application domains, levels of resolution, and +time scales [16] +Petty and Weisel recommended the following definition in their article on theory +of composability, which later was appended by P. K. Davis: +Composability is the capability to select and assemble simulation components in various +combinations into valid simulation systems to satisfy specific user requirements, meaningfully +[17] [34]. + + +It has been realized that composing models is more difficult than composing general +software components. This argument is predicated on the assumptions that models +are more complex; they are developed for particular purposes, and they depend on +context-sensitive assumptions [8] [17]. Model development is a hard design task, +mainly due to the complexity involved in the process. Nowadays this complexity is +increasing to levels in which the utilization of pre-defined models is considered very +useful to cut short the development time. Thus model composition is a paradigm, +where existing components are the building blocks for the construction of new larger +and more sophisticated models. When a model is composed, it must be evaluated in + +Chapter 2 + +Component Based Modeling and Simulation + +Page +29 + +terms of correctness with respect to its requirements. In short the predictability of +guaranteeing the correctness of model composition is called Composability. +2.2 A Brief History of Composability and related work +2.2.1 Initiation +Composability in M&S has primarily been investigated by the defense research +sector. The earliest uses of the term composability within the context of defense +simulation dates back to the Composable Behavioral Technologies (CBT) project +during the mid-1990s [35]. Later on the Joint Simulation System (JSIMS) project +investigated composability as a system objective [36]. In 1998, a project on model +based simulation composition (MBSC) was started in which a prototype composition +environment for JSIMS was developed. In 1999 Page and Opper investigated the +composability problem from a computability and complexity theoretic perspective +[35]. Composability became a key system objective for OneSAF project in 1999 [22]. +2.2.2 Theoretical evolution +Later on a series of numerous articles were published which addressed various issues +of and methodologies of composability and became the theoretical foundations for +further research. Important works in this series include: Kasputis and Ng [16]; Davis +et al. [37]; Petty & Weisel [38]. Petty and Weisel extended the work of Page and +Opper, provided a broad survey of the uses of the term composability, and examined +the composite validation problem within the context of automata theory and +computable functions. Later a comprehensive report was published by Davis and +Anderson in 2003 [17] that provides a broad survey of the composability and +suggests its applications for the DoD7 in this area. +2.2.3 Standards & Frameworks +Later on, the research on composability remained focused on the development of +standard composition frameworks and its practical application in various domains of +modeling and Simulation. In 2005 the Extensible Modeling and Simulation +Framework (XMSF) was initiated by the Naval Postgraduate School to develop a +web-based simulation environment [39]. Advances in M&S technologies, gave rise to +different distributed simulation standards and protocols such as Simulation +Networking (SIMNET), Distributed Interactive Simulation (DIS), Aggregate Level +Simulation Protocol (ALSP) and the High Level Architecture (HLA). The details of +these standards are well documented by Moradi [19]. Due to the complex nature of +the standards, and distributed simulation itself, different composability frameworks +were introduced to co-op with these requirements. More general-purpose +frameworks such as the Discrete Event System Specification (DEVS) [40], the Open +Simulation Architecture (OSA) [41], the Base Object Model (BOM) [42], and the +Component Oriented Simulation Toolkit (COST) emerged and contributed to +various issues of composability in different ways. +2.2.4 Technological Advances +Due to the technological advances in computer engineering, many approaches +emerged with the aim to address issues and high end requirements of modeling and + +7 United State Department of Defense + +Chapter 2 + +Component Based Modeling and Simulation + +Page +30 + +simulation such as representation of Complex, Dynamic and Adaptive Systems; +integration of large interdependent Systems; multi-resolution and multi-scale +modeling [43], and much more. In this period, many tools and techniques were +developed using composability paradigm. Model Coupling Toolkit (MCT) was +developed to support and simplify the construction of parallel coupled models [44]. +MUSE is another composable simulation environment for astrophysical applications +in which different simulation models of star systems are incorporated into a single +framework [45]. Some frameworks such as Common Component Architecture +(CCA) [46] and Component based Grid Environment (MOCCA) [47], were +proposed to be used in high-performance computing, where scientific components +are directly connected by their Users and Providers ports. A Multi-scale Coupling +Library and Environment (MUSCLE) provided a software framework for building +composable simulations according to the complex automata theory [48]. Compo- +HLA is an environment proposed for supporting HLA component [49]. +2.2.5 Composability verification and Validation +Most of these frameworks lack strong built-in composability evaluation support. +Therefore some third-party composition, verification and validation frameworks +were developed by individual research teams such as Composable Discrete-Event +scalable Simulation (CODES) [20] and Semantic Web-based BOM composition +framework [19], where verification and validation of composability are strongly +focused. +2.3 Theory of Composability +The formal theory of composability was pioneered by Petty and Weisel [34], [38], +[50] in an initiative developed at the Virginia Modeling, Analysis & Simulation Center +(VMASC). It was also called “semantic composability theory” (SCT). The aim of the +SCT is to check and prove the semantic composability of components using formal +descriptions and reasoning. A model is defined as a computable function: y = ƒ(x), +where function is calculable by a finite procedure and relates each input to a unique +output, as shown in Figure 1 + + +Figure 1: A model as computable function (acquired from [34]) + +A simulation is a sequence of executions of a model ƒ(x), where the output from +each execution step is the input to the next step of the execution: + +Where i = input value; m=memory value; o=output value and n=current iteration, as +shown in Figure 2 +(mn, on) = ƒ(mn-1, in-1) +(2.1) + +xeX +J(x)e Y +Domain +Codomain +X +YChapter 2 + +Component Based Modeling and Simulation + +Page +31 + + +Figure 2: Sequence of executions (acquired from [50]) + +The composition is defined as output of one function to be the input of another: + +Figure 3 shows the representation of a composed model, which is developed through +composing other models (f1, f2 & f3). A composed model as a whole has also a set +of inputs, outputs, current states and next-states as shown in Figure 3. + +Figure 3: Composed Model (acquired from [50]) +The composition of models in SCT is in fact the composition of functions. Since a +set of computable functions is closed under composition any set of models can be +composed if the composition exists, but there is no guarantee that the resultant will +be a useful model. Thus focus of SCT is semantic composability, the question of +whether the model composition is meaningfully valid or not. +Validity +A model is defined as valid, if it is an accurate representation of the real-world with respect to +the intended use. For formal validation, the simulation of a composition is represented as +Labeled Transition System where nodes are model states, edges are function executions, and +labels are model inputs. A composition is valid if and only if its simulation is close to the +simulation of a perfect model. +Perfect Model +A model is perfect with respect to a natural system N 8 if and only if it represents a system of +perfect observations of the natural system [50]. + +8 A natural system N is a real or imagined system. +h(x) = ƒ(g(x)) +(2.2) + +io +i, +is +i3 +mo +111 +1112 +1113 +m4 +01 +02 +03 +04 +2 +3 +4i1 +i2 +i +X3.2Xg.1 +m +X3.3 +Y3.1 +→ mner.! +X1.1 +mz +X1.2 +Ji,1 +X3.4 +Y3.2 +→> Mno2 +Ji +X22X2.! +m3 +X1.3 +J1,2 +X2,3 +J2.1 +X3.s Js Y33 +→ mer3 +Ji.4Ji.3 +fn y2? +tu +X3.6 +J3.4 +J2.+Y23 +m, +X.7 +Y3.s +> mnoxt's +J3.8 J3.7 J3.6 +个个 +03 +So to +% l %Chapter 2 + +Component Based Modeling and Simulation + +Page +32 + + +For details of different classes of models, their equivalence relations, formal +theorems and proofs of equivalence, interested readers should refer to [50]. The basic +concepts of a formal theory of semantic composability include formal definitions for +model, simulation, validity, and composition. A theory of composability can facilitate +the convenient reuse of simulation components, which holds the potential to the +time and cost of simulation development [34] [38] [50]. +2.4 Concepts related to Composability +In this sub-section, some of the concepts and idea related to composability are +discussed. +2.4.1 Composability vs. Reusability +Composability is differentiated from reusability in many aspects. Balci et al. define +Reusability as the degree to which an artifact, method, or strategy is capable of being +used again or repeatedly [5]. Robinson et al. on the other hand suggest that the term +simulation model reuse can be taken to mean various things from the reuse of small +portions of code, through component reuse, to the reuse of complete models [51]. +Composability offers means to achieve reusability, but reusability might not always +be the ultimate objective of model composition. For instance, in a particular +situation, a set of modular components are purpose-fully built and composed to +construct a large model, but they cannot be reused in a different project, due to their +highly specific design. To be widely reusable, a component must be sufficiently +general, scalable, and adaptable. A requirement for reusability may lead to another +development approach, for example, a design on a more abstract level [9]. The +comparison between usability and reusability of composable components poses a +tradeoff between them being very specific in function and behavior so that they can +be used in a particular case to satisfy specific user’s requirements or them being very +generic and abstract so that they can be reused in different situations again and again. + +Figure 4: Generic vs. Specific component design +Figure 4 illustrates a component is often more reusable if it has a generic design +and less reusable if it has functionally specific design. + +Both use and reuse of composable components share three levels of transparency. +[7]. A component can be seen as a box, which contains the interfaces and internal +implementation. Three levels of composability transparency are defined: + +Generic +Functionally +specific +design +More reusable +Less reusableChapter 2 + +Component Based Modeling and Simulation + +Page +33 + +Black Box Composition +In black box composition, the user sees the interface, but not the implementation of +the component. The user documentation is provided that contains the details of the +inputs and outputs, requirements and restrictions of the component. All the +implementation details are hidden. The clients will get what the contract promises. +The changes are not feasible at the deployment end. The advantage of black-box +composition is that the testing done at the development side is persevered and there +is no need of further testing at the deployment side. +Glass Box Composition +In glass box composition the inside structure of a component can be viewed, but it is +not possible to modify. This solution has an advantage when compared to black box +reuse, as the modeler can understand the box and its use better. However it is not +possible to make any changes in the implementation. The advantage of this level +remains the same as that of black-box composition however an additional benefit is +that the user can gain knowledge of the internal implementation and can understand +the mechanics of the component. +White Box Composition +In white box composition it is possible to see and change the inside of the box as +well as its interface. A white box can share its internal structure and implementation +with another box through inheritance or delegation. The advantage of this level is +greater flexibility due to the provision of modifications. However this level incurs an +extra burden of testing at the deployment end. + +Figure 5: Black Box, Glass Box, White Box +Figure 5 illustrates difference between black box, glass box and white box +composition. + +2.4.2 Composability vs. Interoperability +Bearing in mind the definition of composability mentioned previously, the IEEE +definition of interoperability is: +The ability of two or more systems or components to exchange information and to use the +information that has been exchanged +The concept of interoperability is mainly about inter-connecting systems of various +types developed for different purposes; for different platforms, and about their +syntactically and semantically agreed upon communication [13]. In the context of +Internals +not known +Internals +known +Internals +known +No +modification +No +modification +Modifiable + +Chapter 2 + +Component Based Modeling and Simulation + +Page +34 + +modeling and simulation, interoperability is the ability of different simulations +connected in a distributed system to collaboratively simulate a common scenario [19]. +Page et al. [52] distinguishes composability and Interoperability as follows: +Composability contends with the alignment of issues on the modeling level. The underlying +models are purposeful abstractions of reality used for the conceptualization being implemented +by the resulting systems; whereas Interoperability contends with the software and +implementation details of interoperations; this includes exchange of data elements via +interfaces, the use of middleware, mapping to common information exchange models. +2.5 Composability Levels +Petty and Weisel emphasized on two basic types of composability: syntactic and +semantic in their theory of composability [38] [50]. According to which the syntactic +composability requires that the composable components should be constructed with +compatible implementation details such as parameter passing mechanisms, external +data accesses, and timing assumptions. The question of syntactic composability is +whether the components can be connected. In contrast, semantic composability is a +question of whether the models can be meaningfully composed to form a composed +simulation system and whether the combined computation is semantically valid. It is +possible that two components may be syntactically linked, so that one can pass data +to the other, but they can be semantically invalid. Figure 6 represents the difference +between syntactic and semantic composability metaphorically. + +Figure 6 Syntactic vs. Semantic Composability (acquired from [38]) +Composability is studied in more depth under different levels, as identified by +different research groups. Several levels of understanding and agreement are required +between the models in order for them to be meaningfully composed—that is, for +their composition to produce meaningful results [17]. +Davis recommended five distinctions of levels namely: syntax, semantics, pragmatics, +assumptions, and validity to study composability [43]. He describes these levels as +different consistencies of composability, which all together are examined for the +correctness of model composability. Petty & Weisel have suggested nine levels of +composability in terms of composition units. These levels are: Application, Federate, +Package, Parameter, Module, Model, Data, Entity and Behavior [38]. Tolk described a six +layered model called Levels of Conceptual Interoperability (LCIM) to study +composability and interoperability. This model includes: technical layer, syntactic +layer, semantic layer, pragmatic layer, dynamic layer, and the conceptual layer [13]. +Similarly Medjahed & Bouguettaya introduced a composability stack in which the +composability of semantic web services is checked at four levels: Syntactic, Static +Semantic, Dynamic Semantic and Qualitative level [53]. First three levels of + +AF +Syntacticcomposability +Semantic composabilityChapter 2 + +Component Based Modeling and Simulation + +Page +35 + +Medjahed & Bouguettaya’s composability stack were adopted by Moradi, et al. to +study the degree of composability of Base object Model (BOM) components [54]. In +this thesis, these levels are considered as fundamental benchmarks for the evaluation +of model composability. The notion of model composability and its correctness +strongly depend on the consistency of these levels as explained in the following +subsections. +2.5.1 Syntactic level: +At this level, the structure of the components is studied to know if they can fit +together i.e., the output of one can be read as an input to the other and that the +syntactic information of the connected components, such as message name, mode of +action and number of parameters match each other e.g., A “passenger airplane” +component will be a syntactic misfit in a military training simulation, where a “fighter +jet” component is required whose input will be a signal from “ground station” +component to engage a target and output will be an airstrike on the “target” +component. A passenger plane can neither take a target designation as input, not it +can fire on a ground target. So this component is not composable at syntactic level. +2.5.2 Static-Semantic level: +It is concerned with the meaningful interaction of the composed components. Static- +Semantic level of composability involves in having a concise and mutual +understanding of the data exchanged by the components participating in the +composition. At this level, it is ensured that all the components possess the same +understanding of the terms, parameters, data types and units, so basically this level +deals with the interpretation of same meaning of concepts for the information +exchanged between the composed components. For instance, if two components +being composed interpret units of quantities in a different way, they will incorrectly +process data values during the information exchange and thus result in a situation not +intended by the user e.g., if a integer data value is intended to be the bearing of a +target (in degrees) but interpreted as target distance (in Km) by the other component +then it is a semantic mismatch. +The term “static” is prefixed, because all the information that is required to evaluate +this level is static and does not change during the entire component interaction. +2.5.3 Dynamic-Semantic level: +Dynamic Semantic Composability implies that the components are dynamically +consistent, i.e., they have suitable state-full behavior, necessary to reach the desired +goals and subsequently satisfy user requirements. The dynamic level of composability +ensures in having a behavioral consistency and coherency among the participating +components in achieving the common goals. The dynamic semantic composability +can only be achieved if the components are at the right states during their interaction. +Also they should possess required behavior to make a collective progress. E.g., in a +composed model of a restaurant, a waiter component may have two different +behaviors (i) Classical restaurant where a waiter takes order from customer, serves +food and then collects payment or (ii) Fast food restaurant where waiter takes order, +collects payment and then serves food. The selection of the correct behavior and the +correct customer component (the one who can correctly interact with the classical +restaurant waiter or fast food waiter) will affect the overall composability of the +model. This example presents how the components should be at right states to make + +Chapter 2 + +Component Based Modeling and Simulation + +Page +36 + +progress. A customer (expecting classical treatment) will wait forever for the (fast +food waiter) to serve food and vice versa. +Even if the components are at the right states, but their behavior is not correct, the +composition may not reach its goals. E.g., in a manufacturing system two machine +components produce two different parts that are later combined to make a finished +good, and they share a single robot component for input of raw material, it is required +that the robot component should be fair so that both machines get more or less equal +chance to proceed. If the robot is not fair the proportion of good produced will be +unbalanced and therefore the system will fail to meet its objectives even though the +components are at right states and continue to progress. +The term dynamic is prefixed, because the information such as current state of +components changes dynamically during component interaction. +2.5.4 Pragmatic level: +Consistency of meaning is not always straightforward because the same word means +very different things depending on context [43]. Pragmatic consistency refers to a +context based meaningful composition of the components. In linguistics the study of +the relations between linguistic phenomena and aspects of the context of language use is called +pragmatics whereas Context is defined as something that consists of the ideas, situations, events, +or information that relates to it and makes it possible to fully understand it [55]. +The pragmatic level of composability evaluates the difference of actual effect of the +messages with the intended effect of messages during communication [43]. The +research of pragmatic level of composability involves in-depth study of +computational linguistics, cognitive technologies and contextual computing [55]. An +important issue at this level is pragmatic ambiguity. Pragmatic ambiguity arises when +the message is not specific, and the context does not provide the information needed +to clarify the statement, and due to which the components do not interact according +to the desired objectives. An example of pragmatic ambiguity is the story of King +Croesus and the Oracle of Delphi (derived from [56]): + "King Croesus consulted the Oracle of Delphi before warring with Cyrus of Persia. The Oracle +replied that, "If Croesus went to war with Cyrus; he would destroy a mighty kingdom". Delighted, +Croesus attacked Persia, and Croesus’ army and kingdom were crushed. Croesus complained +bitterly to the Oracle’s priests, who replied that the Oracle had been entirely right. By going to war +with Persia, Croesus had destroyed a mighty kingdom – his own." +In essence, a set of components can possibly fit together (syntactically), and their +communication is meaningful and understood (semantically), but unless all +components preserve essential behavior (dynamically) in order to reach the desired +composition goals, and they share the correct contextual knowledge (pragmatically), +the composability cannot be qualified as correct with respect to given requirement +specifications. +2.6 Composability frameworks +Composability essentially relies on a suitable composition framework that can +provide accurate reasoning of its correctness and support means to be able to +leverage certain component standard. Various component standards and their +respective frameworks have been developed for M&S to support composability. +Some of these frameworks contribute to conceptual modeling by providing the +needed formalism and influence the ability to develop and compose model + +Chapter 2 + +Component Based Modeling and Simulation + +Page +37 + +components at conceptual level, while others support model composition at +executable level. These frameworks practically support composability, as they usually +offer features such as model specification, development, and execution. A brief +description of some of the composability frameworks is provided below: +2.6.1 Discrete Event System Specification (DEVS) +DEVS [57] is a component based formalism based on dynamic systems theory. It +was developed for the purpose of describing the structure and behavior of systems. +It supports the concept of hierarchical and modular model construction through +coupling of components [19]. DEVS is basically a model specification formalism +however it incorporates different implementation frameworks such as DEVS-Java, +DEVS-C++ and DEVS-Sharp which are used to implement DEVS models into +executable form. + +Two types of DEVS models exist, namely, atomic and coupled [20]. +An atomic DEVS is a tuple M = 〈X, S, Y, δint, δext, λ, τ〉 where: +X = {(p, v) | p ∈ InPorts, v∈Xp} is the set of input ports and values +Y = {(p, v) | p ∈ OutPorts, v∈Yp} is the set of output ports and values +S is the set of states +δint : S →S is the internal transition function +δext: Q × X→S is the external transition function, where + Q = {(s, e) | s ∈S, 0 ≤ e ≤ τ(s)} is the total state set + e is the time elapsed since last transition + λ : S →Y is the output function +τ : S →R0,∞ ++ 0, ∞ is the time advance function + +A DEVS atomic component has inputs X, outputs Y, and a set of S states. At a given +moment, a DEVS model is in a state s∈S. In the absence of external events, it +remains in that state for a lifetime defined by τ(s). When τ(s) expires, the model +outputs the valueλ(s) through a port y ∈ Y, and it then changes to a new state given +by δint(s). A transition that occurs due to the consumption of time indicated by τ(s) is +called an internal transition. On the other hand, an external transition occurs due to +the occurrence of an external event. In this case, the external transition function +determines the new state, given by δext (s, e, x), where s is the current state, e is the +time elapsed since the last transition, and x∈X is the external event that has been +received. The time advance function can take any real value between 0 and ∞. A +state for which τ(s)=0 is called a transient state (which will trigger an instantaneous +internal transition). In contrast, if τ(s)=∞, then s is said to be a passive state, in +which the system will remain perpetually unless an external event is received. + + + + + + +Chapter 2 + +Component Based Modeling and Simulation + +Page +38 + +A coupled DEVS is a tuple: M = (X, Y, D, {Md | d ∈ D}, EIC, EOC, IC, +Select) where: +X = {(p, v) | p ∈ InPorts, v∈Xp} is the set of input ports and values +Y = {(p, v) | p ∈ OutPorts, v∈Yp} is the set of output ports and values +D is the set of component names +Md is a DEVS model with +Xd = {(p, v) | p ∈ InPortsd, v ∈ Xp} +Yd = {(p, v) | p ∈OutPortsd, v ∈ Yp} +EIC is the set of input port couplings +EIC ⊆ {((N, ipN), (d, ipd)) | ipN ∈ InPorts, d ∈ D, ipd ∈ InPortsd} +EOC is the set of output port couplings +EOC ⊆ {((d, opd), (N, opN)) | opN ∈ OutPorts, d ∈ D, opd ∈ OutPortsd} +IC is the set of internal couplings +IC ⊆ {((a, opa), (b, ipb)) | a, b ∈ D, opa ∈ OutPortsa, ipb ∈ InPortsb} +Select is the tie-break function + +A system modeled using DEVS can be described as a composition of atomic and +coupled components. A coupled model comprises a set of input and output ports, a +set of component names D, a set of DEVS components Md, input port EIC and +output port EOC couplings, and, a set of internal couplings IC connecting internal +components with each other. The tie-break function decides which component to +proceed when two or more components have internal transitions scheduled at the +same time. +Figure 7 describes a DEVS example. In this example two atomic component A & B +are coupled together. Both components have two states Send τ(s)=0.1 and Wait +τ(s)=∞. Input port: ?receive and Output port: !send are defined and connected to each +other in coupled DEVS. + +Figure 7: Ping-Pong DEVS [Wikipedia] +2.7 Base Object Model (BOM) framework +The SISO 9 standard BOM is defined as, “a piece part of a conceptual model +composed of a group of interrelated elements, which can be used as a building block +in the development and extension of simulations and simulation environments” [58]. + +BOM provides a simulation standard that allows model developers and simulation +engineers to create modular conceptual models in form of composable objects, + +9 Simulation Interoperability Standards Organization + +Ping-Pong +AY +B +Send,0.1 +Send,0.1 +Ised +?receive +Isend +!send +?leceive +?feceive +Wait, inf +Wait, inf +?receive +IsendChapter 2 + +Component Based Modeling and Simulation + +Page +39 + +which can be used as the basis for a simulation or simulation environment [59], [60]. +The concept of BOM is based on the assumption that components of models, +simulations, and federations can be reused as building blocks in the development of a +new simulation or a federation [54]. +BOMs are unique because they provide a means to represent aspects of a conceptual +model that captures structural and behavioral descriptions of items abstracted from +the real system (simuland). Then they allow these conceptual models to be mapped +to one or more class definitions, which may be used by a software design, variety of +programming languages, or distributed simulation architectures such as HLA or +TENA10 [61], [62]. +BOM standard also offers a general purpose modeling architecture for defining +components to be represented within a live, virtual, or constructive (LVC) simulation +environment. It is well suited for characterizing models including the structural and +anticipated behavior of interacting systems, individuals, and other entities. Primarily +BOMs framework poses a satisfactory potential for effective composability of +conceptual models at syntactic and semantic levels, resulting in a framework for the +assembly of a system (i.e. simulation) or system of systems (i.e. distributed simulation +environment) [62]. +In spite of these reasonable qualities, BOM framework still falls short of required +behavioral semantics and necessary built-in evaluation techniques, which are essential +for modeling complex system behavior and +reasoning about the correctness of the +composability at each of its different level. +Therefore it becomes a most suitable candidate +and a preferred choice of a composition +framework (in this thesis) for studying model +composability in depth and applying proposed +methods on BOM based compositions to +explain the approach. +2.7.1 Structure of BOM +A BOM is constituted of elements specifying +metadata information, conceptual model and +the class structure information defined using +HLA OMT constructs [59]. Figure 8 presents +different parts of BOM, explained as follows: +Model Identification +Model Identification associates the metadata +information with the BOM. Its purpose is to +document certain key identifying information +within the BOM description. It provides a +minimum but sufficient degree of descriptive +information about a BOM + +10 Test and Training Enabling Architecture +Figure 8: BOM structure +(acquired from [59]) + +Model Identification (Metadata) + Conceptual Model Definition +Pattern of Interplay +State Machine +Entity Type +Event Type +Model Mapping +Entity Type Mapping +Event Type Mapping +Object Model Definition +HLA Object Classes +HLA Object Classes +HLA Object Class Attributes +HLA Interaction Classes +HLA Interaction Classes +HLA Interaction Class Parameters +HLA Data Types +Notes +Lexicon (definitions)Chapter 2 + +Component Based Modeling and Simulation + +Page +40 + +Conceptual Model Definition +From the composability point of view, this is the most important part of BOM and +therefore the main focus of this thesis. To understand this part, the definition of a +conceptual model should first be considered: +Conceptual Model +A Conceptual model is an abstract description or an appropriate simplification of a real (or +proposed) system, which is later, refined and implemented in to a more concrete executable +model (or simulation model). In these terms, conceptual modeling is a subset of model design +which is formed through an iterative process according to the objectives of system modeling +[63], [64]. +The term conceptual model is used in different ways in the literature. A conceptual +model could be a specific diagram like UML class diagram or it could be +documentation of a particular aspect of the simuland11 [29]. To better understand the +concept of BOMs, consider the home construction analogy. When a new house is to +be built the conceptual understanding of features of the building is captured in +architectural drawings, which is analogous to a conceptual model (BOM) [60]. BOM +Conceptual Model definition consists of following parts: +Pattern of Interplay (POI) +POI models a specific purpose or capability and is represented by one or more +pattern actions. For each pattern action, one or more senders and receivers are +specified to provide a means for understanding and the behavioral relationship +among conceptual entities. POI is represented by UML sequence diagram [60]. +State Machine +The state machine is used to model the behavior of a BOM’s conceptual entity. The +state machine is specified by a set of states where each state may transit to a +subsequent state called next state, upon an exit action, which is identified in a pattern +of interplay. UML state-machine diagram is used to represent BOM’s state-machine +[60]. +Entity Type +A conceptual entity is an abstraction of a real world entity. It defines a relationship +with other entities within a pattern of interplay and acts as a sender or receiver of the +events [60]. +Event Type +Conceptual events include information about the source, target, and content +(parameters) of a message or trigger. The difference between a trigger and a message +is that a trigger is used to broadcast information whereas the messages are directed +exchanges of information where the sender knows about the intended receiver of the +message [60]. + +Entities and Events represent data about the real world objects and their interaction +(physical description), whereas the pattern of interplay and state-machine collectively +represents the dynamic behavior of the component. + +11 A simuland is the real world system of interest. It is the object, process, or phenomenon to be +simulated [29]. + +Chapter 2 + +Component Based Modeling and Simulation + +Page +41 + +2.7.2 BOM Assembly +The BOM concept provides a mechanism for combining BOMs and creating High- +Level BOMs, called BOM Assemblies, as shown in Figure 9. A BOM Assembly +representing a composition of BOMs, is built in a hierarchical manner and includes +information about composed BOMs, which in turn is used to identify a composite +interface, and represent a federate, federation within the simulation space12. Typically +a developer of a simulation would search a BOM repository for suitable BOM +candidates for use in a simulation and combine those into a BOM Assembly (i.e. a +simulation model), which is then used to create the actual simulation [19]. +A BOM assembly contains Model Identification, and pattern of the interplay among +conceptual entities being represented, which is provided through the association of +BOMs to the various Pattern Description actions that the BOM Assembly identifies, +within the Conceptual Model view [60]. + +Figure 9: BOM Assembly +BOM models can be created using XML script. But for constructing BOM models +graphically, a free IDE tool called BOM Works [65] is available. Figure 10 represents +an example developed using BOM Works. It is similar to the DEVS example shown +in Figure 7, to compare the difference. + +Figure 10: (a) PingPong BOM in BOM Works (b) POI (c) State-machineA (d) State-machineB +(e) EntityA (f) EntityB (g) EventA (h) EventB + + + + +12 Although use of HLA is not a mandatory subsequent step, it is likely that BOM assemblies are +intended to support an HLA based federation [59]. + +BOM1 +BOM +BOM +BOM2 +Assembly +Repository +Discovery +Composition +BOM3PingPong +OModelIdentification +旦 + Sending +ActionA +Waiting +ActionA +eAuthor +Conceptual Model +@PatiternsofInterplay +ActionA +百@PingPong +V +@ActionA +ActlonB +ActionB +@ActionB +Waiting +ActionB +Sending + State Machines +BOA +Sending +(b) +(c) +(d) +Waiting + Entity Type +日 Entity Type +B +Waiting +name +A +name +B +Sending +semantics +semantics +idtag +id2 +idtag +Entity Types +id3 +OA + characteristic +name + characteristic +name +OB +Message +Message +白? +Event Types +ID +ID +?EventA +(e) +(f) +?EventB +Model Mapping + Event Type + Event Type +Entity Type Mappings +name +EventA +name +EventB +EventType Mappings +triggerCondition +triggerCondition +Object Model Definition +semantics +idtag +semantics +@ objects +id1 +idtag +tp! +Interactions +日 sourceCharacteristic +name + sourceCharacteristic +name +由DataTypes +A.ID +B.ID +@ Notes +?targetCharacteristic +name +? targetCharacteristic +name +B.ID +A.ID +日contentCharacteristic +name +contentCharacteristic +name +A.Message +B.Message +(a) +(g) +(h)Chapter 2 + +Component Based Modeling and Simulation + +Page +42 + +2.7.3 Model Mapping and Object Model Definition +The model mapping provides a mechanism for mapping between the elements of the +conceptual model and the class structure elements of the Object Model Definition +that are described using HLA OMT 13 specification constructs. The object model +definition defines the structure of an object and interaction class, and their associated +attributes and parameters. HLA Object classes include HLA attributes and HLA +interaction classes include HLA parameters. These parts of BOM are not used in this +thesis, however interested readers can find more details in [58], [59], [60], [61], [62]. +2.7.4 Formal specification for the Compositon of BOM +Unlike DEVS, BOM does not have a graphical and mathematical formalism for +specifying how components are composed (even though parts of BOM such as state- +machine and POI can be represented in UML and BOM documents can be +described using XML). This initiates a need for a graphical and formal representation +of BOM composition. +In this section, we introduce a formal and graphical specification of BOM14. We +define two types of BOM: (i) Basic BOM and (ii) Composed BOM. A basic BOM is +an undividable atomic BOM component, with an assumption that it represents only +one conceptual entity at the most. A composed BOM is a hierarchical combination +of basic and other composed BOM. +Basic BOM +We propose that a basic BOM (BB) can formally be defined as: + Where: + EnT is an entity type. We assume that a basic BOM has only one entity. EnT is +defined as: + EnT = Name {Characteristic: Type} +Where Name is the name of an entity uniquely defined by an identifier15 and characteristic is a set of +attributes of an entity. Each characteristic is uniquely defined by an identifier and has a type16 + + EvT is a set of event types, each with sender, receiver and content + +Evt = {(Name, Sender, Receiver, {Content: Type}) | Name ∈ Identifier, Sender +& Receiver ∈ EnT, Content∈ Identifier: Type ∈ type} + + S is a set of states, each has an exit-condition and a next state: + S = {(Name, ExitCondition{Action, NextState})} | Name ∈ Identifier, Action ∈ +Act, NextState ∈ S + + + +13 High Level Architecture Object Model Template +14 These concepts are not new and exist in literature for other component-based approaches [21]. In +this thesis, their application in BOM is intended for facilitating specification and ease of understanding +15 An identifier is a unique sequence of letters & digits, starting with a letter. +16 Type := Integer | String | Double | Complex +BB = 〈 EnT, EvT, AcT, S 〉 +(2.3) + +Chapter 2 + +Component Based Modeling and Simulation + +Page +43 + + AcT is a set of actions, each has name, sender, receiver and an associated event: + AcT= {(Name, Sender, Receiver, Event) | Name ∈ Identifier, Sender & Receiver +∈ EnT, Event ∈ EvT} + + +Composed BOM +A composed BOM (CB) can formally be defined as: +Where: + AcTIN is a set of input actions that are received from other BOM. This set can be +empty if the Composed BOM is closed. + AcTIN = {(Name, Sender, Receiver, BOM) | Name ∈ Identifier, Sender & +Receiver ∈ EnT, BOM ∈ File} + + AcTOUT is a set of input actions that are sent to other BOM. This set can also be +empty if the Composed BOM is closed. +AcTOUT = {(Name, Sender, Receiver, BOM) | Name ∈ Identifier, Sender & Receiver +∈ EnT, BOM ∈ File} + + POI is the pattern of interplay that defines how basic or composed BOMs are +connected to each other (through actions). It maps a list of send actions to a list +of receive actions. ‘ ! ’ symbol means send and ‘ ? ’ symbol means receive. +POI = {({!AcTSEND} , {?AcTRECV})} | AcTSEND & AcTRECV ∈AcT + + + +Example +As an example, BOMs from Figure 10 can formally be represented as: +BB0 = 〈 EnT, EvT, AcT, S 〉 where: +EnT = EntityA {C0(Message:String)} +EvT = {E0(EventA, BB0, BB1, BB0.C0), { E1(EventB, BB1, BB0, BB1.C0)} +Act = { A0(ActionA, BB0, BB1, E0), A1(ActionB, BB1, BB0, E1)} +S = { S0(Sending, A0, S1), S1(Waiting, A1, S0)} + +Table 1: Entity A + + + + +CB = 〈 AcTIN, AcTOUT , POI 〉 +(2.3) + +Chapter 2 + +Component Based Modeling and Simulation + +Page +44 + + +BB1 = 〈 EnT, EvT, S, AcT 〉 where: +EnT = EntityB {C1(Message:String)} +EvT = {E2(EventA, BB0, BB1, BB0.C0), { E3(EventB, BB1, BB0, BB1.C1)} +Act = { A2(ActionA, BB0, BB1, E2), A3(ActionB, BB1, BB0, E3)} +S = { S2(Waiting, A2, S3), S3(Sending, A3, S2)} + +Table 2: Entity B + +Similarly a composed BOM CB0 can be formally described as: +CB0 = 〈 AcTIN, AcTOUT , POI 〉where: +AcTIN = ∅ (since there is no incoming actions from any other BOM) +AcTOUT = ∅ +POI = {I/O0(!A0 , ?A2), I/O1(!A3, ?A1)} + +Table 3: Composed BOM + +We propose a graphical notation for representing basic BOM and their composition +shown in Figure 11. In this figure two basic BOM EntityA and EntityB are composed. +Figure 11: Composed BOM +The general information of a component such as entity name, characteristics, actions +and states are defined in the main block. In the lower block the states and their +transitions (with blue arrow) are shown. Each transition is mapped with actions (in +red arrow) with parameter labels (the IDs of characteristics). The direction of the +arrow shows the type of the associated action (send or receive). The composition of +BOMs is shown through connectors (in green color). + + +A +Action Connector +EntityA +EntityB +S +State Connector +Characteristics: +Characteristics: +C0 - Message1 String +C1 - Message2 : String +Initial State +Actions: +Actions: +Exit condition +A - ActionA +A2 - ActionA +A1 - ActionB +A3 - ActionB + State Transistion +States: +States. + SO=Sending +S2=-Waiting +Input/Output + S1-Waiting + S3-Sending +connection +A0 +1 +Waiting +Sending +Sending +WaitingChapter 2 + +Component Based Modeling and Simulation + +Page +45 + +2.7.5 Summary +In this thesis, we harness the capability of BOM as a conceptual modeling +framework, because it provides a component standard using an XML specification; +gives guidelines for the further development of the executable model and helps +determine the appropriateness of the model or its parts for model reuse; and most +importantly due to its strong support for syntactic and semantic composability. It will +be shown, how BOM with its existing potential can be facilitated by composability +evaluation for accurate and rapid construction and modification of its corresponding +federates in HLA based simulations and hence brings forth an improvement in the +distributed simulation community. + + + + + +Page +46 + +Chapter 3 +Executable Modeling Formalisms + +In this chapter two popular model description formalisms are discussed namely Petri Nets and +Communicating Sequential Processes (CSP)17, which are normally used for modeling, execution (or +simulation) and verification of concurrent systems. This chapter provides an introduction, theory, +properties, classification, modeling methods and analysis techniques of PN and CSP. PN and CSP +are both considered as a part of solution domain in this thesis, because of their impressive +accumulation of knowledge in concurrency modeling and analysis techniques. These aspects are +imported in this thesis and used for composability verification. + +PN and CSP formalisms are relatives since they are used to model same class of +systems called concurrent systems. Unlike other systems such as transitions systems +or automata, the formalisms of concurrent systems are strongly based on +concurrency theory. One of the major contributors of concurrency theory are: Carl +Adam Petri who initiated concept of interacting sequential processes and introduced +Petri Nets; C. A. R. Hoare who focused on developing programming language (CSP) +for concurrent systems; and Robin Milner who introduced Calculus of +Communicating System (CCS) and π-Calculus. These are variants of approaches for +formally modeling concurrent systems and are the member of the family of +mathematical theories of concurrency known as process algebras, or process calculi. +CSP is also a member of process algebra. The main difference between PN and CSP +is that the former are based on graphs, while the latter are based on a textual +description. However both offer strong formal semantics for modeling executable +systems and share a broad pool of knowledge of theoretical principles and practical +techniques for the analysis and verification of models of complex behavior. In this +thesis, we propose using these two formalisms to model executable form of +components and study their composability. +3.1 +Petri Nets +PN were introduced by Carl Adam Petri (and named after him) in 1962. They +provide an elegant and useful graphical and mathematical formalism [24]. With PN +the main idea is to represent states of subsystems separately. In this way, the +distributed activities of a system can be represented very effectively. PN are widely +used for modeling and control in a variety of the sorts of systems. Particularly, in +Discrete Event Dynamic Systems (DEDS) 18 in which many properties such as +synchronization, sequentiality (producer-consumer problem), concurrency and + +17 The "Sequential" word of the CSP name is now something of a misnomer, since modern CSP +allows component processes to be defined both as sequential processes, and parallel [Wikipedia]. +18 Examples of DEDS are air traffic control systems; automated manufacturing systems; computer +and communication networks; embedded and networked systems; and software systems etc. The +activity in these systems is governed by operational rules designed by humans and their dynamics is +often driven by asynchronous occurrences of discrete events [67]. + + +Chapter 3 + +Executable Modeling Formalisms + +Page +47 + +conflict (mutual exclusion) concurrency, and choices can be well presented and +analyzed using PN [66]. Their structural and behavioral properties have been +successfully exploited for solving various problems of complex and dynamic systems. +Significant progress in these directions was made over three decades. Most essential +features of PN are the principles of locality, concurrency, graphical and algebraic +representation. They can be used not only for the specification and analysis of the +structural system design but also for design of the system behavior. [66], [67]. +PN present two interesting characteristics. Firstly, they make it possible to model and +visualize systems with complex behaviors including parallelism, concurrency, +synchronization and resource sharing. Secondly the properties of these nets, their +analysis and theorems have been extensively studied [68]. + +3.1.1 PN Definitions and Concept +In PN, two basic elements of modeling are places and transitions. Events are +associated with transitions which occur when some conditions are satisfied. +Information related to these conditions is contained in places. There are two types +of places namely: Input places and Output places. Input places are associated with +the conditions required for this transition to occur. Output places are associated with +conditions that are affected by the occurrence of this transition [25]. Transitions, +places, and certain relationships between them define the basic components of a +Petri net graph. A PN graph has two types of nodes, places and transitions, and +arcs connecting these. It is a bipartite graph in the sense that arcs cannot directly +connect nodes of the same type; rather, arcs connect place nodes to transition nodes +and transition nodes to place nodes [25]. +3.1.2 Petri net graph +Mathematically a PN is a 5 tuple: PN = 〈P, T, F, W, M0〉 where: + P is a finite set of places P = {p1, p2… pm} represented as oval shaped node in the +PN graph + T is a finite set of transitions T = {t1, t2… tn} represented as a line or a rectangular +shaped node in the graph + F is a flow function such that F ⊆ (P ×T)∪(T×P) →N 19 + W: F →N + where N∈{1, 2, 3…} is arc weight function. + M0: P→N is a function called the initial marking, where each element M0(p) has +N number of tokens20 initially in place p where N is a set of non-negative integers. + For each transition t∈T a set of input places denoted as •t are those places which +are connected to t through incoming arcs: + Similarly, for each transition t∈T a set of output places denoted as t• are those +places to which t is connected through outgoing arcs: + +19Such that P∩T= ∅ (i.e. P&T are disjunctive sets) and P ∪ T≠∅ (i.e. neither P nor T are isolated). +Also an arc can be connected from place to transition (input arc) or from transition to place (output +arc) but not to the node of same type. +20 In classical PN, tokens are represented as black dots. They are assigned to, and can be thought to +reside in, the places of a Petri net. +•t = {pi | (pi, t) ∈F} +(3.1) +t• = {pi | (t, pi)∈F} +(3.2) + +Chapter 3 + +Executable Modeling Formalisms + +Page +48 + +Definition: Marking +A marking is an assignment of tokens to the places of a PN. The number and +position of tokens defines a system state, and it may change when the tokens move. +This movement of tokens due to the firing of transitions causes the execution of a +PN [26]. The marking M can be defined as an n-vector, M = (m0, m1, m2 … mn), +where n = |P| (no. of places), and each mn ∈ N, i = 1...n. The vector M gives for +each place pi in a PN the number of tokens in that place. +Definition: PN State-space +The state of a PN model is defined by its marking. The firing of a transition +represents a change in the marking of the net. The state space of a PN with n places +is the set of all markings. State-space will be discussed in detail later in this chapter. +Definition: Enabling of a Transition +A transition t in a given PN is called enabled or fire-able by a marking Mi iff for each +input place p∈•t its marking is equal or greater than the weight of the arc from it to t, +(or t has no input place). Mathematically, a transition t is fire-able iff +Definition: Firing of a Transition +If a transition t is enabled, it may fire by removing W(p, t) number of tokens from +each input place p and putting W(t, p’) tokens in each output place p’, due to which +a new marking Mn+1 is generated. +Mn+1 is immediately reachable from Mn. Mn is reachable from M0 if firing a sequence +σ = t1, t2 … tk of enabled transitions leads M0 to Mn, written as M0 +σ→ Mn + + +Example21 + + +Consider the PN model PN = 〈P, T, F, W, M0〉 as shown in Figure 12 where: +P = {p1, p2, p3, p4, p5} and T = {t1, t2, t3, t4}, +Let W = 1 for all arcs +Initial marking M0 = [1 0 0 0 0] + +21 This example is inspired from [68] +∀p ∈ •t | M(p)≥W(p, t) ∨ •t=∅ +(3.3) +Mn+1 +𝑡→ Mn | M(p’) = M(p) - W(p, t) + W(t, p’) ∀p∈P +(3.4) + +Chapter 3 + +Executable Modeling Formalisms + +Page +49 + + + + + + + + + +Figure 12: Transition firing sequence (acquired from [68]) + +σ1: M0 = [1 0 0 0 0] +𝑇1 +�� M1 = [0 1 0 1 0] +𝑇2 +�� M2 [0 0 1 1 0] +𝑇3 +�� M4 [0 0 1 0 1] +𝑇4 +�� +M4 [1 0 0 0 0] + + +σ2: M0 = [1 0 0 0 0] +𝑇1 +�� M1 = [0 1 0 1 0] +𝑇3 +�� M3 [0 1 0 0 0] +𝑇2 +�� M4 [0 0 1 0 1] +𝑇4 +�� +M4 [1 0 0 0 0] + +In this example there are two possible transition firing sequences σ1= T1, T2, T3, T4 +and σ2 = T1, T3, T2, T4 +3.1.3 Properties of PN +Just like other models, PN are constructed from informal requirement specifications, +which is not a trivial task, and requires a great deal of modeling experience. If a +system being modeled is very complex, a PN model may differ considerably from its +original specification. A model can only be useful if it is logically correct with respect +to its specifications [69]. Different concepts of correctness exist. A system is said to +be correct when two aspects, namely the specification and the implementation, are +equivalent, or when the system satisfies a set of desirable properties. These desirable +properties allow the system designer to identify the correctness of the system [69]. +In PN literature a “basic kit of PN properties” is referred to a set of properties that +are related to frequently occurring problems or the key issues related to the logical +structure and behavior of complex systems, therefore they are classified into two +main categories namely (i) Structural Properties and (ii) Behavioral Properties. It is +important to note that fulfillment of these properties answer many questions of + +m1m2mChapter 3 + +Executable Modeling Formalisms + +Page +50 + +system correctness, therefore they contribute in the analysis of PN models. Some of +the selected behavioral PN properties are listed and briefly discussed informally22 +below. +Reachability +Reachability is a fundamental property for studying the dynamic behavior of a +system. In PN, reachability property is studied to analyze if a particular system state +(in terms of markings) can be reached or not. A marking Mn is said to be reachable +from an initial marking M0 if there exists a sequence of firings that transforms M0 to +Mn. In reachability analysis, a set of all possible firing sequences from M0 are +populated in a reachability graph R(N, M0) and the reachability problem for PN is the +problem of finding if a given marking Mn ∈ R(N, M0) [70]. +Boundedness +In classical systems theory, a state variable that is allowed to grow to infinity is +generally an indicator of instability in the system [25]. Therefore it is desirable that a +system holds boundedness. A PN is said to be bounded (or k-bounded) if the +number of tokens in each place does not exceed a finite number k for any marking +reachable from initial marking, i.e., M(p) ≤ k for every place p and every marking Mn +∈ R(N, M0) [70]. +Deadlock-free and Liveness +A PN is said to be deadlock-free if from any reachable marking at least one transition +can always occur. A stronger condition than deadlock-freeness is liveness. A +transition is live if it is potentially fire-able in all reachable markings. In other words, +a transition is live if it never loses the possibility of firing. A net is live if all +transitions are live [69]. +Reversibility +A PN is said to be reversible if, from each marking Mn, the initial marking M0 is +reachable. Thus, in a reversible net one can always get back to the initial marking or +state [70]. +Fairness +Fairness has different meanings and understanding in literature. In specific terms, +fairness means to give some contenders an equal number of chances, such that no +one proceeds for more than “k-times” without letting the others to take their turn. In +PN s, two transitions tl and t2 are said to be in a bounded-fair (or B-fair) relation if +the maximum number of times that either one can fire while the other is not firing is +bounded. A PN is said to be a B-fair net if every pair of transitions in the net are in a +B-fair relation [70]. +Mutual Exclusion +This property captures constraints such as the impossibility of a simultaneous access +of a critical section (resource) by two or more processes. In PN, mutual exclusion +can be defined in terms of places or transitions. Two places p and q are mutually + +22 In literature these properties are discussed in detail with mathematical definitions and proofs [70]. In +this chapter they are only discussed for background concept. Some of these properties are used later +in this thesis. + +Chapter 3 + +Executable Modeling Formalisms + +Page +51 + +exclusive in a PN if their token counts cannot be both positive in the same marking, +i.e., ∀m ∈ RS m(p)·m(q) = 0. Similarly, two transitions in a PN are mutually +exclusive if they cannot be both enabled in any marking [71]. + +Some of the important structural properties of PN are defined below: +Controllability: +A PN is said to be completely controllable if any marking is reachable from any other +marking [70]. +Conservativeness: +A PN N is said to be (partially) conservative if there exists a positive integer y(p) for +every place p such that the weighted sum of tokens, is a constant, for every marking. +Given a PN model, we are often required to ensure conservation with respect to +certain weights representing the fact that resources are not lost or gained. +Persistence +A PN is said to be persistent if, for any two enabled transitions, the firing of one +transition will not disable the other. A transition in a persistent net, once it is enabled, +will stay enabled until it fires [25]. + +3.1.4 PN Analysis +The major strength of PN is the modeling of systems that exhibit concurrency. +However modeling by itself is of little use. It is necessary to be able to analyze the +modeled system. The analysis leads to important insights into the structure and +behavior of the modeled system [26]. There are many techniques available for the +analysis of PN models and can be employed for verification depending upon the +nature of the model. Each technique may also have different variants. In this section +two of the most commonly used techniques for the analysis of a PN model are +discussed: + +Figure 13: Petri Net Analysis Techniques + +These techniques provide solutions and mechanism for verifying the properties +mentioned in the previous section. In this thesis, these techniques are selected for +composability verification and their application is shown in Part II with suitable +examples. In this chapter, they are briefly explained and discussed, with their +advantages and limitations. +Petri Net +Analysis Techniques +Algebraic Method +State-Space +Analysis + +Chapter 3 + +Executable Modeling Formalisms + +Page +52 + +Algebraic Method +This technique is also called Linear-Algebraic Technique (or Linear Invariant due to +its abundant use of invariants). In the framework of using algebraic techniques for +reasoning about PN, solving a PN problem is reduced to finding a solution for an +algebraic equation associated with the PN [24]. Due to the nature of this technique, +the method is in general efficient (and in most cases, polynomial in the size of the +PN). The dynamic behavior of PN models can be described by algebraic equations. +In order to work with Algebraic method, the following basic concepts are applied: +Matrix Definitional Form (MDF) +A PN model has a Matrix Definitional Form (MDF) that consists of three n×m2F23 +matrices: +(i) Output matrix A+ + +i.e., if pj is connected to the output of ti then 𝒂𝒊𝒋 ++ is equal to the weight of output arc; +0 otherwise [70]. + +(ii) Input matrix A- +i.e., if pj is connected to the input of ti then 𝒂𝒊𝒋 +− is equal to the weight of output arc; 0 +otherwise [70]. + +(iii) Incidence matrix A +In the incidence matrix A, each entry aij represents the change of tokens in place j +when transition i fires once [70]. + +Firing Count Vector +A marking Mk is an m × 1 column vector. The jth entry of Mk denotes the number of +tokens in place j after the kth firing in some firing sequence. An n×1 column vector X +of nonnegative integers is called firing count vector, where the ith entry of X denotes +the number of times transition t must be fired to transform Mk-1 to Mk [70]. +State Equation +State equation for a PN is written as: +Where: +Mk-1 is the current marking + +23 n×m refers n transitions and m places. +A+ = [𝒂𝒊𝒋 ++] n×m, where 𝒂𝒊𝒋 ++ = w(ti, pj); if pj ∈ ti•, and i ∈ n; j ∈ m +(3.5) +A- = [𝒂𝒊𝒋 +−] n×m, where 𝒂𝒊𝒋 +− = w( pj , ti); if pj ∈•ti +(3.6) +A = A+ - A- , where [𝒂𝒊𝒋] = [𝒂𝒊𝒋 ++ − 𝒂𝒊𝒋 +−] +(3.7) +Mk = Mk-1 + A.X +(3.7) + +Chapter 3 + +Executable Modeling Formalisms + +Page +53 + +Mk is the new marking +A is incidence matrix +X is the firing count vector +Example +An example of a Producer-Consumer PN model is shown in Figure 14. + +Figure 14: Producer Consumer Example + +Using equation 3.7 the incidence matrix A of this model is calculated as follows: + +A+ T1 +T2 +T3 +T4 +P1 +1 +0 +0 +0 +P2 +0 +1 +0 +0 +P3 +0 +1 +0 +0 +P4 +0 +0 +0 +1 +P5 +0 +0 +1 +0 + + + + + +- + +A- +T1 +T2 +T3 +T4 +P1 0 +1 +0 +0 +P2 1 +0 +0 +0 +P3 0 +0 +1 +0 +P4 0 +0 +1 +0 +P5 0 +0 +0 +1 + + + + + += + +A +T1 +T2 +T3 +T4 +P1 +1 +-1 +0 +0 +P2 +-1 +1 +0 +0 +P3 +0 +1 +-1 +0 +P4 +0 +0 +-1 +1 +P5 +0 +0 +1 +-1 + + + + + +Table 4: Incidence Martic A + + +In this model, the initial marking is [1 0 0 1 0]. With a firing sequence σ = t2, t1, t2 +the firing count vector will be [1 2 0 0]. Using the state equation, the marking Mx can +be generated as follows: + + +M0 +P1 1 +P2 0 +P3 0 +P4 1 +P5 0 ++ + +A +T1 +T2 +T3 +T4 +P1 +1 +-1 +0 +0 +P2 +-1 +1 +0 +0 +P3 +0 +1 +-1 +0 +P4 +0 +0 +-1 +1 +P5 +0 +0 +1 +-1 + + + + + +. + +X +T1 1 +T2 2 +T3 0 +T4 0 + + + += + +Mx +P1 0 +P2 1 +P3 2 +P4 1 +P5 0 +Table 5: State equation + + + +Figure 15 graphically illustrates, how a firing sequence of σ = t2, t1, t2 can lead M0 to +M3. Green color highlights the firing of a transition. It can be noted that the marking +M3 in the lower right corner matches the marking generated by matrix state-equation +in Table 5. + +P4 +P3 +T +2. +T4 +P2 +P5Chapter 3 + +Executable Modeling Formalisms + +Page +54 + + +Figure 15: M0 to M3 throguh firing sequece σ = t2, t1, t2 +State equation alone can only help to algebraically compute a future marking. In +order to analyze the model algebraically, some more concepts are used, such as PN +Invariants. + +PN Invariants +Occurrences of transitions transform the token distribution of a net, but they +often respect some global properties of markings, regarded as Linear Invariant +Laws. Invariants are very useful for analyzing structural and behavioral properties +of PN. From an initial marking, the marking of a PN can evolve by the firing of +transitions (and if there is no deadlock) the number of firings is unlimited. +However, not just any marking can be reached, all the reachable markings have +some properties in common; a property which does not vary when the transitions +are fired is said to be invariant. Similarly, not just any transition sequence can be +fired; some invariant properties are common to the possible firing sequences. +Hence, invariants enable certain properties of the reachable markings and firable +transitions to be characterized, irrespective of the evolution. +Figure 16 illustrates a PN model of different seasons in a year. It can be seen that, +regardless of the change of seasons, there will always be one and only one token +for all 4 places. Thus at all times, M(p1) + M(p2) + M(p3) + M(p4) = 1. This +invariant property has an obvious meaning that at all time there is one and only +one season [68]. It also means that the net is structurally bounded. + +Figure 16: Seasons in a year (acquired from [68]) + + +Spring +T1 +Summer +P +J +T4 +T3 +Winter +AutumnTChapter 3 + +Executable Modeling Formalisms + +Page +55 + + +There are two important types of invariants of PN: +P-Invariant +Place Invariants formalize invariant properties regarding places in PN, e.g., if in a set +of places the sum of tokens remains unchanged independently of any firing, then this +set can define a place invariant. They are useful to evaluate structural properties of +PN. In simple words, a place belonging to a P-invariant is bounded [24], [70]. +A P-invariant exists in a PN if +Where y is an m × 1 column vector of integers such that ∃ y = (y1, y2 … yn) > 0 i.e., +has at least one positive non-zero entry [71]. It means the firing of any transition does +not change the weighted sum of tokens in the PN. More generally, a vector y is called +P-Invariant if +A . y = 0 +It is easy to see that if there is a P-invariant, for all p ∈ P, then the PN is guaranteed +to be structurally bounded. Hence, place invariants can be used for reasoning about +structural boundedness [24]. P-invariant is a P-semi-flow if every element of it is +non-negative [67]. +T-Invariants +Transition Invariants on the other hand formalize properties regarding transition +firing sequences applicable to a PN. They are useful to evaluate behavioral properties +such as liveliness and fairness [24], [70]. +A n × 1 firing count vector X, is called a T-Invariant if +A . X = 0 +i.e., firing each transition the number of times specified in X, brings the PN back to +its initial marking M0 [24]. T-invariant is a T-semi-flow if every element of J is non- +negative [67]. +A T-Invariant X is a minimal T-invariant, if there is no other T-invariant X′ such that +x′i ≤ xi for all i∈T. There can be multiple T-invariants for a PN. A minimal T- +Invariant is called the Reproduction vector of the net. +The intrinsic difference between P- and T-invariants are the facts that all places in a +PN if covered by P-invariants is a sufficient condition for boundedness, whereas the +existence of T- invariants is only a necessary condition for a PN model to be able to +return to a starting state, because there is no guarantee that a transition sequence +with transition count vector equal to the T- invariants can actually be fired [71]. +Advantages and Disadvantages +The advantage of algebraic analysis is that the net structure is much less than the +number of reachable markings and therefore there is no risk of state-space explosion. +Various properties of PN consequently can be proven using linear algebraic +techniques. However the weakness of this method is that it only entertains limited set +of properties and provides only sufficient or necessary conditions. Also this method +� 𝑚 . 𝑦𝑝 = � 𝑚0 . 𝑦𝑝 +𝑛 +𝑝=1 + +𝑛 +𝑝=1 + ∀m ∈ R(N, m0) +(3.8) + +Chapter 3 + +Executable Modeling Formalisms + +Page +56 + +involves complex underlying mathematical theorems, each one different for different +property verification and thus cannot be generalized for automated reasoning. +State-Space Analysis +State space analysis is one of the most prominent approaches for conducting formal +analysis and verification. In contrast to algebraic techniques, it is relatively simpler +approach for analyzing the behavior of a model. The basic idea in this approach is to +calculate all possible system states and the events which cause the change of states +and represent them in a directed graph. When the graph is completely constructed, +different search techniques can be applied to analyze the model. +In PN terms, this method is also commonly known as Reachability graph analysis. +The state-space analysis of a PN model is performed by exhaustively generating all +the reachable markings from a given initial marking, and then reasoning about the +PN properties of the model by examining the structure of the reachability graph. +The reachability graph consists of vertices which correspond to reachable markings +and of arcs corresponding to firing of transitions resulting in the passing from one +marking to another. A simple example of reachability graph is shown in Figure 17. + +Figure 17: (a) PN Model (b) Reachability Graph (acquired from [68]) + +In some cases, the construction of reachability graphs becomes infinite if the PN or +some of its parts are repetitive and the net is unbounded, or in other words the PN +has infinite number of reachable markings. Therefore instead of keep on +constructing nodes of the graph infinitely, an alternative technique is used, in which a +finite graph is constructed by abstracting out certain details and inserting the symbol +ω (the symbol of “infinity”) to representing the marking of an unbounded place. This +is called cover-ability graph. The coverability graph of the Producer-Consumer PN +model is shown in Figure 18 + +Figure 18: Producer Consumer PN Model and its Coverability Graph + +It can be seen that the markings in which place P3 is unbounded contain ω symbols. + +P +0 +2 +[]}[] +m2 +mo +m1 +0 +1 +m3 +(a) +(b)P4 +P3 +T +2. +T4 +P2 +P5(1,0,0,1,0) +t1 +(0,1,0,1,0) +t3 +t4 +ti +(0,1,1,1,0) +(0,1,0,0,1) +(1,0,0,0,1) +t1 +t3 +t2 +(1,0,0,1,0) +(1,0,0,0,1) +(0,1,0,0,1) +t4 +t, +t2 +ti +(0,1,0,1,0)Chapter 3 + +Executable Modeling Formalisms + +Page +57 + +A constructed state space can help in answering a large set of analytical questions +concerning the structure and behavior of the model such as verifying deadlock- +freedom, absence of live-locks; presence of liveness, the possibility of being able to +reach good states, and impossibility of reaching bad states and the guarantee of +fulfilling the objectives. Following are some examples of how state space analysis +help in model verification: +Boundedness +The problem of boundedness is easily solved using a coverability tree with an +assumption that a PN is bounded if the symbol ω never appears in its coverability +tree. Since ω represents an infinite number of tokens in some place, therefore its +absence can guarantee that the PN is structurally bounded [25]. +Deadlock freedom +A deadlock freedom problem is solved, if there is no node in the graph (which is not +a final node), and yet it does not have an outgoing arc meaning there is no further +enabled transition. Existence or one or more such nodes shows that the model has +possibility of deadlock and can also help to find out the exact cause of it. +Live lock freedom +Similarly, a live-lock can be detected using state space analysis. For concurrent +systems, a process is tasked to perform some particular actions [72]. These actions +are normally intended to make progress and are called progress actions. A live lock is +detected, if there exists a cycle within the reachability graph, in which no progress +action is being executed. +State Reachability +Reachability of good states (or bad states) can be guaranteed using state space +analysis. A state is reachable if there is a valid firing sequence that leads to that state +from the initial marking. (In graph, there exists a path from the initial node to the +corresponding node of the desired state). There could be multiple paths in a graph +that reach the desired state. A shortest path analysis can be useful to analyze the +minimum number of steps required to reach that state. +For details on how state space analysis are conduced, interested readers are +recommended to refer to a very informative step by step tutorial on PN state space +analysis [73]. + +Advantages and Disadvantages +The main advantage of state space method is that it is a way to explore all the +possible states of the system. Also it provides counter examples as to why an +expected property does not hold. Furthermore, the automatic calculation and +generation of state-space provides an ease of use, due to the fact that the computer +tool hides a large portion of the underlying complex mathematics from the user, who +is only required to formulate the property which is to be investigated and a suitable +query function to evaluate it [74]. + + + +Chapter 3 + +Executable Modeling Formalisms + +Page +58 + +The main disadvantage of using state spaces is the state explosion problem. The +construction of the reachability graph is very expensive and intensive from a +computational point of view. This is because the size of the state space may grow +exponentially with respect to the size of the PN model (measured, for example, by +the number of places). Even relatively small systems may have an astronomical or +infinite number of reachable states. This problem escalates severely, when the models +includes time. A lot of effort has been invested in the development of reduction +methods to alleviate this problem. Reduction methods represent the state space in a +compact form. The reduction should not affect the properties of the system and they +should be preserved and can still be derived from the reduced state space. However, +due to the complexity and diversity in verification, there is no single reduction +method which works well in all situations. Therefore the choice of a reduction +method completely depends on the nature of the system being verified [74]. Some of +the important reduction methods are Sweep line method [75], Hash Compaction +Method [76], Symmetry Method [77] and Equivalence Method [78]. +In this thesis, we propose another reduction method which suits our need +(Composability verification) and can help to alleviate the state explosion problem, if +the model under consideration becomes large and resource intensive. + +3.1.5 PN Classes +The computational power of basic or classical PN is weak as it has been shown that +PN are not as expressive as Turing machines, making them inadequate for modeling +certain real-world systems. To overcome this shortcoming, a number of extended +PN have been introduced to enhance the expressive capabilities of PN. There are +different ways to classify PN. In structural sense, they can be classified into three +main categories [79]: + +Level-1 PN: are characterized by 'Boolean tokens', i.e. places are marked with at most +one unstructured token. + +Level-2 PN: are characterized by 'Integer tokens', i.e. places are marked with several +unstructured tokens - they represent counters. + +Level-3 PN: are characterized by high-level tokens, i.e. places are marked with +structured tokens where information is attached to them. + +There are many extensions of PN formalism. In this section we only discuss some of +the extensions of PN, which are used in this thesis. +Colored Petri Nets (CPN) +CPN is a level-3 extension of PN, in which places are marked with structures token +representing data. CPN is a graphical language for constructing models of concurrent +systems and analyzing their properties. CPN is a general purpose discrete event +language which combines the capabilities of PN, as a foundation of the graphical +notation and a programming language (CPN ML), which is based on Standard ML +[80] functional programming language, that provides the primitives for the definition +of data types and for specifying data manipulation routines [78]. + +Chapter 3 + +Executable Modeling Formalisms + +Page +59 + +CPN is formally defined by the tuple [81]: +CPN = (P, T, A, Σ, V, C, G, E, I) where: +P is a finite set of places +T is a finite set of transitions such that: P ∩ T = ∅ +A ⊆ P×T ∪T ×P is a set of directed arcs. +Σ is a finite set of non-empty color sets. +V is a finite set of typed variables such that: Type[v] ∈ Σ for all variables v ∈ V +C: P→Σ is a color set function that assigns a color set to each place. +G: T → Expression is a guard function that assigns a guard to each transition t +E: A→ Expression is an arc expression function that assigns an arc expression to +each arc a +I: P → Expression is an initialization function that assigns an initialization +expression to each place p. +Tokens of an ordinary PN have no types. With CPN it is possible to define token +using data types and complex data manipulation i.e., each token has attached a data +value called the token color. The token colors can be investigated and modified by +the occurring transitions [81]. +“CPN Tools” is a software package for the editing, simulation, state space analysis, +and performance analysis of CPN models [82]. The tool acts as an integrated +development environment (IDE) for the construction of CPN models. It provides a +canvas for creating PN graphs, offers features for writing CPN ML code with a +facility of incremental syntax checking. It also comes along with a bundled simulator +that efficiently handles the execution of untimed and timed nets. The most important +feature of CPN tool from our point of view is the generation and analysis of state +spaces. The analysis of state space includes various built-in state-space querying +functions, and support for creating analysis report which altogether greatly +contributes to the verification process. For further details of CPN formalism and its +application [78], [81] are referred. + +Figure 19: A CPN Model + +Figure 19 shows a basic example of a CPN model. The nodes A and B in oval shape +represent places. The place is initialized with three tokens of String type. The +rectangular shaped node represents transition. An input arc connects Place A with +the transition with an arc variable v of type String (to carry tokens of the same type). + +1'"Token1"++ +1'"Token2"++ +1'"Token3" +[v="Token2"] +V +Trans +A +B +STRING +STRING1'"Token1"++ +"Token3" +[v="Token2"] +1. +1'"Token2"++ +V +Trans +V +A +B +STRING +STRINGChapter 3 + +Executable Modeling Formalisms + +Page +60 + +Similarly an output arc connects transition to place B. The transition has a guard +expression that checks the token value. If the expression is true only then the +transition can be fired. The second part of the Figure 19 shows the result of the +firing of transition, i.e., the token “Token2” being deposited to place B. +Hierarchical CPN +CPN model can be organized as a set of modules; where modules can be seen as +black boxes which make it possible to work at different abstraction levels, +concentrating on one at a time. +Substitute Transitions +CPN tools offer facility to construct hierarchical CPN models. In hierarchical nets a +transition can represent an entire piece of net structure. Such a transition is called +substitution transition [82]. +Sub-page /Super-page +A page that contains a substitution transition is called a super-page. When a CP-net +uses a substitution transition the logic that the transition represents is kept on a page +called a subpage [82]. +Ports and sockets +Super-pages and sub-pages are connected by ports and sockets. A socket is a place in +the super-page that has at least one arc between a substitution transition and a +socket. A port on the other hand is a place in a subpage, marked with one of the +port-type tags: (i) In-Port (ii) Out-Port or (iii) In/Out-Port. It is bound with a socket +in the main page using Port & socket assignment. This relationship is used to define how +a subpage should be connected with the surroundings of its super-page. Some of the +assignment rules are as follows: +• A port with an In-tag must be assigned to a socket which is an input arc of the +substitution transition. +• An Out-tag indicates that the port must be related to a socket which is an output +arc, +• I/O-tag indicates that the socket must be both an input and output arc [82]. + + +Figure 20: Hierarchical Colored Petri Net + +Figure 20 presents an example of hierarchical CP-net. In the super-page (above), a +substitute transition Process is shown which represents a sub-module (below). A + +1""Token1"++ +1'"Token2"++ +1""Token3" +Process +B +STRING +Process +STRING +Stage1 +Stage2 +Stage3 +In +Out +STRING +STRING +Q +R +STRING +STRINGChapter 3 + +Executable Modeling Formalisms + +Page +61 + +process has three stages, and input and an output marked with In and Out ports +which are connected with A and B socket places in the super-page. +Timed Petri Nets +PN with timing dependencies can be classified according to the way of specifying +timing constraints. These constraints can be timing intervals or single numbers, or +elements of the net these constraints are associated with i.e., places, transitions or +arcs [83]. The next criterion is an interpretation of the timing constraints. When +associated with a transition, the constraint can be viewed as + +(i) Firing time +A transition consumes the input tokens when it becomes enabled, but does not +create the output tokens until the delay time associated with it has elapsed [83]. + +(ii) Holding time +When the transition fires, the actions of removing and creating tokens are performed +instantaneously, but the tokens created are not available to enable new transitions +until they have been in their output places for the time specified as the duration time +of the transition which created them [83]. + +(iii) Enabling time +A transition is forced to be enabled for a specified period of time before it can fire, +and tokens are removed and created in the same interval [83]. +Timed extensions are known also for high-level PN. One of them is timed Colored +Petri nets [78], in which the time concept is based on introducing a global clock used +to represent the model time. Tokens are equipped with time stamps, which describe +the earliest model times at which they can be used to fire a transition. Stamps are +modified according to expressions associated either with transitions, or with their +output arcs. Timing intervals can be interpreted as periods of non-activity of tokens, +and the transitions are fired according to the strong earliest firing rule [78]. +Formally a time PN is a tuple: + + +N = (P, T, F,m0,Eft, Lft) + +Where: +(P, T, F, m0) is a PN, +Eft = Earliest firing time for each t∈T +Lft = Latest firing time for each t∈T + + + + +Chapter 3 + +Executable Modeling Formalisms + +Page +62 + +3.2 Communicating Sequential Processes +CSP is the second formalism that is selected in this thesis for the modeling of +executable components. CSP is a language developed by Sir Charles Antony Richard +Hoare [84]. It aimed to be used for specification and reason about the concurrent +interaction of the system processes. The idea of CSP was conceived for the study of +concurrent processes using formal notation with required expressive power and +algebraic laws. The formal notation and the associated algebraic laws allow the +process models to be controlled and analyzed. They also enable formal reasoning +about their correctness and prove equivalences between the processes. They also +provide sufficient theoretical foundations for the development of the necessary tools +for these purposes. +3.2.1 Basic Concepts and Definitions +The main primitives of CSP formalism are (i) Processes (ii) Events and (iii) Algebraic +Operators. +Process +In CSP terms, a process is an independent, self-contained, modular description of an +entity and a basic unit to capture behavior. A process has particular interface, +captured by events that are used to interact with the environment which itself is a +process, called the universe of the system (Σ). The environment can be viewed as a +system of concurrently evolving processes. In any run a process performs a sequence +of events. A process has a name, list of parameters and expression which determines +its computational logic: +Process (parameters) = Expression +Expression is behavior of a process which can be described as an occurrence of an +event or the sequence of some events, known as a trace. A process can only perform +a finite number of events in any finite time, and thus all traces have finite length [85]. +Events +The ultimate unit in the behavior of a process is an event [85]. Events characterize +communications or interactions. Events are abstraction of observations. Each event +forms an interaction between the process and its environment. If the interaction does +not occur then the process is blocked. Event can be defined with no data or data +with typed values. A set of all events of a Process P are called Alphabet of P (αP). +The following line describes a simple vending machine which takes in a coin and +dispatches a coffee every time [84]. +VM() = insert-coin → coffee → VM(); +Where VM() is a process (with no parameters) and its expression contains a sequence +of atomic events: insert-coin and coffee and then the process is self-referenced +(recursion). Events can be written in compound form, i.e., with parameters as shown +in the following line: +VM() = insert-coin.10 → coffee.1 → VM(); +Also there could be data operations using statement blocks inside the event body: +VM() = insert-coin.10{Balance= Balance +10} → coffee.1{coffee--} → VM(); + +Chapter 3 + +Executable Modeling Formalisms + +Page +63 + +A statement block could be a complete sequential program contains assignment +statements, if-then-else clauses, for or while loops and math functions etc. +Input/output Channels +Processes may also communicate through channels. Channels are special type of +events, called communication events. Usually a communication on a channel results +from an input and output occurring in parallel. The input channel is represented by +‘?’ symbol whereas the output channel is represented by ‘!’ symbol. The channel +parameters can be send or received using the form: c ! x or c ? y +Algebraic operators +There are many different useful operators that are used to represent different notions +of process behavior and their compositions [85]. Some are described as follows: + Prefix a → P +The prefix operator combines an event and a process to produce a new process. + + Sequential composition P ; Q +It composes two processes P and Q in a sequential order i.e. the latter only starts +when the former terminates + + Deterministic Choice P � Q +The deterministic (or external) choice operator allows choosing between two +component processes, and allows the environment to resolve the choice +externally. + + Non-deterministic Choice P ⊓ Q +The nondeterministic (or internal) choice operator allows a choice between two +component processes, but does not allow the environment any control over +which one of the component processes will be selected. + + Conditional Choice if cond P else Q +The choice depends on the evaluation of a condition to choose between P or Q. + + Interleaving P ||| Q +The interleaving operator represents completely independent concurrent activity +between the processes P and Q i.e., without barrier synchronization. + + Parallel Composition P || Q +The parallel composition operator represents concurrent activity between P and Q +that requires barrier synchronization between the component processes. If an +event is in the alphabet of both P and Q, then it can only occur when both +processes are able to engage in that event. + + +Chapter 3 + +Executable Modeling Formalisms + +Page +64 + +3.2.2 CSP Analysis Techniques +Many techniques have been developed for the analysis of CSP models however +Model Checking has surpassed them all in many aspects and is commonly favored by +most of the CSP based modeling environments. In this section Model Checking +technique is briefly described. +Model Checking +“Model checking is an automated technique that, given a finite-state model of a system +and a formal property, systematically checks whether this property holds for that model +[86]” +The instigation and rapid advancements of model checking methods is one of the +towering achievements in the area of model based software verification, especially +with the advent of difficulties faced by the computing communities when the +struggle of sequential program verification was followed by even more daunting +exertion of verifying concurrent programs [87]. The growing difficulty in error +tracing of such programs is due to the increase of complexity of the system behavior +and the arbitrariness of large portion caused by emergent system states which cannot +be easily tacked by ordinary testing and debugging methods. +Starting from late 70’s Model checking and other similar algorithmic and automata +theoretic approaches are the result of efforts of notable researchers who pioneered +different standards that can be marked as a collective foundation of principles that +shaped the modern model checking techniques [87]. +Model checking became successful in different communities due to following +reasons: + Unlike traditional testing methods it is an exhaustive approach that provides an +in-depth analysis of a system model to certify absence of bugs (instead of just +finding few of them through debugging). + Model +checking +returns +answers +— +either +successful +outcomes +or +counterexamples showing the exact trace of errors and their causes + Improvements in model checking techniques have effectively alleviated the risk of +state-space explosion problem [87]. + Model Checking has a sound and mathematical underpinning and is based on +theory of graph algorithms, data-structures, and logic [86]. + Model checking support formalism both for the specification of the input models +(such as FSM, PN, CSP or others) and the specification of system properties +being verified (which are mostly in the form of LTL or CTL or their extensions). +Therefore any 3rd party community can use a model checker as a black box +without knowing the insights and complexity of the process. +Beside its various strengths some of the weaknesses include: + Most model checkers require the models to have reduced details using compact +and less expressive states and without specifying enumerations due to the risk of +state-explosion. Therefore the reduction in the system expressiveness may cost +extra effort and possibly lead to overlooking important features and getting +inadequate verification results. + Despite the development of several very effective methods and improved data- +structures to combat the state-explosion problem, models of realistic systems may +still be too large to verify. + + +Chapter 3 + +Executable Modeling Formalisms + +Page +65 + +Types of Model Checking +Model checking approaches are classified into two types: (i) Explicit and (ii) Symbolic +based on how they enumerate states [88]. +Explicit model checking techniques store the explored states in a hash table, +where each entry corresponds to a single system state. For just a few hundred states +the nodes in the state space graph becomes as large as ~1011 [88]. On the other hand +explicit model checkers support state-enumeration that gives detailed expressiveness +of the system states. +Symbolic model checking techniques store sets of explored states symbolically by +using efficient data structures represented by canonical structures such as Binary +Decision Diagrams (BDDs) [89], and traverse the state-space symbolically by +exploring a set of states in a single step. The use of these BDD-based methods has +greatly improved scalability in comparison to explicit state enumeration techniques, +yet they have performance degradation because BDDs constructed in the course of +symbolic traversal grow extremely large, and BDD size is critically dependent on +variable ordering. This causes a newer trend of research towards separating Boolean +reasoning and representation. Hence Boolean Satisfiability (SAT) [90] has been +studied and explored for Boolean reasoning and efficient semi-canonical +representations which results in the development of SAT-solvers which are efficient +and have compact representation compared to BDDs. SAT, together with efficient +representation, have become a viable alternative to BDDs for model checking +applications [88]. +Bounded model Checking is a model checking approach where the number of +steps in forward traversal of the state space are bounded and checks whether a +property violation can occur in k or fewer steps [88]. The approach reports either +“violation found” or “no violation possible within the bounded depth (i.e., k steps), +which can be incremented to look ahead for possible violation of the property. This +method is promising because it does not cause state-space explosion or at least let +the user control its possibility. +In this thesis all three model checking approaches are accompanied by the tools +selected for composability verification of CSP based models. + +3.2.3 Temporal Logics +Logic provides formal languages containing formulas for the representation of the +statements and their logical reasoning within some area of application [91]. Generally, +a logical language is given by an alphabet of different symbols and the definition of +the set of formulas which are strings over the alphabet [91]. In logic, the term +temporal logic is used for representing and reasoning about propositions qualified in +terms of time. Temporal logic has found an important application in formal +verification, where it is used to specify system requirements. Linear Temporal Logic +(LTL) and Computational Tree Logic (CTL) are its two main variants. LTL formulas +are interpreted on computation paths. Let A and B be atomic predicates and ¬ , ∧ , +∨ , ↔ and True be the operators of classical logic, whereas +, +, + and U are +the operators of linear temporal logic called Next, Always and Eventually and Until. + + + +Chapter 3 + +Executable Modeling Formalisms + +Page +66 + +The intuitive meanings of some LTL statements are: +• ¬ A : A does not hold +• A ∧ B : Both A & B hold +• +A: A holds at the next state +• +A: A holds in all states +• +A: A will eventually hold +• A U B: A will hold until B holds. + +In CTL there are additional path quantifiers ‘∃’ and ‘∀’ denoting ‘there exists a path’ +and ‘for all paths’, respectively. CTL formulas are interpreted on computation trees. +With respect to a tree the intuitive meanings of the formulas mentioned above are: +• ∃ +A: There exists a path in which A holds at the next state +• ∀ +A: For all paths A always holds in all states + +3.2.4 Time CSP +CSP has been in evolution for decades. One of the major extensions of CSP is +devised with timing primitives, denoted as TCSP, to support time sensitive process +modeling [92]. In TCSP, each of the untimed CSP operators is interpreted in a timed +context, and two primitive timing operators are added: (i) timeout and (ii) interrupt, +with a Newtonian Time assumption (i.e., that all the processes have a single global +clock with same progress rate). + Timeout P ⊳d Q +Timeout operator can be used to introduce delay in the processes. + Timed Interrupt P △e Q +Interrupt is used if the process is permitted to run for no more than a particular +length of time. + +The concept of TCSP is used later in this thesis to model and perform verification of +real-time systems. + +3.2.5 Probabilistic Systems +Systems that exhibit probabilistic aspects essential for designing randomized +algorithms, modeling unreliable or unpredictable behavior or specifying model-based +performance evaluation are called probabilistic systems [86]. In order to model +random phenomena in such systems, transition systems are enriched with +probabilities. Probabilistic systems can be specified in different ways. Two very +popular ways are: (i) Markov chains (MC) and (ii) Markov decision processes (MPD). +In this thesis, we considered MPDs as specification formalism for probabilistic +systems because they support both nondeterministic and probabilistic choices and +unlike MC they can model the interleaving behavior of the concurrent processes in +an adequate manner [86]. + + + +Chapter 3 + +Executable Modeling Formalisms + +Page +67 + +A Markov Decision Process is a tuple 〈S, Act, P, linit, AP, L 〉 [86]. +Where: +S = Set of states +Act = set of actions +P: S × Act × S → [0, 1] is the transition probability function such that for all states +s∈S and actions α∈ Act: +� P(s, α, s′)∈{0,1} +s′∈S + + +linit: S → [0, 1] is the initial distribution such that: +� 𝑙𝑖𝑛𝑖𝑡(s) = 1 +s′∈S + +AP is a set of atomic propositions +L: S → 2AP is a labeling function +The concept of MDP is used later in this thesis to model and perform verification of +probabilistic systems. +3.2.6 CSP Implementation Tools +There are a variety of implementation support tools and languages for developing +CSP models such as CTJ (Java), CSP++ (C++), CSP.NET, PyCSP (Python), JCSP +(Java) and CSP# (C-Sharp) [93]. + +Similarly various techniques exist for CSP analysis such as: +• FDR2 model checker is developed by Formal Systems Europe Ltd [94]. +• ARC, the Adelaide Refinement Checker, is a CSP verification tool [95]. +• ProB is an animator and model-checker and support refinement checking and +LTL model-checking of CSP [96]. +• PAT is a model checker, simulator and refinement checker for CSP [97]. + +In this thesis we selected PAT model checker because of its user friendly +environment for modeling CSP models, fast simulator and model checker and above +all its support for CSP extensions such as Real-Time CSP, Probabilistic CSP and +Real-time Probabilistic CSP. +3.2.7 Process Analysis Toolkit (PAT) +PAT is an established tool developed by National University of Singapore in +concurrent system verification and has been used in real-world industrial projects. +PAT is designed to develop, compose, simulate and analyze event-based system +models using an extension of CSP formalism called CSP-Sharp (or CSP#24). This +extension comprises of some additions such as shared variables and asynchronous +message passing. Moreover it supports using complex data types (such as Set, Queue, +and Stacks) and functions from external libraries written in C# therefore allow to + +24It uses C# like syntax for the specification of CSP processes + +Chapter 3 + +Executable Modeling Formalisms + +Page +68 + +model complex process behaviors. PAT also supports automated refinement +checking and model checking of LTL extended with events [98]. +PAT is an appropriate modeling, composition, simulation, verification and reasoning +framework of CSP based process models. These models can be of different nature +such as concurrent, real-time and probabilistic systems. The main strength of this +framework is that it implements various model checking techniques and provide +verification support for different properties. That includes general system properties +such as deadlock-freeness, divergence-freeness or reachability and user specific +properties defined in terms of LTL assertions. It also includes refinement checking, +model checking of real-time and probabilistic systems. To achieve good +performance, advanced optimization techniques are also implemented in PAT, such +as partial order reduction using BDD, symmetry reduction and parallel model +checking [97]. + +3.3 Summary +In this chapter we have discussed two executable modeling formalisms namely: (i) +Petri Nets and (ii) Communicating Sequential Processes and their associated +concepts, tools and techniques. Both formalisms are used in this thesis for describing +executable models. The conceptual background of both PN and CSP is required to +understand the approach presented later in this thesis. + + + + +Page +69 + +Chapter 4 +Verification and Analysis + +Verification and Validation are important aspects of any software engineering expedition. They are +independent procedures with different characteristics that are used to check that a program, service, +model or a system is correct, meets requirements specifications and that it fulfills its intended purpose. +They are critical constituents for achieving the necessary levels of quality assurance, and are essential +prerequisites for a credible and reliable use of the delivered product. The main focus of this chapter is +on Verification and its different analysis techniques. The aim of this chapter is to outline basic +concepts, principles, issues and different approaches of software verification. This chapter can be +viewed as a manual to understand the verification process being proposed later in this thesis. + +The correctness of a program is a relative concept, meaning that the program is +doing no less than prescribed by its specification [99]. Verification, Validation and +Testing (VVT) in combination is a broader and more complex discipline of system +engineering. In M&S the combination of Verification, Validation and Accreditation +(VVA) is generally referred where “Accreditation” is the formal certification that a +model or simulation is acceptable to be used for a specific purpose [100]. +Nevertheless the goal is to assure the quality of the product and the impetus behind +this assurance is intensified when the systems are highly critical, either because they +are very expensive to produce, such as land rovers investigating outer planets, or +because human lives depend on them, such as computers controlling airplanes and +cars, and life assisting real-time systems in hospitals [101]. These systems need to be +correct, because their failure can lead to loss of human lives or enormous economic +losses. Moreover correct systems can be used in a wrong manner which can also +results in a failure. This is a general problem when systems are designed in a modular +fashion, and are implemented with assumptions on a new environment. A similar +case caused a drastic failure at the launch of Ariane-5 expendable rocket launch +system, because a software module was reused from Ariane-3 with certain +assumptions that did not hold for Ariane-5 which self-destructed just because one +single variable of 64 bit floating point value was erroneously converted to a 16 bit +integer causing the system to crash [102]. So for critical systems it is worth the effort +to have a guarantee that they are correct and have no errors. +Verification and validation aim to increase the credibility of models and simulation +results by providing evidence and indication of correctness and suitability. +Verification in particular deals with the correctness of the model perceived from a +real-system, whereas validation deals with the suitability or fitness of the model with +respect to its real-system. Testing on the other hand aims to uncover incorrectness in +the system. In the following section, definitions and concepts of these inter-related +terms are discussed. + +Chapter 4 + +Verification and Analysis + +Page +70 + +4.1 +Some Basic Concepts in Modeling and Simulation +The first applied technical discipline that began to struggle with the methodology and +terminology of V&V was the operations research (OR) community, also referred to +as systems analysis or modeling and simulation (M&S) community [103]. + +Verification +According to the Department of Defense (DoD) Defense Modeling and Simulation +Office verification is defined: as a process of determining that a model implementation +accurately represents the developer’s conceptual description and specification [104]. + +In general verification refers to an evaluation process that determines whether a +product is consistent with its specifications or compliant with applicable regulations. +In M&S, verification is typically defined as the process of determining if a model is +consistent with its specification [29]. Verification deals with the model correctness +and is concerned with building the model right [28], i.e., a model which works +correctly and has no bugs. In principle, verification is concerned with the accuracy of +transforming the model’s requirements into a conceptual model and the conceptual +model into an executable model [29]. +For the sake of clarity the notions of correctness are defined as follows: +Correct: Free from error; accurate; in accordance with the fact, truth, or reason; Conforming to the +acknowledged standards of a method, routine or behavior [Oxford Dictionary] +Correctness +The degree to which a program, model or a system as a whole is free from defects in its specification, +design, and implementation [105] +The ability of a software product (or a simulation model) to perform the exact task, as defined by its +specification [106]. +We define a composed model to be correct if its structure and behavior matches its +specification. Correctness of a composed model is therefore relative to its +specifications. A software entity can exist in three apparent states of correctness +namely: (i) correct when it has been established correct against its specification; (ii) +defective when it has been established incorrect against its specification and (iii) +unknown when its correctness has not been established against a specification [107]. +In SE a software entity's specification is the sum of all its passing unit-tests [107]. We +define specification to be a set of goals (or objectives) and property constraints (see +1.3.2) that must be fulfilled by the composed model to be established as correct. + +Validation +According to the Department of Defense (DoD) Defense Modeling and Simulation +Office validation is defined: as a process of determining the degree to which a model is an +accurate representation of the real world from the perspective of intended uses of the model [104]. +Model validation on the contrary, deals with building the right model, i.e., the model +which is an accurate representation of the real system [28]. Model validation is usually +defined to mean “substantiation that a computerized model within its domain of + +Chapter 4 + +Verification and Analysis + +Page +71 + +applicability possesses a satisfactory range of accuracy consistent with the intended +application of the model [108]. +Testing +Model Testing on the other hand, ascertains whether inaccuracies or errors exist in +the model. The objective of testing is to show that the model (or system) is incorrect +(rather than proving that it is correct). Testing can only find errors but cannot +guarantee the absence of errors; therefore it is more of an ad-hoc and inexpensive +method of necessity, where the correctness is established merely on the fact that all +tests have passed, which is insufficient and unreliable. When the test fails, it succeeds +in revealing an error. When a test is passed, it fails to detect an error. If a number of +tests fail to detect a bug, they increase a confidence level in the system even if the +correctness cannot be guaranteed [99]. + +4.1.1 Verification and Validation in a Modeling Process +A Modeling Process has been defined by Sargent [108] as shown in Figure 21. In this +process Verification is referred to as an activity which ensures that the computer +programming and implementation of the conceptual model is correct. + +Figure 21: Modeling Process (acquired from [108]) + +Whereas validation is defined in three perspectives: +Conceptual model validity is defined as determining that the assumptions +underlying the conceptual model are correct and that the model representation of the +problem entity (simuland) is “reasonable” for its intended purpose. +Operational validity is defined as determining that the model’s output behavior has +sufficient accuracy for the model’s intended purpose. +Data validity is defined as ensuring that the data necessary for the model execution +and model experiments to solve the problem are adequate and correct [108]. + +Mike Petty in his article [29] also clarifies the difference between the two terms at +different stages of model evaluation process as illustrated in Figure 22. + +Problem +Entity +Conceptual +Operational +Validity +Model +Analysis +Validity +Experimentation +and +Modeling +Data +Validity +Computerized +Computer Programming +Conceptual +Model +Model +and Implementation +Computerized +Model +VerificationChapter 4 + +Verification and Analysis + +Page +72 + + +Figure 22: Modeling Process (acquired from [29]) + +A simuland is the real system that is to be simulated whereas a model is a +representation of the simuland, developed with its intended application in mind and +therefore captures only the necessary abstractions of the simuland and omit others. +The requirements are driven by the intended application. Conceptual models +document those aspects of the simuland including the structural and behavioral +aspects such as objects, entities, events, functions, environmental phenomena etc. +The executable model is the computer program that can be executed and is intended +to simulate the simuland as detailed in the conceptual model. Therefore the +conceptual model can be viewed as a design specification for the executable model. +The results are the output produced by a model during a simulation. +Figure 22 presents Verification and Validation as activities that compare one thing to +another. Verification compares the requirements with the conceptual model. In this +comparison, verification seeks to determine if the conceptual model satisfies the +given requirements. The second comparison is between the conceptual model and +the executable model, where the goal is to determine if the implemented executable +model is consistent with respect to the conceptual model. Validation compares the +simuland with the conceptual model to determine if the simuland has been accurately +described in the conceptual model. The second comparison is between the simuland +and the results which determine if the output of the simulation is sufficiently accurate +with respect to the actual behavior of the simuland [29]. + +Another comprehensive VV&T model is presented by Balci [28] in the form of a +simulation study life-cycle as shown in Figure 23. The phases are shown by oval +symbols. The dashed arrows describe the processes which relate the phases to each +other. The solid arrows refer to the credibility assessment stage. Every phase of the +life-cycle has an associated VV&T activity. Problem Formulation (or problem +definition) is the process of formulating a problem which is sufficiently well-defined +to enable specific research action and the investigation of suitable solution +techniques. The output of system investigation results in the System and objective +definition which further aids in model formulation. Model formulation is the process +of defining a conceptual model which abstracts or envisions the real system under +study. The conceptual model is further represented inform of a Communicative +Model which is a model representation and can be communicated to other designers +and can be compared against the system and the study objectives. It is further + +Requirements +analysis +Requirements +Simuland +Accreditation +Modeling +Validation +Talidation +Verification +Conceptual +Results +model +Execution +Implementation +Verification +Transformation +Executable +Comparison +modelChapter 4 + +Verification and Analysis + +Page +73 + +transformed into an executable model through the process of programming. An +Experimental Model is the programmed model incorporating an executable +description of operations along with the design of experiments, for experimenting +with the simulation model with a specific purpose. The process of experimentation +produces the Simulation Results, which are presented for decision makers for their +acceptance and implementation or undergo refinements if required. + +Figure 23: Simulation study life-cycle (acquired from [28]) +The model-evaluation life-cycles shown in Figure 21, Figure 22 and Figure 23 have been +considered as guidelines and they are used as inspiration for the verification life-cycle +proposed and presented later in this thesis. +4.2 The Principles of Top-Down Refinement +The principle of top-down refinement has been appreciated in the area of model +verification. Constructing a highly detailed model that satisfies all levels of +correctness in one attempt is very difficult. Instead it is easy to construct a less +detailed abstract model at first. Let S1 be an initial model. To get from S1 to the final +shape of the model, the Top-Down Refinement paradigm advocates the derivation + +COMMUNICATED +PROBLEM +Problem +Formulated Problem +Formulation I +VV&T +FORMULATED +PROBLEM +Investigation of +Feasibility Assessment +Solution Techniques I +of Simulation +DECISION MAKERS +PROPOSED SOLUTION +Acceptability of +TECHNIQUE +Simulation Results +(Simulation) +INTEGRATED +DECISION +System + System and Objectives +SUPPORT +Investigation ! +Definition VV&T +SYSTEMAND +OBJECTIVES +DEFINITION + Model Formulation +Simulation Results +Presentation VV&T +Presentation of + Model +Qualification +CONCEPTUAL +MODEL +Communicative +Model +Model VV&T +Representation +SIMULATION +Experimental +Data +COMMUNICATIVE +RESULTS +Model VV&T +VV&T +MODEL(S) +Programmed +/ Programming +Model VV&T +PROGRAMMED +MODEL +Experiment +Design VV&T +EXPERIMENTAL + Design of Experiments +MODELChapter 4 + +Verification and Analysis + +Page +74 + +of an (ordered) sequence S1, S2…Sf of models of S. For i = 1...f, model Si+1 is a +refinement of its immediate predecessor model Si if the following conditions are met: + +(i) Si+1 is more expressive than Si + +(ii) Si+1 is less abstract than Si + +(iii) It is relatively easy to evaluate Si+1 on the basis of verified Si + +Consequently, the last model in the refinement sequence should be correct by +construction. The following are some consequences of the top-down refinement +paradigm. First, Si+1 is harder to understand than Si and therefore harder to prove on +its own; it is precisely the refinement step that allows the verification of Si+1 under +the assumption that Si has already been proved correct [99]. +In this thesis the proposed verification process is based on this fundamental principle +where the verification is performed iteratively and on a relatively refined shape of the +model. +4.3 Verification techniques +There exist a large variety of verification methods. The diversity is due to the range +of different simulation project types, different subjects (simuland), and different +types of data. Most of the verification methods are inspired from software +engineering domain, because the executable models in simulation projects are almost +always realized as software [29]. +In literature, Verification techniques are generally classified into four main categories +as show in Figure 24. + +Figure 24: Verification Techniques + + +4.3.1 Informal Techniques +These techniques are most commonly used. They are called informal because the +tools and methods used rely heavily on human reasoning and inspection without any +underlying mathematical formalism [28]. These techniques are well structured and are +conducted with proper guidelines by following standard policies and procedures, +however these techniques are tedious and not very much effective [109]. + + +Verification +Techniques +Informal +Techniques +Static Analysis +Dynamic +Analysis +Formal Analysis + +Chapter 4 + +Verification and Analysis + +Page +75 + + +Some of the commonly used informal methods are shown in Table 6. +Audit +An audit is undertaken to assess how adequately the system study is +conducted with respect to established plans, policies, procedures, +standards and guidelines [28]. +Desk +checking +Desk checking or self-inspection is a thorough examination +performed by an individual as a first step. In this method syntax +checking, specification comparison, code, control flow graph +analysis are performed [28]. +Inspections +Inspections are conducted by a team and performed at different +phases of developments such as problem definition, conceptual +modeling, executions etc. Inspections are conducted to find and +document faults [28]. +Turing Tests +Turing test is performed by domain experts (of the system under +study). They are presented with two sets of output data obtained +one from the model and one from the specification (without +identifying which one is which) and are asked to differentiate both +and based on their feedback model corrections are made [28]. +Table 6: Informal Verification Techniques +4.3.2 Static Analysis: +These techniques are applied to assess the static model design and the +implementation (source code), without executing the model. They aim at checking +the structure of the model, the dataflow and control flow, the syntactical accuracy, +and the consistency. Some of the commonly used static analysis methods are shown +in Table 7. +Structure +Analysis +Structure Analysis is used to examine the model structure. It is +conducted by constructing a control flow graph of the model +structure [28]. +Data +Analysis +It involves data dependency tests and data flow analysis to ensure +that data used by the model is properly defined and proper +operations are applied to data objects [28]. +Cause- +Effect +Graphing +Cause-Effect graphing assists model correctness evaluation by +answering “what causes what” questions in the model representation. +It is performed by identifying causes and effects in the model and +checking if they are reflected accurately in the specification [28]. +Syntactic +Analysis +Syntactic analysis is usually performed by the compiler of the +simulation language being used. Syntactic analysis can also be +performed using a set of rules applied on the model representation to +verify if it satisfies given specification. +Semantic +Analysis +This technique is used to determine the modeler’s intent and verify +that the true intent is accurately reflected in the model representation +[28]. +Table 7: Static Analysis Techniques + + +Chapter 4 + +Verification and Analysis + +Page +76 + +4.3.3 Dynamic Analysis: +Dynamic analysis techniques are based on the execution of the model in order to +evaluate its behavior. They do not simply examine the output of an execution but +also observe the model as it is being executed. The insertion of additional code into +the model called instrumentation is needed to collect or monitor the behavior during its +execution [109]. Table 8 presents some of the important dynamic analysis verification +techniques. + +Assertion +Checking +An assertion is a statement that should be true during the +execution of a model. Assertions are placed in various parts of +the model and monitored during execution [28]. +Bottom up +Checking +This technique is used in conjunction with the bottom up +model development strategy. The sub models are checked +individually. Then the parents at the higher level are checked +[28]. +Fault/Failure +insertion +This approach is used to insert a fault or a failure in the model +and observe whether the expected incorrect behavior is +produced. This approach is effective to detect unexplained +behavior and hence uncover errors [28]. +Functional +Testing +This technique is used to assess the accuracy of model input- +output transformation, to evaluate how accurately a model +transforms a given input into a set of output data [28]. +Sensitivity +Analysis +Sensitivity analysis is performed by changing the values of +model input variables and parameters over some range of +interest and observing the effect on model behavior. +Unexpected effects may reveal errors [28]. +Table 8: Dynamic Analysis Techniques + + +4.3.4 Formal Analysis +Formal analysis refers to mathematical analysis of proving or disproving the +correctness of a system with respect to a certain unambiguous specification or +property. The methods for analysis are known as formal verification methods, and +unambiguous specifications are referred as formal specifications. Formal verification +can provide complete coverage on an abstract model of the system, modeled using +finite state machines, PN or any other specification formalism. However it should be +noted that formal verification can ensure the correctness of a design only with +respect to certain properties that it is able to prove [88]. There are many formal +analysis techniques, which we classify in four main groups: + + + + + + +Chapter 4 + +Verification and Analysis + +Page +77 + +Equivalence +Checking +It is also called Reference Model Checking, which is widely +used verification technique that allows two behavioral models +to be compared with each other. In general, one of the two is +taken as the reference model and represents the so-called +golden model (or perfect model). It verifies that the behavior of +two models is the same for the exercised scenarios. This +technique has limitation that it does not actually verify that the +design is bug free, and provides proof of relative correctness +[109]. +Theorem +Proving +This method involves verifying the truth of mathematical +theorems that are postulated or inferred throughout the design +using a formal specification language. The procedure involves +two main components: (i) proof checker (which can be +completely automated in most cases) and (ii) an inference +engine (which may require occasional human guidance) [109]. +Property +Verification +Formal properties specify the requirements of the correct +system design. The objective of this method is to check +whether an implementation satisfies these requirements. Static +Assertion-based Verification (ABV) and dynamic [110]. +Model +Checking +Model checking establishes a solid confidence in a reliable V&V +process. Model checking is an automated and comprehensive +verification technique that can be used to verify whether the +properties specified (usually using Temporal Logic) for a given +design or its components are satisfied for all legal design inputs. +Model checking also faces a limitation, since it suffers from the +well-known state explosion problem. In a worst-case scenario, +the state space of the design may grow exponentially large with +the number of state variables. Model checking can be fully +automated for design verification and can yields results much +more quickly than theorem proving [109]. +Table 9: Formal Analysis Techniques + +Some of these techniques have been adopted in our proposed verification +framework. +4.4 Summary +In this chapter, different concepts of verification, validation and testing are discussed +as they collectively contribute to proving the correctness and accuracy of a model. +Some existing model development processes (devised mainly by M&S community) +are also discussed, since they are the bases of the proposed verification life-cycle +presented later in this thesis. The proposed framework essentially focuses on +Verification (however its design is also open to adopt validation techniques). +Different verification techniques are classified into four main groups and some of the +selected techniques are briefly explained, as they will be used later in this thesis. + + +Chapter 4 + +Verification and Analysis + +Page +78 + + + + + +Part II +Techne + + + + + +Technê in Greek is translated as craftsmanship or craft or art. In science it is the practice of +knowledge; Techne resembles Epistēmē in the implication of knowledge of principles, although techne +differs in that its intent is making or doing, as opposed to "in-depth understanding"; Applied- +Science; It deals with “How” of the subject. + + +Part-II covers the technology of the research under discussion, where the theoretical +concepts provided in Part I are applied, and technically discussed under an integrated +framework of methods, techniques, algorithms and processes and their practical +implications are provided in the form of a proposed solution. + + +“Without knowledge the practice is useless, and without practice +the knowledge is useless” +– Ali bin Usman Hajvery +(Kashaf-Almahjoob) + + + + +Page +79 + +Chapter 5 +Proposed Methodology and the +Verification Framework + +This chapter renders the core of the solution framework proposed in this thesis. In this chapter, a +collection of methods, techniques, algorithms, sub-processes, activities and approaches are presented, +as proposed solution to various issues in the composability verification of BOM based model +components. All these contributions are integrated into a unified framework which we refer to as: +Composability Verification Framework. + +The proposed verification Framework consists of different methods, techniques, +algorithms, sub-processes, activities and approaches which all together encompass +the component based modeling & simulation (CBM&S) life-cycle. +5.1 +Component-based Modeling & Simulation life-cycle +CBM&S life-cycle is inspired by different modeling architectures proposed by +Sargent, Petty and Balci and discussed in section 4.1.1. It is extended with our +proposed contributions at its different stages. The proposed CBM&S life-cycle is +mainly divided into four main quadrants: (i) Inception (ii) Modeling (iii) Execution +and (iv) Analysis. Each quadrant has different phases and in each phase there are +multiple activities (or cycle of activities). Each activity consists of methods and +techniques pertinent to its respective phase. These phases are revisited iteratively +during the life-cycle; where each iteration represents a tier; hence the entire CBM&S +life-cycle is a multi-tier process; whilst each tier results into a refinement of the +solution of the problem under investigation; as it follows the principle of top down +refinement, discussed in section 4.2. All the above mentioned features of the +CBM&S life-cycle are shown in Figure 25 divided into four quadrants: + +Figure 25: CBM&S life-cycle + + +ANALYSIS +INCEPTION +Phase-I +Refinement +Simuland + Phase-V +Requirements Engineering +Analysis Technique + Phase-II +Analysis +Requirements +Modeling +Abstract Level Execution + Phase-IV +Phase-III +Executable Model +Conceptual Model +Fransformation +Activity +Formal Model +EXECUTION +MODELINGChapter 5 + +Proposed Methodology and the Verification Framework + +Page +80 + +The following sub-sections provide microscopic details of each quadrant along with +their associated inside activities, methods and techniques. +5.2 Inception +The first quadrant of the CBM&S life-cycle called “Inception” initiates the process. +At first the abstraction of a real-system is accumulated as simuland. A simuland can +be ingested in the form of UML diagrams (Figure 26) or using any other formal or +informal representation. + +Figure 26: Simuland using UML Diagrams +The basic idea is to gather the body of knowledge so that the modelers can envision +the real system under a certain frame of reference i.e., the context under which the +system is being studied. When the simuland is ingested into the framework, it is used +(i) to gather requirements, through the process of requirement engineering and (ii) to +search and discover suitable components from a BOM repository for the +construction of a composed model. If a required component does not exist in the +repository then it is built from scratch and added in the repository. The outcome of +the requirement engineering activity results in formulation of requirements +specifications. The requirement specification formalism (as defined in section 1.3.2) +is used to express formal requirements for this framework: +RS = 〈O, S〉 +Where + +O = {o1, o2, o3 …, on} is a set of objectives or goals that must ultimately be fulfilled. +These goals are usually defined in the context of the scenario of the modeling +domain. Therefore the properties expressed as goals or objectives may be scenario- +specific and not the standard system properties e.g. in a restaurant model the +objectives could be that the customers are served food and payments are collected, +and not that the model should be deadlock free (which however might be a necessary +condition). + +S = {s1, s2, s3 …, sn} is a set of system constraints (system properties or scenario- +specific safety/liveness properties). Deadlock freedom (or other similar system +properties) could be the required constraints necessary to fulfill the above objectives +and therefore must be satisfied. We propose to define the following mandatory (or +default) constraints in the requirements specification of the composability +verification framework: + +Chapter 5 + +Proposed Methodology and the Verification Framework + +Page +81 + + +S1 = All the interacting components25should be composable at Syntactic level +S2 = All the interacting components should be composable at static-semantic level +S3a = State-machines of the interacting components should match each other such that they can +continue to progress until they reach the final or goal states26. +S3b = If the conceptual model is transformed into an executable model, the latter should correctly +represent the structure and behavior of the former. +Table 10: Mandatory constraints in composability verification +We assert that [S1 ∧ S2 ∧ (S3a ∧ S3b)] is a necessary condition for the overall +composability verification. S1 and S2 ensure that the composed model is structurally +consistent. Whereas S3a confirms that the behavior of the composed model is +coherent for reaching given objectives. The satisfaction of S3b obeys the definition +of Model verification (see section 4.1) in the sense that it confirms the second part of +the definition that is: “the accuracy of transforming the conceptual model into an executable +model” and therefore the overall success of the verification process depends on the +satisfaction of S3b constraint. The conjunction of these default constraints impose +the three C’s of requirements namely (i) Consistency, (ii) Completeness, and (iii) +Correctness [111]. Consistency is required for the evenness in the input and output +connections of the composed components. Completeness is required for the totality +of the information of the components being composed to check that the +composition does not lack required inputs for making progress. Correctness is +needed to confirm that the composed components interact in a correct way as they +are supposed to. +If all the objectives are fulfilled and all the constraints are satisfied and then we say +that the model is composable at all levels and is verified with respect to its +specifications. The overall objective of our proposed framework is to provide +environment and tool support to assess this postulation. +The outcome of discovery results in a set of candidate BOMs and their matching +with the simuland and the requirements results in a selection of BOMs suitable for +the composition. This selection is composed to form a conceptual model. +5.3 Modeling +In the Modeling quadrant, a BOM based composed model is taken as an input and +the conceptual model is formed. Also a formal model and its graphical notation (as +proposed in section 2.7.4) are produced for the purpose of documentation of the +conceptual model26F27. Considering that BOM itself is a conceptual framework and is +used to model passive components which cannot undergo any form of execution +therefore the conceptual model is subjected to a series of extensions and refinements + +25 In a composed model it is not necessary that every component interacts with every other +component for instance A, B and C are composed such that A interacts with B and B interacts with C +but A does not interact with C. +26 If there are no final-states defined in a model and the model is non-terminating then we assume that +certain important states called goal-states are present in the model, reachability of which confirms that +the goals are fulfilled. +27 This step is optional but beneficial if different teams are working on different phases of the +development life-cycle. This documentation makes it easy to understand the structure and behavior of +basic components and their composition. + +Chapter 5 + +Proposed Methodology and the Verification Framework + +Page +82 + +using external input and our proposed model transformation algorithms so that it +can be implemented into executable forms and sent to the “Execution” quadrant +(Figure 25) for abstract level execution. Our proposed extensions and refinements are +listed as follows: +• BOM State-machines to State Chart XML (Transformation) +• Composed-BOM to Petri Net –PNML (Transformation) +• Basic-BOM to Extended-BOM (Extension) +• Extended-BOM (E-BOM) component to Colored Petri Net (CPN) Component +Model (Transformation) +• Basic-BOM to Extended-BOM with Time (Extension) +• Basic-BOM to Extended-BOM with probabilistic factors (Extension) +• BOM to CSP based Process Model (Extension & Transformation) +In the later section these extensions, refinements and transformations will be +explained in detail. It is important to note that each time the conceptual model is +extended or refined the Modeling quadrant is revisited in iteration. +5.4 Execution +As previously discussed this quadrant is mainly for the abstract-level execution +activities. It takes following implemented and executable forms of the conceptual +model from the Modeling quadrant as input: +• State Chart XML (SCXML) +• Petri Net –PNML +• Colored Petri Net (CPN) Composed Component Model +• Communicating Sequential Process (CSP) based Component Processes +In the later section these executable forms and their abstract level execution +processes will be discussed in detail. +5.5 Analysis +The outcome of an execution process yields some results. These results are analyzed +in the Analysis quadrant. Our verification framework supports different analysis +techniques listed as follows: +• State-machine matching Analysis +• Petri Nets based Algebraic Analysis +• Colored Petri Net based State-Space Analysis +• Model Checking Analysis + +These analysis techniques will be discussed in later section. When all the necessary +steps in the composability verification are complete and the composed model under +investigation is said to be verified with respect to the given requirement specification +then the CBM&S life-cycle proceeds to the further steps for implementation and +simulation as shown in Figure 27. The details of these steps are out of the scope of +this thesis. + +Chapter 5 + +Proposed Methodology and the Verification Framework + +Page +83 + + +Figure 27: Implemenation and Simulation +5.6 Composability Verification Framework +In this section different method, techniques, procedures, algorithms and modules of +our proposed composability verification framework are discussed in detail and +considered as building blocks in the CBM&S life-cycle and will be connected to its +different phases. These details are necessary to understand the composability +verification process being presented in chapter 6. +5.6.1 Discovery Matching and Composition (DMC) +In component based development, it is a normal practice to construct reusable +components and store them in a library or repository so that they can be reused later +as required. To reuse an existing component, a Discovery, Matching, Composition +(DMC) paradigm [19] is used. We assume that a library of BOM components is +maintained in a repository. Using the information given in the simuland a modeler +attempts to search and discover BOM components from the repository. If a +collection of candidate components is retrieved, they are filtered through matching +process. A matching process matches the candidate components from the simuland +and requirement specifications and results in a selection of components suitable for +the composition. The aspects of syntactic and semantic matching during the +discovery and selection of BOM components are proposed and discussed in detail in +[54]. In this article a set of discovery rules are presented which must be fulfilled while +matching a candidate selection from the simuland. We apply these rules for the +syntactic and semantic matching of the candidate selection with the simuland. We +further suggest matching the candidate selection with given requirements, because a +selection may match with its respective simuland but if it does not match with its +requirements then the composability verification will fail. We implement the concept +of DMC process in our framework as shown in Figure 28. It is also assumed that if a +required component does not exist in the repository, then it is constructed from +scratch and is added in the repository for reuse. The result of DMC process is a +BOM-based composed model. This composed model is taken as input in the +Modeling quadrant and considered as a conceptual model of the system. It is +recommended that the modelers also use our proposed formal specification and +graphical notation presented in section 2.7.4 to construct a formal model. This +formal model can be used for documentation and shows how the components are +composed. It is however an optional step and is not considered as a phase in our + +IMPLEMENTATION +Composed Model +Code Generation +Simulation Model +Successful Completion of +the Composability +Decision Support +Design of Experiment +Verification Process +Experimental +Model +Simulation +Simulation ResultsChapter 5 + +Proposed Methodology and the Verification Framework + +Page +84 + +CBM&S life-cycle. In chapter 7 & 8 the formal models of the examples are also +described for reader’s understanding. + +Figure 28: Discovery, Matching, Composition (DMC) +5.6.2 Structural and Behavioral Evaluation +The conceptual model ingested in the Modeling quadrant requires structural and +behavioral evaluation so that we can confirm that the model is consistent, complete +and correct. And it is suitable for thorough verification at different levels of +composability. Checking the structure and behavior of the conceptual model before +subjecting it to the deeper levels of composability verifications is useful. If the model +is structurally and behaviorally consistent then the confidence level is increased based +on which different useful assumptions can be made later during the in-depth +verification. +If there are discrepancies in the structure or behavior of the model then we can skip +further steps, save time and computational resources and perform necessary design +refinements before the entire process is repeated. This setup obeys the principle of +top-down refinement as discussed in section 4.2. The structure of the model is +analyzed using static analysis techniques (see section 4.3.2), whereas the behavior of +the model is evaluated using dynamic analysis techniques. + +5.6.3 Static Analysis +We propose two types of Static analysis procedures (i) Syntactic Matching and (ii) +Static-Semantic Matching. These procedures are used to evaluate the structure and +verify composability at syntactic and static-semantic levels. They are called static +analysis because they are evaluated based on pre-defined rules and do not require any +form of execution and the information on which these rules are applied is static. + +Phase-I +Simuland +Reguirements +Component Search +Engineering +Phase-II +Reguirements +BOM +Repository +Matching +Discovery +Candidate +Matching +BOMs +Selection +Modeling +12N +Phase-I1 +Composition +Conceptual +Model +Formal +Model +TransformationChapter 5 + +Proposed Methodology and the Verification Framework + +Page +85 + +Syntactic Matching (SM) +This module is responsible for evaluating BOM composability at syntactic level based +on the following rules. The outcome of this module verifies that the components can +be correctly connected to each other syntactically. These rules were introduced in a +BOM matching technique presented in [54]. +SM-Rule 1: +The name of each event28 exchanged between the two components should be same i.e., +the send-event should have the same name as the receive-event. + +A send-event is defined in the BOM’s event types where the sender is the BOM itself +and the receiver is some other BOM (in the composition) whereas a receive-event is +the definition of an event in the BOM event types, where the sender is some other +BOM (in the composition) and the receiver is the BOM itself. +SM-Rule 2: +Each send-event should have at least one corresponding receive-event and vice-versa i.e., +the send/receive pair should be complete. + +SM-Rule 3: +The number of parameters (content characteristics of event types) of the send-events +should be the same as the number of parameters of the receive-events. +The satisfaction of Syntactic Matching rule1, rule2 and rule3 fulfills the default +constraint S1 (see Table 10) which is a necessary condition for the overall +composability verification. Figure 29 shows different steps in the syntactic matching +activity. + +Figure 29: Syntactic Matching + + +28 It is assumed that in the BOM construction the events and their corresponding actions are given the +same name + +Phase-I +Refinement +Simuland +Reguirements +Engineering +Phase-V +Phase-II +Analysis +Constraint Sl satisfied. +Requirements +Technique +Static Analysis Technique +Rule evaluation +Analysis +Satisfy +Rule3 +Rule2 +Rulel +Modeling +Abstract Level +/Violate +BOM +Execution +Components +Phase-I1I + Phase-IV +Conceptual +Executable +Model +ModelChapter 5 + +Proposed Methodology and the Verification Framework + +Page +86 + +Static-Semantic Matching (SSM) +This module is responsible for evaluating BOM composability at static-semantic level +based on certain rules. The outcome of this module verifies that the composition of +the components is meaningful and the communication between the components is +understood as intended. In order to certify these facts we propose static-semantic +matching at two levels: (i) Operational Level matching and (ii) Message level [53]: +(i) +Operational Level matching +In BOM-based composed models Operations are described by Pattern-of-Interplay +(POI). POI is formed by a collection of actions from the basic BOMs being +composed. In operational-level semantic matching, it is ensured that the composed +components share the same “domain of interest” and they are composed for the +same purpose (or aim) so that we can guarantee that the composition is (static) +semantically meaningful and without any pragmatic ambiguity. Even with the same +domain of interest, the component may serve for varied purposes e.g., in Military +domain a Battalion Head Quarter (BHQ) component may have many purposes and +can take part in many different operations. Therefore it is also important that the +purpose of the selected components should be clear for a meaningful outcome. +In order to ensure semantic consistency at operational-level we propose to specify +following semantic-attributes 29 in the definition of actions at the time of the +construction of Basic BOMs and in the POI when the basic BOMs are being +composed. In the static-semantic matching these attributes are used to compare +that the correct actions are involved in the BOM composition. + +o Area-of-Interest: It describes the area or the domain of interest of the system that +is being modeled using the components and the operation. We propose to define +“Area-of-Interest” as a semantic-attribute in each action of Basic BOM and also in +the POI. This attribute will confirm that all the components share the same domain +knowledge. If of some general purpose components that may belong to multiple- +domains (e.g., Queues etc.) we propose to construct a specialization of the +component and make it a member of the selected area-of-interest. E.g., In a +restaurant composed model a generic queue component can be specialized into a +restaurant-queue with actions JoinRestaurantQueue() and ServeCustomer() instead of +Put() and Get() actions. + +o Purpose: Purpose describes the aim or goal of the entire operation. In BOM +composition, POI represents a single operation being performed by the composed +components. However it is also possible that one or more composed components +may be designed to serve multiple purposes; and in a given scenario only some part +of the multi-purpose components is involved in the composition. e.g., a Customer +component could be generic and can have multiple purposes whereas a Restaurant +waiter component is specific to a restaurant scenario, so it is important that if a +Customer component is selected in a Restaurant scenario then its purpose should +be aligned with the other components in this scenario. Hence we define “purpose” +as a semantic-attribute of actions in the basic BOM (with multiplicity ≥ 1). + + +29 In BOM the conceptual modeling elements (Entities, Events States and Actions) support semantic +fields [65] + +Chapter 5 + +Proposed Methodology and the Verification Framework + +Page +87 + +(ii) +Message Level matching +BOM represent event driven components and function by sending or receiving +events (messages). At the message level it is required that the communication +between composed components is meaningful and semantically understood by the +receivers as intended by the senders. At this level we propose to match Data-Types +and Units of measurements of the parameters of send-events and receive-events [53] +[54]. + +It is assumed that the BOM components have corresponding OWL attachments as +proposed in [54]. The BOM-OWL attachments are used to define semantic classes of +the domain ontology, their properties, data-types and the individuals and stored in +the BOM repository. In order to evaluate static-semantic matching at both +Operational and Message levels, we apply following rules: + +SSM-Rule 1 +The intersection of the “Area-of-Interest” attribute of all the actions (involved in an +operation) should be exactly the same as that of POI or should belong to an +equivalent class30 in the respective ontology: +� +Acti. AOI +n +i=1 + ≅ POI. AOI + + +SSM-Rule 2 +The intersection of the “Purpose” attribute of all the actions should be exactly the +same as that of POI or should belong to an equivalent class in the respective ontology: +� +Acti. purpose +n +i=1 +≅ POI. purpose + +SSM-Rule 3 +Data types of each element in the event parameters of the send-event and receive-events +should be of the same class, equivalent class or should be in direct hierarchical +relationship i.e., the sender’s parameter data-type should belong to the direct child class +of the receiver’s parameter data-type (but not the inverse). + +e.g., a send-event contains a parameter of type ‘second’, whereas the receive-event +expects a parameter of type ‘time’ which according to the rule it is a semantic match. +Figure 30 presents primitive data-types as an example. In real situations BOM +components will have more domain specific complex data-types. + +30In OWL two classes can be marked equivalent if they have same semantic meanings and both classes +have the same individuals (instances) e.g., Healthcare and Medical are synonyms. We denote it as ≅ + +Chapter 5 + +Proposed Methodology and the Verification Framework + +Page +88 + + +Figure 30: Some of the sub-classes of Data Type ontololgy +SSM-Rule 4 +The units of the measurements expressed in the event parameters should be same or +equivalent or should belong to a direct class hierarchy such that they are convertible +without (or with acceptable) loss of information. +We assume that if two measurement units are in either of the direct relationship i.e., +parent or child then their conversion loss will be acceptable e.g., a send-event has a +parameter with unit m/s (meter per second) to express speed whereas the receive- +event expects Km/hr (Kilometer per hour). This is a valid semantic match because +the quantities are convertible without loss. +Semantic Matching Technique +In order to match two elements we propose a semantic matching technique as shown +in Figure 31. This technique uses OWL-API [112], a semantic reasoning engine +(FaCT++, Pellet, or HermiT) and an OWL ontology document to process a query of +any two elements A & B and outputs their semantic relationship as one of the +following: +1. Exact (A = B) +2. Equivalent (A ≅ B i.e., A and B belong to equivalent classes) +3. Direct-Parent (A is a direct parent of B) +4. Direct-Child (A is a direct child of B) +5. Indirect (A and B are not in direct contact but belong to same hierarchy) +6. No relationship (A and B are not related) + +Figure 31: Semantic Matching Technique +This technique is used to evaluate Static-Semantic Matching Rules 1, 2, 3 & 4 using +the algorithm31 given in Table 11. + +31 The Pseudo-code conventions and format of the algorithms provided in this thesis, for most parts, +follows the guidelines set by [132]. +OWL +Doc +A +Reasoner +OWL-API +B +Query +Relation +Result + +ODay +OYear +Binary +ODate +OMonth +OInteger +Number +ODataType +ODouble +Time +Minute +Text +Language +OHour +Second +OCharacter +O StringChapter 5 + +Proposed Methodology and the Verification Framework + +Page +89 + +Algorithm: Semantic Matching +Input: {Actions}, POI, BOM-OWL +Output: TRUE, FALSE +1 Owl ← Load Ontology(BOM-OWL) +2 {CommonAOI} ← ⋂ +𝑎𝑖 +𝑛 +𝑖=0 +∈ Actions.AOI ⊳ Gives a set of common area of interest of all actions +3 for caoi ∈ {CommonAOI} do +4 + SR1 ← Get-Semantic-Relation(caoi, POI.AOI, Owl) ⊳ It is assumed that Get-Semantic-Relation() +5 + function is implemented using semantic matching technique shown in Figure 31 ⊲ +6 +if SR1 = “Exact” or “Equivalent” then ⊳ Rule1 satisfy...continue +7 +next +8 +else +9 +Return FALSE +10 +end if +11 end for +12 +13 {CommonP} ← ⋂ +𝑎𝑖 +𝑛 +𝑖=0 +∈ Actions.purpose ⊳ Gives a set of common purpose of all actions +14 for cp ∈ { CommonP } do +15 +SR2 ← Get-Semantic-Relation(cp, POI.purpose, Owl) +16 +if SR2 = “Exact” or “Equivalent” then ⊳ Rule2 satisfy...continue +17 +next +18 +else +19 +Return FALSE +20 +end if +21 end for +22 +23 {Events} ← Get-Events(Actions) ⊳ gets corresponding Events of Actions +24 +for e ∈ Events do +25 +if e=Send-Event then +26 +f ← Get-Receive-Event(e, Events) ⊳ gets corresponding Receive Event of e +27 +{PE} ← e.Parameters ⊳ Set of parameters of send-event e +28 +{PF} ← f.Parameters ⊳ Set of parameters of receive-event f +29 +⊳ No. of parameters of e and f must be same because of SM-Rule3 +30 +for pe∈PE & pf ∈PF do +31 +SR3 ← Get-Semantic-Relation(pe.Type, pf.Type, Owl) ⊳ Compare Parameter types +32 +if SR3 = “Exact” or “Equivalent” or “Direct-Child” then +33 +⊳ Rule3 satisfy…continue to rule4 +34 +SR4 ← Get-Semantic-Relation(pe.Unit, pf.Unit, Owl) ⊳ Compare Units +35 +if SR3 = “Exact” or “Equivalent” or “Direct-Parent” or “Direct-Child” then +36 +Return TRUE ⊳ Static-Semantic Matching Successful +37 +else +38 +Return FALSE +39 +end if +40 +else +41 +Return FALSE +42 +end if +43 +end for +44 +else +45 +next +46 +⊳ Goes to the next send-event and need not to check receive-events (because SM-Rule2) +47 +end if +48 +end for +Table 11: Semantic Matching Algorithm + + + +Chapter 5 + +Proposed Methodology and the Verification Framework + +Page +90 + +The semantic matching algorithm takes a set of actions (parsed from Basic BOMs +which are being composed); the pattern of interplay (POI) which specifies how the +actions are connected to each other and the corresponding OWL ontology document +as input. The output of this algorithm is TRUE if the static-semantic matching is +successful otherwise FALSE if any of the rule is violated. Figure 32 shows steps in +the verification of BOM composability at Static-Semantic level. + +Figure 32: Static-Semantic Matching +If the semantic matching is successful, it will fulfill the default constraint (S2) of the +requirement specification (see Table 10) which is a necessary condition for the overall +composability verification. +5.6.4 Dynamic Analysis +We use Dynamic Analysis technique (see section 4.3.3) to evaluate the behavior of +the conceptual model. At first the components undergo a state-machine matching +process for the evaluation of the behavior consistency. When this evaluation is +successful, we proceed with the in-depth verification at the dynamic-semantic +composability level, choosing one of the different proposed set of dynamic analysis +techniques. These analyses are called dynamic analysis because they require execution +at different abstract levels as mentioned in section 5.4 +State-Machine Matching (SMM) +State-machines represent behavior of the components and are the essential dynamic +part of BOM components. In the verification of BOM composability at dynamic- +semantic level, it is important that the behavior of the composed components should +be coherent with each other i.e., their interactions are consistent in order to make +progress towards composition goals. To ensure this fact we assert (as a necessary +condition) that the state-machines of the composed components should match each +other. BOM state-machines are event driven in nature and make progress by +exchanging events. In order to ensure that the state-machines of the composed BOM +components match each other they are required to be executed at an abstract level. +Therefore we proposed a technique in [113] which transforms each BOM state- +machine to SC-XML (State-Chart XML) [114] format. A sample of SCXML is shown +in Figure 33. + +Phase-I +Simuland +Refinement +Reguirements +Engineering +Phase-V +Phase-II +Analysis +Constraint S2 satisfied +Requirements +Technique +Static-Semantic Analysis +Technigue +Analysis +OWL +OWL API +Doc +Ouery +Rulel +Rule2 +Reasoner +Rule3 +Modeling +Abstract Level +Rule4 +Execution +BOM +Phase-III +Phase-IV +Violate +Satisfy +Components +Conceptual +Executable +Model +Model +XChapter 5 + +Proposed Methodology and the Verification Framework + +Page +91 + + +Figure 33: SCXML format +We develop a runtime environment using SCXML API for the execution. This +environment parses SCXML files (transformed BOM state-machines) and creates +instances. Then it initializes all the state-machines to their initial states and simulates +sending and receiving of the events to observe state-machine transitions until they +reach their final state. The state-machine matching process is based on the following +algorithm: +Algorithm: State-Machine Matching +Input: {SM} ∈ BOM State-Machines, {Actions} +Output: TRUE, FALSE +1 {SCXML} ← TransformSMtoScXML(SM) +2 ⊳ Transform all BOM-Statemachines in SCxml format ⊲ +3 +4 Create and Initialize EventController: EC +5 ⊳ Event Controller controls sending and receiving of events ⊲ +6 +7 for scxml ∈ { SCXML } do +8 + SC ← Parse(scxml) ⊳ Parse scxml document +9 + Create and Initialize SCXMLExecutor(SC) +10 +⊳Instantiate SCXMLExecutor thread for each state-machine ⊲ +11 +12 +Done ← FALSE +13 +while (Done =FALSE) do +14 +CurrentState ← GetCurrentState() ⊳ SCXMLExecutor returns current state +15 +if CurrentState.IsFinal = TRUE then +16 +Done ← TRUE +17 +end if +18 +⊳Get Next Action to send or receive ⊲ +19 +{NextActions}← CurrentState.GetActions() +20 +for next ∈ NextActions do +21 +if next.Type = “Send” then +22 +EC.Put(next) ⊳ Simulate sending of next action +23 +SCXMLExecutor.Trigger(next) ⊳Transit from the current state to next state +24 +else +25 +EC.Get(next) ⊳ Simulate recieving of next action +26 +SCXMLExecutor.Trigger(next) ⊳Transit from the current state to next state +27 +end if +28 +end for +29 +end while ⊳Due to either of the send or receive actions the state-machine will +30 +transit to the next state and therefore the current state will be updated. +31 +If the final state is reached then the state-machine matching will be +32 +terminated successfully⊲ +33 end for +Table 12: State-machine Matching algorithm + + + + + + + + + +Chapter 5 + +Proposed Methodology and the Verification Framework + +Page +92 + +Figure 34 shows the state-machine matching process. It takes BOM state-machines +as modeling objects, automatically transforms it into a SCXML executable format +and perform state-machine matching using abstract level execution environment. +A successful run of this routine implies that all the state-machines match each other, +which satisfies a necessary (but not sufficient) condition of BOM composability i.e. +constraint S3a of the requirement specification. The fulfillment of S3a certifies +consistency and completeness of the behavioral design of the composed +components. Consistency is due to the fact that the components are in correct causal +order and Completeness, because their inputs and outputs (send and receive-events) +are complete to reach their final states. However we still cannot guarantee +correctness the 3rd C of requirements, unless the composition satisfies its requirement +specification i.e., all the assigned objectives and required constraints. Also the state- +machine matching approach may result in reaching final-states but it does not +explore all possibilities of the behavioral interaction of the composed components. +So it is required to analyze the model at a greater depth using an appropriate dynamic +analysis approach. + +Figure 34: State-machine Matching Process +Therefore for deeper evaluation we propose to utilize the modeling and analytical +strength of Petri Net and CSP formalism and incorporate three analysis approaches +in our verification framework as introduced and discussed chapter 3. The selection of +a suitable approach for the composability verification at dynamic-semantic level +depends on the nature of the model. In the following subsections, each of these +approaches is discussed in detail. + +Phase-I +Refinement +Simuland +Reguirements +Engineering +Phase-V +Phase-II +Analysis +X +Necessary condition of Constraint S3 satisfied +Reguirements +Technique +Fail +Success +4 +Put( +Analvsis +Is Final +state +1 +8 +SM-1 +SMIM +reached? +0155 +BOM +Components +Event +Putl! +2 +BOM-SM to +Contro ler +SCXML +SM-2 +Get +04 +Transformation +Abstract Level +Modeling +Action +Execution +Lookup +SM-N +Table +Puto +Phase-I1I + Phase-IV +sc.XvL Executors +BOM +Conceptual +Executable +Execution +Model +Model +Transformation +TransformationChapter 5 + +Proposed Methodology and the Verification Framework + +Page +93 + +5.7 PN Algebraic Technique +The basic idea of this technique is to transform BOM into Petri Net format and +verify the properties given in the requirement specifications using algebraic methods. +In the verification framework, following steps are proposed to conduct algebraic +analysis: +5.7.1 BOM to PNML Transformation +In the first step, BOM components are transformed into Petri Net Markup Language +PNML format [115] which is an XML based form to specify Place/Transition Nets. +At first BOM state-machines of all components are parsed and each state is +transformed as a Place in the PN model. Similarly each event (send or receive event) +is transformed into a Transition in PN with no duplication. An outgoing arc is +connected from a place-P to a transition-t if the corresponding state-S (of the sender) +has a corresponding event-t as its exit condition and next state S′. An incoming arc is +connected from transition-t to another place-P′ which represents the next state S′. +Similarly state-R (of the receiver) is transformed into place-Q and the next state R′ +into Q′. The incoming and outgoing arcs are connected to t. The sender and receiver +entities (of BOM) are represented as tokens in the places. Figure 35 shows how part +of a sender and receiver state-machine is transformed into a PN. The place P and Q +have tokens showing the current state (or marking) of the composed model. When +transition t is fired (meaning event t is sent by P and received by Q) the tokens are +transported to P′ and Q′ showing the next marking of composed model. + +Figure 35: BOM to PN transformation +The transformation process is complete, when all the states and events of every state- +machine in BOM are plotted in the PN model such that no element is duplicated, +and each place or transition is connected so that there are no broken links. +5.7.2 PN Algebraic computations +In this step the PN incidence matrix and Place/Transition invariants are calculated. +To perform this step we use Platform Independent Petri Net Editor (PIPE) API +[116]. PIPE is a java based open source API for performing different Petri Net +related operations. It offers API functions to automatically compute algebraic +resources of a PN model such as Incidence matrix and Place/Transition invariants. +Incidence Matrix +An incidence matrix of a PN model is calculated by subtracting A- from A+ +incidence matrices: + +R +PChapter 5 + +Proposed Methodology and the Verification Framework + +Page +94 + +Algorithm: Incidence Matrix Calculation +Input: PN Model (P-places × T-transitions) +Output: m × n Matrix A +1 Initialize a Matrix Aminus of size m × n such that m=|P| and n=|T| +2 for i=0 to m do +3 +for j=0 to n do +4 +if pi ∈ P is connected to tj ∈ T then ⊳ i.e., p is the input place of t +5 +A[i][j] ← arc weight ⊳ arc weight is always ≥ 1 +6 +else +7 +A[i][j] ← 0 +8 +end if +9 +end for +10 end for +11 +12 Initialize a Matrix Aplus of size m × n such that m=|P| and n=|T| +13 for i=0 to m do +14 +for j=0 to n do +15 +if tj ∈ T is connected to pi ∈ P then ⊳ i.e., p is the output place of t +16 +A[i][j] ← arc weight ⊳ arc weight is always ≥ 1 +17 +Else +18 +A[i][j] ← 0 +19 +end if +20 +end for +21 end for +22 +23 Initialize a Matrix A of size m × n +24 for i=0 to m do +25 +for j=0 to n do +26 +A[i][j] ← Aplus[i][j] - Aminus[i][j] +27 +end for +28 end for +29 Return A +Table 13: Incidence Matrix Calculation +Lines 10 calculate the A- matrix. Lines 12-21 calculate A+ matrix and lines 23-28 +calculate the final incidence matrix. + +Place and Transition Invariants +The methods for calculating P-Invariants and T-Invariants of a PN model have been +extensively studied. The basic principle to compute the fundamental set of P- +invariants and T-Invariants is based on Farkas Method [117]. The algorithm for +finding P-Invariant is presented as follows. The input of the procedure is the +Incidence Matrix A and an Identity matrix B, both of size m × n. The output is a +matrix C whose rows are the fundamental set of P-Invariants. + + + + + + + +Chapter 5 + +Proposed Methodology and the Verification Framework + +Page +95 + +Algorithm: P-Invariant Calculation +Input: Incidence Matrix A, Identity Matrix B +Output: Matrix C (rows of C = P-Invariants) +1 C ← A | B ⊳ Augmentation of A with m × n identity matrix B +2 for i=1 to n do ⊳ n = |T| +3 +for each pair of rows c1, c2 in C[i-1] where c1[i] and c2[i] have the opposite signs do +4 +c ← |c2[i]|. c1 + |c1[i]|. c2 +5 +c´ ← c/g.c.d of each element of row c ⊳ g.c.d =Greatest common divisor +6 +augment matrix C[i-1]with row c´ +7 +end for +8 +Delete all rows of C[i-1] whose ith component is non-zero, the result is C +9 end for +10 Return C +Table 14: Place-Invariants + +The same procedure is used to find T-invariants by taking the transpose of the +Incidence Matrix A. Details and a discussion about the improvement of this +algorithm are presented in [118]. These algorithms are implemented in PIPE API and +can be used in form of function calls. + +5.7.3 Property Verification Method +The outcome of algebraic analysis technique is the satisfaction or violating of a +property with respect to a PN model. There are different methods to perform +property verification however there is usually certain theorems behind the reasoning +of necessary and sufficient conditions for the fulfillment of a property. In Petri Net +literature many solutions (proofs) for the property proving theorems are contributed +and can be applied to prove different properties when required. Using these +theorems and the available algebraic resources a property verification method +(algorithm) is developed which evaluates the conditions given in the theorem on the +PN model and results in satisfaction or violation of the required property. Figure 36 +presents the mechanism of algebraic verification technique in the verification +framework: + +Chapter 5 + +Proposed Methodology and the Verification Framework + +Page +96 + + +Figure 36: PN Algebraic Technique + +To explain our approach we present the theorems and an example property +verification method for the analysis of fairness property in a PN model in chapter 7. +PNML Execution and State-space Graph +It should be noted that PIPE library also offers an execution environment which can +be used to run the transformed PNML model. If the tokens (each representing a +BOM entity) eventually reaches its final state (place) then the execution is successful. +This asserts that the model is correctly transformed and it correctly represents the +behavior of its source i.e. the conceptual model. PIPE library also offers a function +to generate and visualize state-space graph of the PNML model. This can be useful +to find deadlocks and verify other system properties through graph reachability. +5.8 CPN based State-Space Analysis Technique +The second approach proposed for the dynamic semantic composability verification +is based on Colored Petri Nets and State-space analysis technique. This approach +effectively utilizes the potential of Colored Petri Net formalism, CPN modeling and +programming language, its execution environment and supporting tools in order to +verify a composed model at dynamic-semantic level with respect to the requirement +specifications. The unique feature of this approach is its data-centric nature. As +discussed in section 3.1.5 CPN supports level-3 PN modeling where tokens are +structured and can represent data objects. Also the transitions cover greater details of +the system behavior. Therefore the structure and the behavior of the system can be +modeled with greater details. In order to exploit the data-centric nature of our +approach we proposed the following stages: + + Phase-I +Refinement +Simuland +Reguirements +Engineering +Phase-V +All constraints satisfied +Phase-II +Analysis +Reguirements +Technique +Fail +Success +Constraints as System Properties +Property +Analvsis +Properties +Proving +to prove +SM-1 +Algebraic +Theorems +Verification +BOM +Components +Property +PN +Verification Method +Model +BOM to PNMIL +S1I-2 +Transformation +Abstract Level +PIPE +Modeling +Execution +Function +SM-N +BOM +Phase-Ill + Phase-IV +State-machines. +Execution of the +Conceptual +Executable +Werification +Model +Model +method +Transformation +TransformationChapter 5 + +Proposed Methodology and the Verification Framework + +Page +97 + +5.8.1 BOM Extension +The current BOM standard lacks certain structural and behavioral semantics which +are essential for modeling complex system behavior therefore we require +specification of additional modalities that can help in capturing the structure and +behavior of a system at a greater detail [119]. We therefore propose to extend the +BOM conceptual model specification by applying the concept of Extended Finite State- +Machines (EFSM), which is introduced and discussed with detail in [120]. An +Extended Finite State Machine (EFSM) is defined by the tuple: +M = (Q, I, Σ1, Σ2, V, Λ) where: +Q (≠∅) is a finite set of states. +I ⊂ Q is the set of initial states +Σ1 is a finite set of (send or receive) events. +Σ2 is a finite set of actions (Actions are the instructions to be executed and should +not be confused with the BOM actions, which are used in pattern of interplay). +V is the set of state variables. +Λ is a set of transitions; each transition λ ∈ Λ + +Where +q and q′ ∈ Q +e ∈ Σ1 is an event +g is a condition (or guard) +a ∈ Σ2 is an action. + +It means if the system is at a state q, an event e occurs, and the guard g is satisfied, +then action a will be executed and the system will transit to the next state q′. During +the firing of transition λ ∈ Λ the variables {vin} are used as input and the variables +{vout} are used as output. +Example: +This example is a modified version of an extended finite state-machine of a queue +discussed in [120] and is intended to explain the notions of EFSM. A queue +component is either empty or nonempty, and in which insertions are done at the rear of +the queue and deletions are done at the front of the queue. Also the queue has a +maximum size. Two events put and get are used to update the states of the queue. + +Figure 37: Buffer Extended finite state-machine [120] + +e [g] / a +λ = q +q′ +{vin} | {vout} + +1 +empty +nonEmpty +4 +3Chapter 5 + +Proposed Methodology and the Verification Framework + +Page +98 + +The EFSM model of the buffer is: M = (Q, I, Σ1, Σ2, V, Λ) where +Q= {empty, nonempty} +Σ = {put(string obj), get} +q0: empty +V = {front, rear, M, Data} +Λ: Transition Specifications: + +Transition 1 allows Queue to transit from empty state to non-empty when put +event is received. During this transition the variable rear is incremented. Also +the parameter “Obj” of Put event is stored in Data at the rear location. + + + +Transition 2 lets Queue to revisit non-empty state when put event is received if +rear is less than the maximum size. During this transition the variable rear is +incremented. Also the parameter “Obj” of Put event is stored in Data at the +rear location. + + +Transition 3 lets Queue to revisit non-empty state. It is fired if rear variable is +greater or equal to front+1 and less than the maximum size. It will send Get +event with data at the front location is sent as parameter. During this transition +the variable front is incremented. + + + +Transition 4 allows Queue to return back to empty state when if front+1 +reaches the maximum size. It will send Get event with Data at front location. +During this transition both front and rear variables are reset to zero. + +We apply the concept of EFSM to the BOM conceptual model, so that we can +introduce state-variables and extended representation for transitions (events, guards, +actions), to a form, which we name: Extended BOM or E-BOM. There are several +advantages in the BOM extension: +The usage of variables (or state-variables) in BOM state-machines allows to model +the attributes of a component (structure) and their effects caused due to the change +of states and occurrence of transitions (behavior). And values of these attributes can +Put(obj) [ ] / action{ rear++; Data[rear]=obj;} +1: empty +nonempty +{rear} | {rear, Data} +Put(obj) [rear=front+] +andalsorearM +ant +Front +Get +9 +Get +Input(front): +Out +output (Fy: +STRING +ket +val F= +font+1 +In +endChapter 5 + +Proposed Methodology and the Verification Framework + +Page 104 + +increments the rear variable then the transition Put is finally fired. After which a +token is produced at the nonempty state showing the state-transition. Also rear and +data variables are updated. Max variable retains the token (due to bi-directional arc). +If Put is fired again it will repeat the same process. If Get is fired provided the guard +is satisfied, then front, Max and data variables are read as input. The data (picked +from the front of the queue) will be sent to the out-CP. When the data is emptied the +token will be sent to the empty state. + +Automated Transformation Tool +In order to automate the E-BOM to CPN transformation process, we develop a +transformation utility, which takes an E-BOM component as input and produces +CPN- code for all three layers of CPN component model automatically. The code +follows CPN-XML specifications. For each E-BOM component, a separate CPN +sub-page is generated (programmatically) and the necessary CPN elements (places, +transitions, arcs, color sets, variable declarations, initial markings multi-sets, guards, +actions, code segments, CPN ML functions, ports, ports-tag) are generated in one +CPN output file, which can be loaded in CPN tools. Once all the CPN models of the +BOM composition are generated, the modeler creates a main model and “manually” +combines the generated CPN-CM modules (using CPN hierarchical features). The +output of this step is a composed CPN model. The modeler is also required to +initialize each component with data (in form of token assignments i.e. the initial +values of the tokens of state-variables and initial states of the state-machine). +S3b Evaluation +The S3b constraint in the requirement specification requires that “If the conceptual +model is transformed into an executable model, the latter should correctly represent +the structure and behavior of the former” (see Table 10). Therefore we have to +compare each CPN component (executable model) with its respective BOM +(Conceptual Model) to check that its structure and behavior is preserved after the +transformation. To show that S3b holds after the transformation we rely on the +following assertions: +1. As BOM is extended to E-BOM hence BOM ⊂ E-BOM. Any information +added by the modeler in E-BOM cannot cause loss of structural information +of BOM. Therefore E-BOM structurally preserves BOM. +2. To check that the generated CPN component contains all the Events and +their parameters, States and their exit-conditions, Actions and their +senders/receivers we need at least one transformation rule that is responsible +to transform these elements: +a. Rules 6 & 7 (see Table 15) are responsible for transforming Events +and their parameters into CPN component. +b. Rules 1 & 8 are responsible for transforming states and their exit- +conditions. +c. Rule 7 is responsible for specification of BOM-actions as transitions +in CPN model. Also rule 5 defines port-places which are used to +connect senders or receivers. +Existence of Rule 1, 6, 7 & 8 confirm that the structure of corresponding +BOM is preserved in the transformation. + +Chapter 5 + +Proposed Methodology and the Verification Framework + +Page 105 + +3. CPN Tools provide a built-in compiler for the compilation of CPN models +and report if there is any syntax error in the model. The absence of error +confirms that the transformed model is structurally consistent and +behaviorally functional. +For the behavioral bi-similarity we propose an inspection technique. At first we +evaluate that all the generated components possess the same behavior as defined in +the conceptual model. So we test the functional output of each CPN model by giving +the needed inputs. If by giving correct inputs, the model produces desired output +then its functional behavior is correct. To perform functional testing, the modeler +initializes all the IN-type communicating-ports (CPs) with tokens of required +parameters. (See Figure 39 for an example where IN-CP “Put” is initialized with +tokens of type String). Then the model is executed. If the model produces desired +output on the corresponding Out-CPs (In Figure 39 the desired output should be a +token of type string retrieved at Get Out-CP), then the functional test is successful. +The modeler performs functional test on all generated CPN components. +In the second step, when all CPN components are composed (i.e. the socket-places +of the main model are connected to the Communicating-Port places of the CPN +components then the modeler is required to inspect that CPN components are +connect exactly according to the Pattern of Interplay of the BOM composition. Also +when the composed model is executed the sequence of sending and receiving events +from one component to another (which can be observed at the main model by +seeing the movement of tokens) follows the pattern of interplay. If the execution is +according to the pattern of interplay and the components make progress until they +reach their final states, then we say that the behavior of the transformed model is bi- +similar to the conceptual model. This confirms the satisfaction of S3b constraint. +The execution can be automated or interactive. In automated mode the choices +between multiple progressive paths are randomly picked whereas in interactive model +the modelers can pick a path of his choice. Using this option the modeler can probe +paths that can lead to a successful execution scenario. During the execution CPN +tool also offers Data Collection Monitors for recording the data values, which are very +valuable for collecting statistics and results of the execution. +5.8.3 Verification of the composed CPN model +In the next step, the state-space analysis is performed. At first the state-space of the +composed CPN model is generated using CPN state space calculation tool. As +discussed in section 3.1.5 a state-space is a graph of nodes (of system-states or +markings) and arcs (transitions). When the state-space is generated, different query +functions can be used to explore the state space graph for various verification +questions. A query function is like an algorithm that explores the state-space graph. +These algorithms are based on theoretical concepts of Petri Nets state-space analysis +and are used to verify PN properties. Therefore we translate a system property given +in the requirement specification into a suitable PN property. There have been a lot of +contributions in the PN literature in specifying PN properties and methods of +reasoning of their satisfiability or violation. In CPN state-space analysis, the existing +methods can be utilized in developing query functions for their respective PN +properties. +CPN tools provide some built-in-functions for the common query tasks. We also +propose a library of additional functions to perform queries specific to our + +Chapter 5 + +Proposed Methodology and the Verification Framework + +Page 106 + +composability verification framework and the requirement specifications. Figure 40 +illustrates the state-space analysis of a composed CPN model using a query function. +We divide these query functions into two categories: + +(i) General System Properties +This category includes commonly known system properties such as freedom of deadlock, +live lock, starvation, or existence of boundedness, mutual exclusion, fairness, sequentiality, time- +synchronization etc. if any of these or similar system properties are included as a +constraint in the requirement specification then it is translated in CPN terms and a +suitable query function is selected from the Function library to perform verification +using state-space of the composed CPN model. + +Figure 40: CPN State-space analysis +For instance a deadlock freedom property can be translated into CPN terms as: +“An absence of a marking with no outgoing arcs in the entire state-space graph” +So essentially we need to find such a node in the state-space graph that violates +above condition. If no such node is found then the model is said to be deadlock free. +A library function ListDeadMarking() returns a set of all those markings (if +any) which have no outgoing arcs. If the result of this query is an empty list, then we +assert that the model is deadlock free. Similarly there are other library functions that +deal with the evaluation of other system properties. +(ii) Scenario Specific Properties +These properties are specific to the scenario (of the real system) under which the +model is built. The objectives or goals from the requirement specification are usually +translated in form of scenario specific properties. In CPN terms a typical goal or +objective can be translated as a certain desirable marking, where the values of state- +variables in structural layer evaluate to a particular criteria or reaching of particular +state(s) in behavioral layer is desired or certain data at the output port(s) of the +communication layer is looked-for. A goal or objective can be expressed in a +combination of all these possibilities too. +Scenario specific properties may also include certain safety or liveness assumptions, +which represent certain desirable (or un-desirable) situations that must (or must not) +occur in order to satisfy (or violate) the requirements. These properties are mostly +the CPN translations of the constraints defined in the requirement specifications. +Conceptual +Model +Requirement +Specification + +System Property + +Satisfie + +Violate + +State Space +System property +CPN Translation +Composed CPN +Model +Query function +(Algorithm) +Function +Library + +Chapter 5 + +Proposed Methodology and the Verification Framework + +Page 107 + +Unlike general system properties, verifying scenario specific properties is not a +standard operation, and depends on the way they are defined. Most commonly, we +make use of our proposed library functions: IsEqual(), IsNotequal(), +IsBetween(), IsUpperBound() or IsLowerBound() to construct a +“predicate”, that serves as a condition evaluation criteria. Then we use +SearchNode(predicate)function to find those nodes, which satisfies the +predicate. If one or more nodes are found, then it is verified that the goal is reachable. +In cases, where it is important to know how a sequence of the occurrence of +transitions, leads to a particular situation when a property is satisfied (e.g., how an +objective or goal is reached) we use SearchArc()function with the predicate. +This tells us the path in the graph that leads to fulfillment of a property. We also +develop an export function, that creates a .DOT file of the entire state-space and can +be viewed in graph tools such as GraphViz or Gephi, for visualization and +performing further tests on the graph such as finding certain paths/shortest +paths/longest paths between two particular nodes. When, a CPN composed model +satisfies all the properties in the requirement specification, we say that it is verified at +dynamic semantic composability level. In chapter 8 we discuss a Field Artillery +Scenario as an example of CPN state-space analysis to explain our approach. +An example of translating a scenario-specific property in CPN terms is a restaurant +model where we assume that customers may leave the restaurant without paying the +bill because they have been waiting for a long time for the waiter to bring bill. This +act of the customers is known as “Balking” and is undesirable. Its translation in CPN +can be as follows: + +“There should be no arc with the name “balk” that leads to any marking in the graph” + +Arcs are generated due to firing of the transitions. Existence of balk arc means +somewhere in the model an incidence occurred when a customer balked (by firing +balk transition). So essentially we need to find that such arc is absent in the state- +space graph. This can be done by using SearchArc()function. Note that this is a +simple example. There could be cases in which a sequence of transitions (called +traces) or cycles are searched to verify a property. Error! Reference source not +found. describes the overall process of state-space analysis technique. + +Chapter 5 + +Proposed Methodology and the Verification Framework + +Page 108 + + +Figure 41: State-space Analysis Technique + + +State-Space Reduction Technique +In order to alleviate the well-known problem of state-space explosion we propose a +reduction technique called “compositional state space”. The main idea of this technique is that in +a hierarchical composition of CPN model, we propose to only consider the places in the +main model and treat all the composed components as black boxes. The inputs and outputs +of each component can be observed using the flow of Tokens and the data they carry. +Therefore in the state-space graph we only keep the markings in which any token is present +in the Main model (i.e., any of the place in the main model has at least one token) and delete +all other nodes in the state-space graph using the algorithm presented in Table 16. The +resultant graph will be a reduced form of the actual graph and only considers those markings +that reflect a compositional state-space. It is called compositional state-space because it only +represents a part of the actual state-space which is the result of interactions due to the +composition of components. In our experience this subset state-space of the whole state- +space is sufficient to evaluate whether the objectives, goals and the constraints are satisfied +or not. + + + + + + + + + + +Refinement +Phase-I +Function +Simuland +Library +Reguirements + Select +Engineering +Phase-V +Phase-II +Analvsis +Query function +(Algorithm) +Technique +RS completely satisfied +Reguirements +State Space Analysi: +Analvsis +CPN propert: +Translate +Property +A... +1.5 +CPN State Space +Modeler's Input +BOM to E-BOM +Extension +CPN +Modehng +Abstract Level +Composition +CPN-CM +Automatbe +E-BOM +Execution +E-BOM +Transfomation +Editor +N +Phase-IV +Phase-Im +CRepeat +Conceptual +Executable +I to N +BOM +Model +Model +CPN Model Execution +Trans formation +Trans formationChapter 5 + +Proposed Methodology and the Verification Framework + +Page 109 + +Algorithm: Compositional State-Space Generation +Input: Original State-Space Graph G +| Output: Reduced State-Space Graph G +1 {Vertices} ← Get-Vertices(G) ⊳ Retrieve all the nodes of the graph in a collection +2 for v∈to {Vertices} do +3 +If False ← Is-Filtered(v) then +4 +G ← Remove-Vertex(G, v) +5 Else +6 +next +7 +end if +10 end for +11 Return G ⊳ Reduced state-space +12 +13 Procedure Remove-Vertex(Graph G, Vertex v) +14 {Predecessors} ← Get-Predecessors(G, v) ⊳ Retrieve all the predecessor vertices of v in G +15 {Successors} ← Get- Successors (G, v) ⊳ Retrieve all the successors vertices of v in G +16 for p∈to { Predecessors } do +17 +for s∈to { Successors } do +18 +G ← Add-Edge(p, s, “DIRECTED”) ⊳ Add a directed arc from each predecessor +19 + to each successor ⊲ +20 +G ← Delete-Vertex(v) +21 +end for +22 end for +23 Return G +24 +25 Procedure Is-Filtered (Vertex v) +26 +If {places}← GetData(v) then ⊳ Each vertex is a marking, which contains data of all +27 ⊳ the places of the model with their names and their token values ⊲ +29 for p∈to { places } do +30 +if p is a main place and it is not empty then +31 +Return TRUE ⊳ A valid marking with a non-empty Main place is found +32 +else +33 +next +34 +end if +35 +end for +36 +⊳ if the loop is complete then there is no main place which is not empty +37 Return FALSE +Table 16: Compositional State-space generation algorithm + +Using the Compositional state-space generation algorithm we can filter unnecessary +nodes and reduce the size of the graph. The current limitation of this approach is +that we first need to construct the actual state-space which is a bottleneck if the +model is too large. But this limitation is due to the fact that the process of CPN +state-space graph generation cannot be externally modified otherwise if the principle +of our reduction technique is applied to the state-space generation algorithm it will +directly generate the reduced graph. In chapter 8 we will present the results of our +reduction technique by applying it to the Field Artillery example model. + + + +Chapter 5 + +Proposed Methodology and the Verification Framework + +Page 110 + +5.9 CSP based Model Checking Technique +The third approach proposed for the dynamic semantic composability verification is +based on Model Checking, which is widely accepted as formal technique for software +verification. In this approach we propose to use Communicating Sequential +Processes formalism as a model description language and Process Analysis Toolkit +(PAT) as its execution and verification environment in order to verify a composed +model at dynamic-semantic level with respect to the requirement specifications. The +strength of this approach is in its ability to answer a large variety of verification +questions due to the fact that the verification criteria can be specified using LTL, +CTL or any of the temporal logic extensions. The Model Checking technique is +becoming more promising and acceptable by many software verification users since +there is an abundance of improved algorithms, efficient data-structures and faster +techniques which are constantly being contributed by the model checking +community in order to manage large models with complex modeling requirements. +We propose to integrate CSP based model checking verification approach in our +composability verification framework. The following stages are proposed in order to +perform composability verification using model checking approach. +5.9.1 BOM Extension +The E-BOM extension for CSP based Model Checking approach is also inspired +from the concept of Extended Finite State-Machine as discussed in section 5.8.1. +The extended BOMs for CSP can also have state-variables but since CSP# +specification does not allow declaration of strings or higher data-types, the state- +variable definitions are restricted to integer and Boolean34, which in our experience +are sufficient to model the behavior of BOM components using CSP (or otherwise it +is required to narrow it down to a less detailed version of the component, where only +the necessary behavioral details are specified). The transitions of E-BOM contain +current-state, event (with parameters), guard, actions and next states. However in this +case the action scripts are written in CSP# specification language instead of CPN- +ML language. And instead of input and output variables, we have local variables +which are accessible only to the component and global variables which are accessible +to all the components of the composed model. Some additional information such as +time constraints and probability factors are further proposed to be included in the +BOM extension so that the behavior of complex systems such as real-time systems +and probabilistic systems can be modeled and verified. +Since Timed-CSPs support a number of timed behavioral patterns to capture +quantitative timing requirements, such as delay, timeout, deadline, therefore we +suggest using these patterns as time functions in the BOM extension, which helps in +the automatic transforming of E-BOM into Timed-CSP components. These time +functions are essentially assigned to the E-BOM transitions as explained in the +following table: + + +34 Generally the high level or user defined data types are not permissible in most of the model +checking description languages due to the economy of state size, and to avoid risk to state-space +explosion. However if the use of such type is inevitable, the PAT tool do provide mechanisms of +importing classes from external libraries. If this is the case then the modeler is required to program the +components in PAT manually, instead of relying on our automatic transformation tool. + +Chapter 5 + +Proposed Methodology and the Verification Framework + +Page 111 + +Time Function +Usage and Explanation +Wait[duration] +Wait is assigned to model the delay in an activity. An enabled +transition waits for the given duration before it is fired. +TimeOut[duration, next] When a timeout function is assigned to a transition, it waits for an +event to occur. If the event occurs before timeout, it transits to the +next state described in the transition definition; otherwise it transits +to the next state described in the timeout parameters. +Deadline[duration] +A transition is constrained to fire when the deadline is reached. The +difference between Wait[] and Deadline[] function is that the +former makes the system inactive, i.e., it cannot do anything but +wait, whereas when the latter is used the system is active and can +respond to events etc., until its deadline is reached. +Table 17: Time functions in E-BOM +Using any of these time functions during the BOM extension is useful to capture the +behavior of the real-time systems. In order to further capture the behavior of the +complex reactive systems, we also propose to introduce probabilistic factors in the +BOM extension. These probabilistic factors can either be used to model the system +behavior in form of Markov Decision Processes (MDP) as discussed in section 3.2.5. +Or the probability factors can be used to model random time delays, timeouts or +deadline, using a particular probability distribution function. For modeling the MDP +behavior probability factors can be assigned to multiple transitions of a component’s +state using the following notation provided by the PAT tool: +Pcase { +[P1]: Transition 1 +[P2]: Transition 2 +… +[Pn]: Transition n +} ; +Where ∑ +𝑃𝑖 +𝑛 +𝑖=1 += 1 +For randomizing time functions, we propose to assign the commonly used +probability distribution functions as parameters in the E-BOM: +Probability Distribution +Functions +Usage and Explanation +Normal[mean, variance] +Returns a random value from a normal distribution with a given +mean and variance. (Since PAT does not support higher types +so we have confined these functions to use integers). +Discrete[a, b] +Returns a random value from a discrete uniform distribution +between a and b (a and b included), such that a < b +Exponential [1/lambda] +Returns a random value from a an exponential distribution with +parameter 1/lambda +Table 18: Probability Distribution Functions + +In order to implement these assignments we develop an external function library in +C# which can be imported and used in PAT. A call to these functions generates a +random number according to the specified probability distribution. Beside the time +functions, these functions can also be used to generate random values for global or +local variables, which can help in modeling different probabilistic system behaviors. +When each BOM component is extended to the respective E-BOM we proceed to +the next stage. + +Chapter 5 + +Proposed Methodology and the Verification Framework + +Page 112 + +5.9.2 E-BOM to CSP# Transformation +At this stage, each E-BOM component is transformed into a CSP# process +component and composed into an executable system. The main idea of this +transformation is based on [121], which discusses the transformation of UML state +machines to CSP. We however extend this transformation with Communication +channels, Time-functions and probability factors to be able to use it for E-BOM +transformation. Table 19 shows the rules used in the transformation process: +E-BOM + +CSP# Statement and Description +States +→ +State-Name() +Each state in E-BOM is defined as a CSP process. + +Final-State() = Skip; +This statement defines a final state in CSP where Skip is a reserved word means the process terminates +successfully. If no such statement exists in any component of the composed model then it is said to be a +non-terminating model. +Component +→ +Component-Name = Initial-State() or Component-Name(i) = Initial-State(i) +An initial state is defined and assigned to the component. If a component has multiple instances it is +passed a parameter ‘i’ which represents the instance number. +Transitions +→ +Simple Transitions: + +State() = [guard] event !/? parameters {action} → NextState(); + +The transitions are defined using the above format, where State() is the current state of a component. +[guard] is a conditional statement. If it is true only then the transition will be enabled. Event is sent using +‘!’ symbol or received using ‘?’ symbol through an event channel. For each event in an E-BOM +component, we define a channel as follows: +channel event-name 0; +In CSP# “0” means the buffer size of the communication channel is zero, which further means that it is a +synchronous channel. Parameters are the values that are passed during an event exchange and a separated +using ‘.’ Actions are scripts that should be executed when the transition is fired. Usually these actions are +used to update local or global variables. NextState() is the new state which will be reached when the +transition is fired. It must be defined within the CSP component body. +Transitions with Time functions: + +Following statement represents a transition with timed-functions: + +State() = [guard] Wait[d]; event !/? parameters {action} → NextState(); + +State()=[guard] event!/?parameters {action} → NextState() deadline[d]; + +State()=[guard]event?parameters{action}→NextState() timeout[d] NextState2 (); + +Note that in case of timeout, the transitions should only be receiving an event. +Markov Decision Process style Transitions: +State() = pcase{ + [Prob1]: [guard] event !/? parameters {actionA} → NextStateA() + + [Prob2]: [guard] event!/? parameters {actionB} → NextStateB() +}; + +Note the postfixes A and B in action or next states of the transitions. Using this CSP# code style multiple +transitions can be modeled with different probabilities for either creating a variation of the action which is +fired when one of these transitions is selected in a simulation run, or the next states (or both). +Transitions with Probability distribution functions: +For using probability functions, at first it is required to import our external probability function library +using: + +#import "PAT.Lib.ProbabilityDistributionFunctions"; + + +Following are some examples of how the function calls can be made: +var x = call(Normal, 10, 4); +An integer variable is defined which will randomly be assigned a value using normal distribution with +mean=10 and variance=4 + +Chapter 5 + +Proposed Methodology and the Verification Framework + +Page 113 + + +Wait[call(Exponential, 1/4)]; +Delay function with an exponential distribution, where the inter-arrival rate is ¼. +State- +variables +→ +var Variable-Name=Initial-Value; +or +#define Constant initial-value; + +In CSP# weakly typed variables are used which means that while declaring a variable, the type is not +specified. The global variables can be accessed by all components whereas the local variables can only be +accessed by the component they belong. +Component +→ +Component-Name = Initial-State() or Component-Name(i) = Initial-State(i) +An initial state is defined and assigned to the component. If a component has multiple instances it is +passed a parameter ‘i’ which represents the instance number. +Composed +Model +→ +Composed-Model = Component1 ||| Component2 ||| … ComponentN; +The composed model (name) is defined as a composition of CSP process components with an +interleaving operator ‘|||’ between each other. However if there are broadcast events (i.e., one event is +sent to all components); or one to many; or many to one synchronization events are used then a parallel +operator ‘||’ is used to compose CSP process components. +Table 19: E-BOM to CSP# transformation rules +We develop a transform tool that takes all the E-BOMs as input, and outputs a single +composed model using CSP# description language. The generated CSP# composed +model can be opened in PAT tool and compiled for checking errors. If no errors are +found then the transformed model is said to be structurally consistent and +behaviorally functional and it is ready for simulation and verification. It can also be +directly compiled, executed and verified using command line operation. +S3b Evaluation +The S3b constraint in the requirement specification requires that “If the conceptual +model is transformed into an executable model, the later should correctly represent the structure and +behavior of the former” (see Table 10). In order to evaluate S3b, i.e., to check that the +structure and the behavior of the generated executable model (CSP composed +model) correctly represents its conceptual model (BOM composition), we propose +following steps: +1. For each CSP component, manually inspect that it contains all the states that exist +in its corresponding BOM component +2. Inspect that the exit condition(s) of each State in BOM correspond to a +transition(s) and a next state(s) in CSP. +3. Execute the generated CSP model in PAT simulator and observer that all the +components reach their final states (or in case of a non-terminating model each +component re-visit its initial state iteratively). +Step 1 & 2 confirms by inspection that the structure of the generated model correctly +represents its conceptual mode whereas step 3 confirms that it behavior is bi-similar +to the conceptual model and therefore satisfies S3b constraint. +5.9.3 Verification of the composed CPN model +At this stage, the CSP composed model undergoes composability verification using +PAT model checker. At first the requirement specification is translated into CSP# +property (or assertion) description language. This language is based on a mix of +classical Linear Temporal Logic (LTL) and its different extensions such as Real-Time +LTL and Probabilistic LTL and is used to construct assertions (verification +questions) of various types, such as reachability properties, safety properties, liveness +properties, deadlock freeness etc. We use the syntax of assertion specification +language of PAT to translate the objectives and constraints of given requirement + +Chapter 5 + +Proposed Methodology and the Verification Framework + +Page 114 + +specifications. Following are some generic examples of how to specify PAT +assertions: + +1 +#assert System deadlockfree; +This +assertion +checks +deadlock +freedom in the ‘System’ +2 +#assert System reaches goal?0; +This assertion checks that whether +the ‘System’ can reach its goal (by +receiving a goal event with ‘0’ +parameters) +3 +#assert System |= <>goal?0; +This is an equivalent LTL assertion +It checks if the goal is eventually +reachable. +4 +#assert System |= []<>goal?0; +This LTL assertion checks if the +goal is always eventually reachable +by the system. Note that it is +different from assertion 2. +5 +#assert System |= <>goal?0 deadline[50]; +This +assertions +verifies +goal +reachability with time constraint i.e., +its checks if the goal is reachable +within 50 time units or not? +6 +#assert System |= <>goal?0 with prob; +This assertion checks the min and +max +probability +of +the +goal +reachability. +7 +#define goal (Some-Variable == True); +#assert System reaches goal; +This is another way to verify goal +reachability, +where +the +goal +definition is based on some value of +a variable. +Table 20: Some examples of PAT Assertions + +When an assertion is defined and its syntax is correct, we can verify it by running the +PAT model checker and select the desired assertion from the list. The model checker +will present the verification results with success, showing that the assertion is verified +or it will provide a counter example if the assertion is not satisfied. In chapter 9, an +example of field artillery is presented to show how a CSP composed model is verified +with requirement specifications defined as PAT assertions. Figure 42 describes the +overall process of state-space analysis technique. + +Chapter 5 + +Proposed Methodology and the Verification Framework + +Page 115 + + +Figure 42: CSP based Model Checking Technique + +5.10 Summary +In this chapter the proposed composability verification framework is discussed in +details with its structural and functional specifications. Each activity, algorithm, +technique and the process is explained in the perceptive of Component based M&S +life-cycle. The composability verification is performed at three levels of +composability called static, semantic and dynamic-semantic composability. The main +objective of the proposed framework is to verify composability at these levels with +respect to requirement specifications. The first two levels are suggested to be +evaluated using static-analysis techniques whereas the third level is proposed to be +verified using dynamic analysis techniques. At first the behavior of the composed +components is evaluated using State-machine matching technique. If they pass this +step, they are subjected to one of the three proposed approaches called (i) Algebraic +Analysis Technique, (ii) State-space analysis technique or (iii) Model checking for +dynamic-semantic composability verification. The choice of these approaches +depends on the nature of the model. In chapter 10 we will present some guidelines +on how to choose an appropriate approach. + +When the entire composability verification process is successful, it implies that the +BOM based composed model is structurally and behaviorally consistent, it is +composable at syntactic, semantic and dynamic-semantic level and is correct with +respect to the given requirement specifications. + + + +Phase-I +Refinement +Simuland +Reuirements +Engineering +Phase-V +Phase-II +Analysis +Technique +Rs completely satisfied +Reguirements +CSP Model +Checking +Analvsis +GlobalVariables +Modeler's Input +and Modal Checker +Translate +BOM to E-BOM +Extension +Abstract Level +CSP# +Modeling +Execution +Automztis +E-BOM +E-BOM +Transfomztion +Edlitor +Phase-I1I +Assertions +Executable +Conceptual +04 +Model +Model +CSP Model Execution +Transformation +Transformation +Page 116 + +Chapter 6 +Composability Verification Process + +Chapter 5 mainly presented the specification of our proposed composability verification framework +including details of different modules, their mechanics and the procedures they perform. In this +chapter we present how to use our framework. It can be used as a manual of our composability +verification framework. At the end of this chapter we also provide necessary recommendations for the +selection of appropriate approach based on the given inputs. + +The description of shapes used in the following flow diagrams is as follows: +Object, +Data, +Model, +Component etc. + +Any shape of this color +express a 3rd party tool + + List, Collection or Set of +objects, Data, Model + +Stop +means +that +the +process has failed. + +Process or action + +Go means it is successful, +therefore process with +the implementation phase + +Iterative process. + +Compare two objects. + +Extension or Transformation +of object + +Compare multiple objects + +Extension or transformation +of many objects + + + +Comments + + + +Data, Process, Information +flow + + + +Page connector + + + +Repeat +process +(Go +to +previous step) + + + +6.1 +Composability Verification Process +Figure 43 to Figure 53 illustrate the composability verification process in the form of a +flow chart. (The illustrated steps are explained later in this section): +Stop +Go +X + +Chapter 6 + +Composability Verification Process + +Page 117 + + +Figure 43: Formulation of Simuland, Requirements and Conceptual Model +Abstraction +Real System +Requirement +Engineering +Simuland +UML +diagrams +(or +others) +representing +structure +and +behavior of the +system +Formal +or +Informal +BOM +Repository +Construct +components +from scratch and store +them in the repository +Search components that +match the requirements + +Candidate BOMs +Select suitable BOMs +Filter +BOMs +and select the +most +suitable +set of BOMs +that match the +requirements +Compose selected BOMs + +Conceptual Model +1 +Matching and +Selection +1 +2 +3 +4 +5 +6 +7 +Requirements + +Objectives + +Constraints + +Selected BOMs + +Chapter 6 + +Composability Verification Process + +Page 118 + + + + + + +If all candidate +BOMs +are +tried +without +success +then +repeat step 3 + +Syntactic Matching Process +Start +Rule +based +Syntactic +Matching +process to check that +the components can +correctly fit to gather +and their inputs and +outputs match each +other. +Sender BOM-i +Events +Entities +States +Actions +Receiver BOM j + +Events +Entities +States +Actions +Check SM-Rule 1: +Name of the send-event and +receive-event +should +be +same +Send-Event +Rule-1 +Passed +? +No +Stop +and +repeat from +step 5. +8 +Yes +Proceed +to Rule-2 +Check SM-Rule 2: +Each send-event should have at +least one corresponding receive- +event and vice-versa +Sender BOM-i +Events +Entities +States +Actions +Receiver BOM j + +Events +Entities +States +Actions +Equal +Names +Rule-2 +Passed +? +No +Stop +and +repeat from +step 5. +Yes +Proceed +to Rule-3 +Check SM-Rule 3: +The +number +of +parameters +(content characteristics of event +types) of the send-events should +be the same as the number of +parameters of the receive-events. +Sender BOM-i +Events +Entities +States +Actions +Receiver BOM j + +Events +Entities +States +Actions +Equal no. of +parameters +Receive-Event +Rule-3 +Passed +? +No +Stop +and +repeat from +step 5. +Yes +9 +10 +11 +2 +1 +Figure 44: Syntactic Matching Process + +Chapter 6 + +Composability Verification Process + +Page 119 + + + + +Static-Semantic +Matching Process +Check SSM-Rule 1: +“Area-of-Interest” attribute of +all the actions should be exactly +same as that of POI or should +belong to an equivalent class in +the respective ontology +Rule-1 +Passed +? +No +Stop +and +repeat from +step 5. +12 +Yes +Proceed +to Rule-2 +13 +3 +2 +Start Rule based Static- +Semantic +Matching +process to check that +the +composition +is +meaningful +and +the +components +can +correctly +understand +each other. +Pattern of Interplay (POI) +BOM-1 +Events +Entities +States +Actions +BOM N + +Events +Entities +States +Actions +BOM-OWL + + + + + +AOI +Purpose +Data Type +Units +Check SSM-Rule 2: +“Purpose” attribute of all the +actions should be exactly same +as that of POI or should belong +to an equivalent class in the +respective ontology +Rule-2 +Passed +? +No +Stop +and +repeat from +step 5. +Yes +Proceed +to Rule-3 +Check SSM-Rule 3: +Data types of each element in the +event parameters of the send-event +and receive-events should be of same +class, equivalent class or should be in +direct hierarchical relationship +Rule-3 +Passed +? +No +Stop +and +repeat from +step 5. +Yes +Proceed +to Rule-4 +14 +15 +Figure 45: Static-Semantic Matching Process + +Chapter 6 + +Composability Verification Process + +Page 120 + + + + + +Check SSM-Rule 4: +The units of the quantities expressed +in +each +element +in +the +event +parameters of the send-event and +receive-events should be of same class, +equivalent class or should be in direct +hierarchical relationship +No +Stop +and +repeat from +step 5. +3 +Yes +If Static-Semantic Matching +Rule 1, 2, 3 & 4 are satisfied +then we can confirm that the +communication among the +components is meaningful as +intended. +Perform State-machine +Matching Process + +Rule-4 +Passed +? +15 +16 +Start +Dynamic-Semantic +Composability evaluation. +In the first step, the state- +machines +of +all +the +composed +BOM +components are matched +to check their behavior +compatibility. + +Candidate BOMs +Transform +BOM State-machines +to SCXML +Abstract level execution +SCXML +1 +SCXML +2 +SCXML +N +Is +Final? +No +Stop +and +repeat from +step 5. +Yes +The composed +components +are behaviorally +compatible! +If the SCXML instances of composed +BOM components are executed at an +abstract level, and they all reach their +final states then the state-machines are +said to be matched. +4 +17 +18 +Figure 46: State-machine Matching Process + +Chapter 6 + +Composability Verification Process + +Page 121 + + +Figure 47: Approach Selection | PN Algebraic Technique + +4 +Select an appropriate approach for dynamic- +semantic composability analysis +PN Algebraic +Technique +19 +CPN State-Space Analysis +Model Checking +If +standard +BOM +components +are +composed +(with +no +information +available +for their extension) and +only general structure +and behavior is to be +analyzed +then +this +approach is suitable. + + +Conceptual +Model +Transform +BOM to PNML +PNML +Model +23 +21 +20 +22 +If details of the BOM +components are available +which are required to +extend them into to E- +BOMs +and +functional +specification +of +the +components +is +to +be +evaluated +then +this +approach is suitable. + +5 +Transform BOM- +state +machines +into a single PN +model +If +the +model +requirements +contain time constraints and (or) +the +model +possess +non- +deterministic behavior and (or) +the model has a large number of +state (but does not require +detailed enumerations) then we +propose to use this approach. +6 +PNML Execution +24 + +If +the +execution +is +successful such that it +leads to final states, +then the model satisfies +S3b. +Meaning +the +behavior +of +transformed +model +correctly represents its +conceptual model. +PIPE execution +Environment +No +Stop +and +repeat from +step 5. +Yes +Continue +Verification +7 +Success + +Chapter 6 + +Composability Verification Process + +Page 122 + + + + +Figure 49: Implementation + + +Requirements +Can +did + +Can +did + +Objectives +Can +dida + +Can +dida + +Constraints +Property Verification +Translate objectives +and Constraints into +PN properties +26 + +25 + +Next +property +Algebraic Computation +Resources +(Incidence Matrix, P-Invariants, +T-Invariants etc.) + \ +Property- +Proving +Theorem + +Property +Verification +Method +PIPE Function +library +Calculate algebraic computation +resources of the PNML model +using PIPE library functions +Construct a property verification +method using an appropriate PN +property proving theorem +RS +Satisfied? +No +Composability +verification failed. +Modifications in +the +conceptual +model +are +required. +Yes +Composability verification +is successful. + +The conceptual model is +qualified +for +the +implementation phase +Go +Stop +PNML +Model +7 +Composed +Model +Simulation +Model +Experimental + Model +Code +Design of +Experiment +Simulation Results +Simulation +Go +Figure 48: PN Algebraic Technique (continued) + +Chapter 6 + +Composability Verification Process + +Page 123 + + +Figure 50: State-Space Analysis Technique + +\ +Conceptual +Model + +BOM to E-BOM +Extension +27 +Modeler’s input is +required here to +extend BOM into +E-BOM + +E-BOM + +Transform E-BOM to +CPN Component Model +Each +E-BOM +component +is +automatically +transform into CPN +component Model + +CPN +Component models +28 +5 +E-BOM +Extension Utility +CPN-CM is our proposed +component specification +based on CPN language +Structural Comparison +with the Conceptual +Model +Does the transformed +model contain all Events, +parameters, +Actions, +States, exit-conditions as +specified +in +the +conceptual Model? +Is the behavior of the +transformed model bi- +similar to the conceptual +model? + +Perform functional test +on each component to +check that the inputs +produce desired output +according +to +the +conceptual model. + +Perform CPN execution +to compare that the +progress is made by all +the +components +according to the pattern +of interplay defined in +the conceptual model. + + +Behavioral Comparison +(Functional Testing) +CPN Execution +Environment +Perform Model inspection and +check that all the elements of +Conceptual model are present +in the transform model +Perform functional testing: +Initialize +inputs +of +each +transformed +component +separately and execute the +component +in +the +CPN +execution +environment +to +check if it produces desired +output +according +to +the +conceptual l model + +Is +Successful? + +No +Stop +and +repeat from +step 27. +8 +Yes +S3b +partially +satisfied + +Chapter 6 + +Composability Verification Process + +Page 124 + + +Figure 51: State-Space Analysis Technique (continued) +Requirements +Can +did + +Can +did + +Objectives +Can +dida + +Can +dida + +Constraints +Translate objectives +and Constraints into +CPN properties +Next property +Modeler is required to manually +compose all the generated CPN +components into a main CPN +model. +Compose CPN +Components +CPN +Composed +Model +Initialize and Execute +CPN Model +Successful +No +There are exceptions in the +execution. Check and +Repeat step 29, or 28, 26 + + +29 +30 + +Generate State-Space +31 +Yes +S3b completely +satisfied. + +Perform CPN Property +Verification +32 +RS +Satisfied? +No +Composability +verification failed. +Modifications +in +the +model +are +required +Yes +Composability +verification +is +successful, go to implementation +phase +Go +Stop +8 +CPN +Hierarchical +Modeling Tool +CPN Execution +Environment +CPN State-Space +Analysis Tool +Property Verification +Query Function +(written in CPN-ML) +CPN ML +Programming +Environment +CPN Query +Function library +Next +function + +Chapter 6 + +Composability Verification Process + +Page 125 + + +Figure 52: Model Checking +Continue from step 22 +\ + +Conceptual +Model + +BOM to E-BOM +Extension +33 +Modeler’s input is +required here to +extend BOM into +E-BOM + +E-BOM + +Transform E-BOM to +CSP Process +Each +E-BOM +component +is +automatically +transform into CSP +Process model. + + +CSP +Process Components +34 +6 +E-BOM +Extension Utility +CSP process components +are +represented +using +PAT’s CSP# specification +Structural Comparison +Does the transformed +model contain all states, +and events as specified in +the conceptual Model? +Behavioral Comparison +PAT Simulation +Environment +Perform Model inspection and +check that all the elements of +Conceptual model are present +in the transform model +Perform behavioral similarity +evaluation by simulating the +CSP composed model in the +PAT simulation environment. +If it reaches final states then it +correctly +represents +the +behavior of its corresponding +conceptual model. + Pass? + +No +Stop +and +repeat from +step 33, 19 +or 5 +9 +Yes +S3b satisfied +E-BOM with Time +constraints +and +probabilistic factors +Compose CSP +Components +CSP Composed Model +35 +Compose all the generated +CSP components using +parallel operator + +Chapter 6 + +Composability Verification Process + +Page 126 + + +Figure 53: Model Checking (continued) + +The Composability Verification Process is explained as follows: + +6.1.1 Formulation of Simuland, Requirements and Conceptual +Model +In step 1, the Real system is studied and a suitable simuland is formulated. It can be +described formally or informally. We assume that UML diagrams are used to describe +the simuland. The system is also studied to gather requirements and formulate +requirements using our proposed formal requirement specification method (step 2). +With this information at hand, suitable components are searched in the BOM +repository, with an assumption that a composition of these components will form a +conceptual model that represents the simuland (step 3). If a desired component is +Requirements +Can +did + +Can +did + +Objectives +Can +dida + +Can +dida + +Constraints +Translate objectives +and Constraints into +CSP assertions +Start PAT +Model Checking Tool +36 + +Verify Assertion +37 +RS +Satisfied? +No +Composability +verification failed. +Modifications +in +the +model +are +required +Yes +Composability +verification +is +successful, go to implementation +phase +Go +Stop +9 +PAT Model +Checker + +Assertions +LTL, CTL, RT- +LTL, PLTL +Next +Assertion + +Chapter 6 + +Composability Verification Process + +Page 127 + +not found it is constructed form the scratch, added to the repository, and then used +in the current context (step 4). +The discovered components are called candidate components. Among these +candidates, most suitable ones i.e., those that best match the simuland and the given +requirements, are selected (step 5, 6). +These BOM components are composed and a conceptual model is constructed (step +7). We recommend that the modeler also creates a formal model of the conceptual +model using our proposed BOM formalism and graphical notation. This will help in +documentation and understanding details of conceptual model and its composition. + +6.1.2 Syntactic Matching Process +When the verification process starts the Composed BOM model (conceptual model) +is passed through a rule-based static analyzer to verify the composability at syntactic +level (step 8-11). If this level is passed then the constraint S1 (as defined in Table 10) +is satisfied and only then the model is cleared for the next step (otherwise the +verification process is stopped and another candidate selection is picked, composed +and this step is revised). + +6.1.3 Static-Semantic Matching Process +In the next step the components are analyzed at static-semantic level using the +semantic analyzer (step 12-15). When this step is passed then the constraint S2 (as +defined in Table 10) in is satisfied and the BOM composition is ready to be verified at +dynamic-semantic level. + +6.1.4 State-machine Matching Process +At this level, the first step is to perform state-machine matching of BOM +components using State-machine checker (step 15 – 18). A successful state-machine +matching satisfies the constraint S3a (as defined in Table 10). + +6.1.5 Approach Selection for Dynamic-Semantic Composability +Verification +In the next stage the verification framework offers three choices of verification +technique for the analysis of dynamic-semantic composability level. The modeler can +choose algebraic technique if there is no information available to extend the BOM +components into E-BOM. Therefore the conceptual model will be transformed into +PNML without requiring any extension. If the modeler has details and data available +to transform BOM into E-BOM and the model does not represent a real-time +system, then it is highly recommended that the second proposed approach (CPN +state-space analysis) should be chosen. If the model represents a real-time system and +it is stochastic in nature then the modeler should choose the third approach (Model +checking). These are general guidelines and are not concrete rules. The ultimate +choice of the approach depends on the nature of the model, nature of the +requirement specification properties and the available information. + + +Chapter 6 + +Composability Verification Process + +Page 128 + +6.1.6 PN Algebraic Technique +When Algebraic technique is selected, at first the conceptual model is transformed +into PNML model (step 23). This PNML model is executed in PIPE execution +environment to evaluate S3b (step 24). If successful then the requirement +specification properties are taken one by one and translated into a PN property (step +25). Thereafter a property proving theorem is selected that proves this PN property. +Based on this theorem a property verification method is constructed inform of an +algorithm. Running this algorithm proves or falsifies the requirements specification +property (step 26). If all the properties in the requirement specification are satisfied +then the model is successfully verified otherwise the process is stopped and model +refinements are made. + +6.1.7 State-Space Analysis Technique +When the CPN state-space analysis technique is selected, at first each BOM +component is extended to E-BOM (step 27). This step requires modeler’s input and +can be delivered using the BOM-to-E-BOM extension utility. When the extension is +complete, each E-BOM is transformed into our proposed CPN component model +using our automatic transformation tool (step 28). The output of this step is a set of +CPN components. At this step it is required to conduct structural and behavioral +comparison between the generated components and the respective BOM using +inspection and functional testing methods. If the comparison is successful then S3b +constraint of the requirement specification is partially satisfied. +The modeler is then required to compose these generated components in a main +model using CPN hierarchical tool (step 29). (Binding IN-ports and OUT-ports of +each component using sockets in the main model). When the model is composed, it +is executed (step 30) using CPN execution environment to test that all components +correctly interact with each other and make necessary progress to reach the final +states. If the execution is successful then the constraint S3b is fully satisfied, +conforming that the structure and behavior of the executable model correctly +represents its respective conceptual model and therefore any verification operation +performed on the executable model will imply correctness of its conceptual model. +In the next step the CPN model is subjected to the state-space analysis (step 31). At +first a state-space graph of the model is generated. Then for each objective and +constraint in the requirement specification a verification query function is either +created or selected from the function library. The execution of this function is done +using CPN-ML program execution environment and the result of this function tells +if the property is satisfied or violated (step 32). If all the properties are satisfied we +say that the composability verification process is successful. + +6.1.8 Model Checking +When the Model Checking technique is selected, at first each BOM component is +extended to E-BOM (step 33). This step requires modeler’s input and can be +delivered using the BOM-to-E-BOM extension utility. It is possible to assign Time +constraints and the probabilistic factors with the states or the transitions. When the +extension is complete, each E-BOM is automatically transformed into CSP# process +specification (step 34) and composed (step 35). The composition of each CSP + +Chapter 6 + +Composability Verification Process + +Page 129 + +process representing a BOM component be done using sequential operator ‘;’ parallel +operator ‘||’ interleaving operator ‘|||’ or (non-deterministic or user’s) choice +operator ‘[ ]’ depending upon the nature of the composed components. We suggest +composing each CSP in parallel so that each process executes in parallel and +synchronizes with each other by sending or receiving events at their respective +communication channels. The composed model can then be simulated using the +PAT simulator. A successful simulation run with at least one path leading to the final +state(s) shows that the behavior of the composed model correctly represents its +conceptual model and thus satisfies constraint S3b. +In the next step, the assertions defined in CSP format (using LTL, Real-Time LTL or +PLTL) are verified using PAT model checker which results in its satisfaction or +violation (step 36, 37). If all the assertions are satisfied we say that the composability +verification process is successful. + +6.2 Summary +In this chapter, a flow diagram of composability verification process is presented. It +indicates different steps and forms of inputs and outputs of each step in the process. +This flow diagram can be used as a guideline to perform composability verification +using three different approaches. Some recommendations are also presented in +making a suitable choice. Once the verification process is completed successfully, the +composed model can undergo implementation phase where it is programmed and +simulated using a suitable simulation platform. Also the experimental model can be +constructed to perform different experiments on the implemented model and +simulation results are generated for study and decision making. The implementation +phase is out of the scope of this thesis. + + + + + +Page 130 + +Chapter 7 +Fairness verification using PN +Algebraic Techniques + +This chapter explains how algebraic techniques can help in verifying system properties of a Composed +Model, using an example of a manufacturing system in which fairness is selected to be the required +system characteristic. +7.1 +Fairness +Fairness has been defined in section 3.1.3 in terms of a Petri Nets property. In this +chapter the concept of fairness is covered in detail. Intuitively, fairness is a liveness +property that means no component of the system which becomes possible (or +becomes enabled) sufficiently often should be delayed indefinitely. [122]. +On the basis of the extent of sufficiency, fairness is generally categorized in the +following three types in literature: +Unconditional Fairness +Also called Impartial implies that every component in a system proceeds infinitely +often without any condition. The term “proceed” means to make progress, (e.g., +firing of a transition). Unconditional fairness is also known as non-deterministic +choice and is usually present among the components that are independent of each +other [122]. +Weak Fairness +Also called Just, implies that every component in a system that is enabled +continuously from some point onwards eventually proceeds. +Strong fairness +Every component in a system that is enabled infinitely often proceeds infinitely +often. A noticeable difference in weak and strong fairness is that weak fairness +involves persistent enabling of a component that wants to proceed, whereas strong +fairness is not persistently enabled. +Some important generalizations of fairness exist in literature [122]: +Equi fairness: means to give each component an equal chance to proceed. It can be +regarded as Justice. This type of fairness does not always apply in real world +scenarios because of priority policies or some other reasons. +Bounded fairness: means to give each component an equal number of chances such +that no component proceeds for more than “k-times” without letting the others to +take their turn +For instance there is a check-in service at the airport that serves two types of queues: +(i) Business class and (ii) Economy class at a time. It will be called fair, if it mostly +serves business class passengers but not more than (say) 10 times, without serving a +passenger from the economy class queue. + +Chapter 7 + +Fairness verification using PN Algebraic Techniques + +Page 131 + +In Petri Nets, fairness can be viewed in two perspectives namely: Transition fairness +and Marking fairness. The former corresponds to fairness of choice of transitions, +and the latter deals with the fair reachability of states. +7.2 Fairness Verification +There are different ways to verify fairness of a model. The focus of this chapter is to +discuss the technique for the verification of fairness property using PN Algebraic +analysis and provide the necessary and sufficient conditions for a PN model to be +fair. The evaluation of these conditions in a PN model involves theorems and linear +algebraic computations; therefore it is classified as an Algebraic technique. Based on the +theorems below, we propose an algorithm for automatic fairness verification. +In Petri Nets, fairness is mainly perceived in terms of occurrences (or firing) of +transitions. Two transitions t1 and t2 are said to be in a fair relation if there exists a +positive integer k such that for any reachable marking M and any firing sequence σ: +(The symbol #(t/σ) denotes the number of times a transition t occurs in a firing sequence σ) +In words, neither of the transitions should occur more than a finite number of times +(k) without letting the other to occur at least once. This is known as bounded fairness +(or B-Fairness) with upper bound = k. If every pair of transition is in a bounded fair +relation, then the entire net is said to be fair [123]. +For the algebraic verification of fairness property in a PN model the following +theorems are applied. Details and proofs of these theorems are discussed in [123]. +Theorem I +Given a PN with an incidence matrix A, if there exists a firing-count vector X, such that: +A.X ≥ 0 and X≠0 +Then a necessary condition for the PN to be fair is that each entry of X is positive. + +Theorem II +If a Petri Net N is bounded for any initial marking M 0 then the condition in Theorem I is +necessary and sufficient for N to be fair. +Corollary: If there exists a P-Invariant Y of positive integers such that: A.Y=0 then the PN is +guaranteed to be structurally bounded. + +Theorem III +A fair Petri Net PN has only one reproduction vector (i.e., a minimal T-Invariant) at the most. + +Based on the above definition of the bounded fairness and theorems I, II and III a +PN is said to be fair if it satisfies two conditions: (i) There must exist a single T- +Invariant X of a given PN model whose each entry is non-zero and the product +AX = 0 and (ii) There must be at least one P-Invariant, which means that the net is +structurally bounded. +# (t1/σ) = 0 ⇒ #(t2/σ) ≤ k ∧ #(t2/σ) = 0 ⇒ #(t1/σ) ≤ k +(7.1) + +Chapter 7 + +Fairness verification using PN Algebraic Techniques + +Page 132 + +7.3 Manufacturing system +In this section, a component based composed model of a manufacturing system is +presented. Using this composed model, it is shown how the proposed verification +framework is used to verify the required specification, which in this example consists +of fairness as an important quality constraint. Two different scenarios of this +example are discussed. In the first scenario the model is shown to be unfair as +verified by our verification framework. In the second scenario the model is modified. +It is then verified and it satisfies the fairness constraint. + +7.3.1 Scenario I +It is assumed that the manufacturing system model is composed of two machines M1 +& M2 and a shared Robot R as shown in Figure 54. The robot loads raw material on +the machines and operate on them for producing goods. The Robot is assigned +(“loaded”) to either of the machines at a time. When the Robot is loaded, it deposits +raw material on the machine and process it. When the good is produced the robot is +unloaded and is available for the other machine. + +Figure 54: Manufacturing System (acquired from [124]) +The process of composability verification is initiated as follows: + +Simuland and Requirement Specification +In the first step, the entities, events and the states of the simuland are perceived +according to Figure 54. The simuland and the requirement specifications are used to +construct an appropriate conceptual model according to the steps given in the +composability verification process described in Chapter 6. + +We define Requirement speciation of the manufacturing system as: +RS0 = 〈O, S〉 where: + +Objectives O = {o1, o2, o3} +o1: Machine1 should continuously produce product1 without any infinite delay +o2: Machine2 should continuously produce product2 without any infinite delay +o3: Both machines should produce products with a ratio of 1:1 + +Loading +Processing +A +Unloading +Finished +Raw Material +Product A +Machine A +Robot +Loading +Processing +B +Unloading +Finished +Product B +Machine AChapter 7 + +Fairness verification using PN Algebraic Techniques + +Page 133 + + +System Constraints S = {s1, s2, s3, s4} +s1: Machine1, Machine2 and the Robot components should be composable at +syntactic level +s2: Machine1, Machine2 and the Robot components should be composable at static- +semantic level +s3a: State-machine matching of the composed model should be successful. Since the +models are non-terminating so there are no final states, instead the goal-states: +“Machine1 completes production” & “Machine2 completes production” will be considered. +s3b: The transformed executable model correctly represents the structure and +behavior of the conceptual model. +s4: The shared robot should treat both machines with fairness (i.e., k-fairness; k=1). + +Conceptual Model +The formal specification and graphical representation of each BOM model +participating in the manufacturing composed model are as follows. For the ease of +readability following color codes are used for different BOM elements in the formal +definition: + +BB0 = 〈 EnT, EvT, S, AcT 〉 where: +EnT = Machine1 {C0(Id:Integer)} + +EvT = {E0(LoadingM1, Robot, Machine1, null), E1(UnloadingM1, Robot, Machine1, null), +E2(ResetM1, Robot, Machine1, C0)} + +Act = { A0(LoadingM1, Robot, Machine1, E0), A1(UnloadingM1, Robot, Machine1, E1), A2(ResetM1, +Robot, Machine1, E2)} + +S = {S0(M1Waiting, A0, S1), S1(M1Processing, A1, S2), S2(M1Completed, A2, S0)} +Table 21: Formal definition of Machine1 Base-BOM + + +BB1 = 〈 EnT, EvT, AcT, S 〉 where: +EnT = Machine2 {C1(Id:Integer)} + +EvT = {E3(LoadingM2, Robot, Machine2, null), E4(UnloadingM2, Robot, Machine2, null), +E5(ResetM2, Robot, Machine2, C1)} + +Act = { A3(LoadingM2, Robot, Machine2, E3), A4(UnloadingM2, Robot, Machine2, E4), A5(ResetM2, +Robot, Machine2, E5)} + +S = {S3(M2Waiting, A0, S4), S4(M2Processing, A1, S5), S5(M2Completed, A2, S3)} +Table 22: Formal definition of Machine2 Base-BOM + + + +Chapter 7 + +Fairness verification using PN Algebraic Techniques + +Page 134 + +BB2 = 〈 EnT, EvT, AcT, S 〉 where: +EnT = Robot {} + +EvT = {E6(LoadingM1, Robot, Machine1, null), E7(UnloadingM1, Robot, Machine1, null), +E8(LoadingM2, Robot, Machine2, null), E9(UnloadingM2, Robot, Machine2, null)} + +Act = {A6(LoadingM1, Robot, Machine1, E6), A7(UnloadingM1, Robot, Machine1, E7), +A8(LoadingM2, Robot, Machine2, E8), A9(UnloadingM2, BB2, Machine2, E9)} + +S = {S6(Idle, {A6, S7},{A8, S7} ), S7(Busy, {A7, S6}, {A9, S6})} + +Table 23: Formal definition of Robot Base-BOM + + + +CB0 = 〈 AcTIN, AcTOUT , POI 〉 where: +AcTIN = AcTOUT = ∅ + +POI = {POI0(!A6 , ?A0), POI1(!A7 , ?A1), POI2(!A2, ?A2), POI3(!A8 , ?A3), POI4(!A9 , ?A4), POI5(!A5, +?A5) } + +Table 24: Formal definition of Manufacturing System composed BOM + +Figure 55: Manufacturing System BOM based Composed Model + + +Figure 55 represents the BOM based Conceptual Model of the manufacturing system +which includes three BOMs, formally defined using our proposed graphical notation. +The figure shows how the characteristics, Events, Actions and states are mapped to +each other (using dotted red line). In machine 1 characteristic C0 is mapped to Event +E2 which means event uses characteristic C0 as parameter. Similarly Event E0 is +mapped to A0, E1 to A1 and E2 to A2 respectively which means the Actions uses their +mapped events. The mapping of actions to the states in the figure shows which +action will cause which state to transit to the new state (shown by blue arrow). The + +Machine1 +Robot +Machine2 +Characteristics: +Characteristics: +Characteristics: +Co = Id : Integer +C1 = Id : Integer +Actions: +Actions: +A6=LoadingM1 +Actions: +A0=LoadingM1 +A7=UnloadingM1 +A3=LoadingM2 +A1=UnloadingM1 +A8=LoadingM2 +A4=UnloadingM2 +A2=ResetM1 +A9=UnloadingM2 +A5=ResetM2 +States: +States: +States: +S0=M1Waiting +S6=ldle +S3=M2Waiting +S1=M1Processing +S7=Busy +S4=M2Processing +S2=M1Completed +S5=M2Completed +M1Waiting +Idle +M2Waiting +M2Processing +A6 +S6 +A0 +SO +S3 +S2 +A2 +S7 +S5 +A5 +M1Completed +Busy +M2CompletedChapter 7 + +Fairness verification using PN Algebraic Techniques + +Page 135 + +basic BOM components are connected to each other using the formal definition +shown in Table 24, which describes the source (!) and destination (?) of an action +from one component to other. In Figure 55 this is shown using black arrow lines with +their input/output (I/O) label. This is called Pattern of Interplay (in BOM +specification). +Static Analysis +Rules +Machine1 +Machine2 +Robot +• Name of the send-event and +receive-event should be same +• Each send-event should have at +least one corresponding receive- +event and vice-versa +• The number of parameters +(content characteristics of event +types) of the send-events should +be the same as the number of +parameters +of +the +receive- +events. +?LoadingM1(null) + +!LoadingM1(null) +?UnloadingM1(null) +!UnloadingM1(null) + +?LoadingM2(null) +!LoadingM2(null) + +?UnloadingM2(null) +!UnloadingM2(null) +Table 25: Syntactic Matching + +It can be seen in Table 25 that the name of the send-event and receive-events are the +same. ( !=Send, ?=Receive). And they are in one-to-one relationship. Also the no. of +parameters of each event is equal to 1. Based on these facts the components are said +to be syntactically composable (S1 satisfied). + +We assume that Machine1, Machine2 and Robot components have the semantic- +attributes as shown in Table 26 which satisfy all the static-semantic matching rules. +The attributes highlighted in red color are semantically equivalent (Exact match) +therefore S2 is satisfied. + +Machine1 +Machine2 +Robot +AOI = {Production, Manufacturing, +Production-line, Lathing} +AOI = {Production, Manufacturing, +Production-line, Polishing} + +AOI = {Production, Manufacturing, +Conveyer, Automation} +Purpose = {Manufacture Product1, +Manufacture Product3} +Purpose = {Manufacture Product2, +Manufacture Product3} +Purpose = {Manufacture Product3} +Data Types of parameters= {null} +Data Types of parameters = {null} +Data Types of parameters = {null} +Units of Measurement = {} +Units of Measurement = {} +Units of Measurement = {} +Table 26: Static-Semantic Matching + +Dynamic Analysis +The state-machine matching process is successfully conducted as both Machine1 and +Machine2 reach their goal-states namely: Mcompleted and M2-completed and satisfy S3a. + +Chapter 7 + +Fairness verification using PN Algebraic Techniques + +Page 136 + + +Figure 56: State-machine matching of manufacturing system + +BOM to PNML Transformation +In the next step the components are subjected to PNML transformation process. +The output of the transformation process is a PN model shown in Figure 57. It can +be seen from the inspection that the States and their exit conditions, Events and +Actions all are present in the transformed model (as specified in the original +conceptual model). Also this PN model is executed in the PIPE runtime +environment. The execution is successful because the places P3 and P6 acquired +tokens (showing that these goal states were reached during the execution). This +satisfies S3b. + + +Figure 57: PN model of the manufacturing System + + + +Machine1 +Robot +Machine2 +M1 +Waiting +LoadingM1 +Idle +LoadingM2 +M1 +Processing +UnloadingM1 +Busy +M2 +Waiting +M1 +Completed +M2 +M1Reset +Processing +UnloadingM2 +M2 +Completed +M2ResetM1Waiting +P1 +P4 +M2Waiting +T1 +T4 +LoadingM1 +LoadingM2 +Idle +P7 +ResetM1 +ResetM2 +T3 +P2 +P5 +T6 +M1Processing +P8 +M2Processing +Busy +UnloadingM1 +Robot +UnloadingM2 +T2 +T5 +P3 +P6 +M1Completed +M2Completed +Machine1 +Machine2Chapter 7 + +Fairness verification using PN Algebraic Techniques + +Page 137 + +Algebraic Resource Computation +At this step, the initial marking M0 and the Incidence Matrix A of the PN composed +model shown in Figure 57 are calculated using PIPE library functions as follows: + + +M 0 P1 P2 P3 P4 P5 P6 P7 P8 + +1 +0 +0 +1 +0 +0 +1 +0 + +A P1 P2 P3 P4 P5 P6 P7 P8 +T1 -1 +1 +0 +0 +0 +0 -1 +1 +T2 0 +-1 +1 +0 +0 +0 +1 +-1 +T3 1 +0 +-1 +0 +0 +0 +0 +0 +T4 0 +0 +0 +-1 +1 +0 -1 +1 +T5 0 +0 +0 +0 +-1 +1 +1 +-1 +T6 0 +0 +0 +1 +0 +-1 0 +0 + +Table 27: Initial Marking and Incidence Matrix (Scenaro I) +Note that the labels of rows and columns in A and elements in M0 correspond to +places and transitions in Figure 57. The matrix A is given as input to the Invariant +calculation module that calculates the following P-Invariants and T-Invariants in the +PN model of the Manufacturing System: + +P1 P2 P3 P4 P5 P6 P7 P8 +1 1 1 0 0 0 0 0 + +T1 1 +T2 1 +T3 1 +T4 0 +T5 0 +T6 0 + +T1 0 +T2 0 +T3 0 +T4 1 +T5 1 +T6 1 + +Table 28: P-Invariants and T-Invariants (Scenaro I) + +Property Verification Function +In order to proceed with the verification, we have to translate the objectives and +constraints of the requirement specification into PN properties: +o1: Machine1 should continuously produce product1 without any infinite delay +o2: Machine2 should continuously produce product2 without any infinite delay +o3: Both machines should produce products with a ratio of 1:1 +s4: The shared robot should treat both machines with fairness (i.e., k-fairness; k=1). + +It is clear from the {o1, o2, o3 and s4} that if the robot serves both machines with +fairness (S4) only then both of them will be able to produce their respective products +continuously without indefinite delay (O1 & O2). And if the fairness is bounded +such that k=1, then both machines will produce products with equal ration 1:1. +Therefore the translation of the requirement specification in PN form is as follows: + +PN Property P1 = “The model should be Bounded-Fair (with K=1) such that the robot serves +both machines alternatively”. + +In order to verify bounded-fairness we consider the property proving theorems I, II +& III defined in section 7.2. Based on these theorems we construct a property +verification function using the following algorithm: + +Chapter 7 + +Fairness verification using PN Algebraic Techniques + +Page 138 + + +Algorithm: B-Fairness Verification +Input: {P-Invariants}, {T-Invariants}, A; Output: TRUE +1 If |{T-Invariants}| = 1 then ⊳ List of T-Invariants has exactly 1 invariant, meaning it is a +2 +Reproduction vector , Theorem III⊲ +3 +XT ← T-Invariants[0] ⊳ Get the only T-Invariant from the list +4 +if A.XT ≥ 0 and each element in XT >0 then ⊳ Multiply XT with Incidence matrix and +5 +Check that each element of T-invariant is +6 +positive, Theorem I⊲ +7 +if |{P-Invariants}|>0 then ⊳ Check if there is any P-Invariant, meaning PN +8 + Model is bounded, Theorem II⊲ +9 +Return TRUE +10 +else +11 +Return FALSE ⊳ Theorem II violated +12 +end if +13 +else +14 +Return FALSE ⊳ Theorem I violated +15 +end if +15 else +17 +Return FALSE ⊳ Theorem III violated +18 end if + +Table 29: B-Fairness Verification + + +Based on this algorithm we perform property verification of the given PN model. It +is evident that the T-invariants (see Table 28) contain zero entries which violate +Theorem I. Also there is more than one T-invariant which violates Theorem III +therefore the net is said to be unfair. As the PN is unfair, it is impossible to guarantee +that objectives o1, o2, o3 will be satisfied because either of the machines may over +perform by acquiring robot multiple times without letting the other to get the robot +for at least once (failure of o1 & o2). Therefore either of the machines may face a +situation in which it is unable to produce enough number of products to meet the +required objectives i.e., the ratio 1:1 for producing products cannot be fulfilled +(failure of o3); consequently the composed model may fail to satisfy given +specifications. + + + +7.3.2 Scenario II +In order to understand the fairness verification process, a counterexample is +presented. In this example another component is added to the composition called +Controller that can supervise the robot assignments. The job of the Controller is to +enforce fairness in the system. The BOM model of the controller is defined as +follows: + + + + + +Chapter 7 + +Fairness verification using PN Algebraic Techniques + +Page 139 + +BB3 = 〈 EnT, EvT, AcT, S 〉 where: +EnT = Controller {} + +EvT = {E10(LoadingM1, Controller, Robot , Machine1, null), E11(LoadingM2, Controller, Robot, +Machine2, null)} + +Act = {A10(LoadingM1, Controller, Robot, Machine1, E0), A11(LoadingM2, Controller, Robot, +Machine2, E1)} + +S = {S8(AssignM1, {A10, S9}), S9(AssignM2, {A11, S8})} + +Table 30: Formal definition of Controller Base-BOM + +CB0 = 〈 AcTIN, AcTOUT , POI 〉 where: +AcTIN = AcTOUT = ∅ +POI = {POI0(!A10 , {?A0, ?A6}), POI1(!A7, ?A1), POI2(!A2, ?A2), POI3(!A11 , {?A3, ?A8}), POI4(!A9 , +?A4), POI5(!A5, ?A5) } + +Table 31: Formal definition of Modified Manufacturing System composed BOM +The other components have the same definition except that the sender of Event E0 +and E1 is BB3 (controller) and the receivers of event E0 are BB0 (Machine1) and BB2 +(Robot); whereas the receivers of event E1 are BB1 (Machine2) and BB2 (Robot). +Figure 58 shows the composed BOM of modified manufacturing system. + +Figure 58: Modified manufacturing system composed BOM + + +Machine1 +Robot +Machine2 +Characteristics: +Characteristics: +Characteristics: +CO = Id : Integer +C1 = Id : Integer +Actions: +Actions: +A6=LoadingM1 +Actions: +A0=LoadingM1 +A7=UnloadingM1 +A3=LoadingM2 +A1=UnloadingM1 +A8=LoadingM2 +A4=UnloadingM2 +A2=ResetM1 +A9=UnloadingM2 +A5=ResetM2 +States: +States: +States: +S0=M1Waiting +S6=ldle +S3=M2Waiting +S1=M1Processing +S7=Busy +S4=M2Processing +S2=M1Completed +S5=M2Completed +M1Waiting +M1Processing +Idle +S6 +M2Waiting +M2Processing +SO +S1 +A6 +40 +4.1 +S3 +S4 +A4 +S2 +A2 +A7 +S7 +A9 +S5 +A5 +M1Completed +Busy +M2Completed +Controller +Characteristics: +A +Action Connector +Actions: +A10=LoadingM1 +S +Initial State +A11=LoadingM2 +States: +State +S8=AssignM1 +S9=AssignM2 +Exit condition +State Transistion +AssignM1 +Input/Output +A10 +S8 +connection +S9 +A11 +AssignM2Chapter 7 + +Fairness verification using PN Algebraic Techniques + +Page 140 + +When the verification process is started, the BOM components are transformed into +PN model as shown in Figure 59 where the controller component is attached to both +machines and the robot and controls the machine assignment to enforce Kfairness. +It is evident from the figure that when the robot is assigned to Machine1 once, it +cannot be reassigned (because of the lack of token in P9), and vice-versa. If the +number of tokens are increased to ‘n’, the same model can work for k=n fairness. +In the initialization phase, the initial marking M0 and Incidences Matrix A were +calculated as follows: +M0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 + +1 0 0 1 0 0 1 0 1 +0 + +A P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 +T1 -1 1 0 0 0 0 -1 1 -1 +1 +T2 0 -1 1 0 0 0 1 -1 0 +0 +T3 1 0 -1 0 0 0 0 0 0 +0 +T4 0 0 0 -1 1 0 -1 1 1 +-1 +T5 0 0 0 0 -1 1 1 -1 0 +0 +T6 0 0 0 1 0 -1 0 0 0 +0 + +Table 32: Initial Marking and Incidence Matrix (Scenaro II) + + + +Figure 59: Modified PN model of the manufacturing System + +When the Invariant calculation module is executed, the following T-Invariant and P- +Invariant were discovered for the model shown in Figure 59: +T1 1 +T2 1 +T3 1 +T4 1 +T5 1 +T6 1 + +P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 +1 1 1 0 0 0 0 0 0 +0 + +Table 33: P-Invariants and T-Invariants (Scenaro II) + +Having only one T-Invariant (and the only one) with non-zero entries and having a +P-Invariant (with some non-zero entries), satisfies the conditions (of Theorem I, II & +III) required for the model to be bounded fair. + +Controller +P1 +P4 +P9 AssignM1 +M2Waiting +[个 +LoadingM1 +P10AssignM2 +LoadingM2 +T4 +T3 +Idle +T6 +ResetM1 +P2 +P7 +P5 +ResetM2 +M1Processing +M2Processing +P8 +Busy +UnloadingM1 +UnloadingM2 +T2 +Robot +T5 +P3 +P6 +M1Completed +M2Completed +Machine1 +Machine2Chapter 7 + +Fairness verification using PN Algebraic Techniques + +Page 141 + + + +Based on these result from PN algebraic analysis technique, we can confirm that the +composed model satisfies given requirement specifications. Due to the supervised +controller, the Robot is bound to operate fairly between the two machines, which +results in fulfillment of the objectives O1, O2 and O3 and also satisfied required +constraint S1. +7.4 Summary +Fairness property becomes significant in the composability verification of a +composed model because it does not allow any component to dominate and +excessively proceed, while other components do not proceed even for once. As +illustrated by the example of the manufacturing system, fairness of Robot allocation +can ensure that both machines will perform to produce a required number of +products. If there is no fairness we cannot guarantee that this objective will be +reached. +Using the example of Fairness verification in the manufacturing system, we explain +how our Algebraic Verification Technique works. It is a notable fact that this +technique does not face state-space explosion because it does not involve reachability +graph construction and can work only by calculating incidence matrix and P/T +invariants. There are a lot of PN properties which can be verified using these PN +algebraic computation resources. On the other hand this approach can only be used +to verify a limited set of PN properties (for which suitable theorems exist). + + + + +Page 142 + +Chapter 8 +Model Verification using State-space +Analysis techniques + +Colored Petri Nets and its analysis techniques are very useful for accurate and efficient verification as +it is one of the competitive formalisms in the specification of the concurrent systems. Its application in +the Composability verification proves to be very constructive, especially with a focus on the dynamic +semantic composability level. The analysis techniques contributed by the CPN community over a +couple of decades provide a significant improvement on efficient and accurate reasoning regarding the +model correctness. In this chapter a Field Artillery Model is presented as an example. It is shown +how the BOM based Field Artillery Model is transformed into our proposed Colored Petri Net +components and verified using state-space analysis. + +Combat Modeling is about the models that describe or represent weapon systems +and combat situations. There are numerous types of combat models. These types are +distinguished by their modeling objectives. Some of the fundamental objectives of +combat modeling are training, war-games, weapon testing etc. +8.1 +Combat Modeling +Combat modeling purposefully abstracts and simplifies combat entities, their +behaviors, activities, and interrelations to answer defense-related research questions. +There cannot be a general model that answers all questions however there is a +concept of a generic situated environment and four core activities that can be found +on every battlefield [125]. +8.1.1 Situated Environment +Combat Modeling starts with analyzing the challenges to model the Situated +Environment. All modeled combat entities are situated in the environment, the virtual +battlefield. They perceive the environment including other entities, and map their +perception to an internal representation based on the knowledge and goals. They +communicate and act with other combat entities within the environment. The +environment contains all objects, passive ones like obstacles, as well as active ones +like enemy or friendly units [125]. +8.1.2 Moving +Moving is the core activity of combat modeling that deals with the movement of +individual entities. These entities could be weapon, people etc. or aggregate models +that are used to model the movements of groups of entities. The models use patches +and grids; they use physical models for weapon systems and reference schemas for +unit movement [125]. + +Chapter 8 + +Model Verification using State-space Analysis techniques + +Page 143 + +thermal, and optical sensors, can contribute to perceiving the environment and the +other entities as close to reality as possible. Intelligence, surveillance, and +reconnaissance operations contribute to similar requirements. In order to sense +special properties of an entity, each of these special properties needs to be modeled +explicitly. If it is modeled explicitly, it needs to make a difference in the +reconnaissance process. Furthermore, if a detail is important for the military decision +process, it needs to be part of the perception, and hence needs to be observed by +sensors, which requires that the respective things are modeled as properties of the +entities [125]. +8.1.4 Shooting +Modeling the outcomes of duels between weapon systems and battles between units +is still a topic of major interest. On the weapon system level, direct and indirect fires +are analyzed. Direct fire means that the target is in the line of sight of the shooter. In +case of indirect fire systems such as Artillery and other ballistic weapons, they do not +need to see the target and shoot at it straight. Their weapons follow a ballistic curve +being described by the term indirect fire. Many models have been developed to keep +up with the score. For instance a game based point systems that count how often and +where a target is hit and use “hit-and-kill” probabilities (which are based on real- +world data) to simulate hitting or missing a target [125]. + +8.1.5 Communication: +This core activity deals with the modeling of Communications, Command and +Control. It ties all the earlier activities together as command and control is situated in +the environment and commands the entities to shoot, move, observe, and +communicate. Several models of command and control in military headquarters are +discussed, as more and more simulation models have to come up with decisions +based on available information where until recently human decision makers had to be +involved. The better command and control is modeled the less military experts are +needed to provide a realistic training environment [125]. Based on these principles of +combat modeling an example model of Field Artillery is presented to explain the +approach of composability verification using state-space analysis. Figure 60 highlights +the activities of combat modeling. + +Figure 60: Activities of Combat Modeling + +Situated +Environment +Moving +Looking +or Sensing +Shooting +Communication +(Command & +Control) + +Chapter 8 + +Model Verification using State-space Analysis techniques + +Page 144 + +8.2 Field Artillery +Field Artillery (FA) is one of the indirect fire systems35 that engage the opponent +without requiring line of sight between the shooting system and the target. Infantry +uses small, medium or heavy howitzers (artillery guns) that provide fire support for +combat units. Similarly Navy artillery provides fire power, where missiles can be fired +on land based or sea based direct or indirect targets. The general mission of FA is to +destroy, neutralize or suppress the enemy by cannon, rocket, and missile fires and to +help integrate all fire support assets into combined arms operations [126]. The field +artillery system provides close support to maneuver friendly forces, counter fire and +interdiction as required. These fires neutralize, canalize, or destroy enemy attack +formations or defenses; obscure the enemy’s vision or otherwise inhibit his ability to +acquire and attack friendly targets; and destroy targets deep in the enemy rear with +long-range rocket or missile fires [127]. +FA weapons are usually located in defiladed areas in order to protect them from +enemy detection. This nature of FA gunnery makes it an indirect fire problem. +Observed fire (the technique that solves the indirect FA gunnery problem) is carried +out by the coordinated efforts of the Forward Observers, Head Quarter (HQ), the +Fire Direction Center (FDC), and firing sections of the firing unit (Batteries) [126]. +Figure 61 gives an overview of the essential elements of a field artillery and the +situation of an indirect fire, where a forward observer spots an enemy unit and +requests fire support from a nearby friendly unit. It should be noted that this +scenario is only assumed and simplified for the sake of an example, whereas the +today’s state of the art of field artillery systems is much more modernized and +technologically advanced. + +Figure 61: Elements of Field Artliiery & Indirect Fire +8.2.1 Simuland +Based on Figure 61 an Indirect Fire Support scenario is considered. In this scenario +the enemy units are not in the line of sight of the firing units. A soldier (forward +observer) from the observation post observes the enemy field and detects potential +targets. When a target is spotted, he calls BHQ for fire support and provides the +target details. BHQ requests FDC to process the target tactically & technically. In +tactical terms, the target should be of high importance to gain tactical advantage. In +technical terms the target should be in the firing range of the supporting artillery. If + +35 Although there are some exceptions, in which Field Artillery engages in direct fire mode + +ForwardObserver +Spotted Target +FiringUnits +BHQ&FDCChapter 8 + +Model Verification using State-space Analysis techniques + +Page 145 + +the target is valid FDC approves the request otherwise the request is denied. If the +request is approved BHQ assigns the target to the firing units (batteries). We suppose +that the target can be one of three types: light (e.g., camps, troops, and trucks), +medium (e.g., tanks, light guns) or heavy (e.g., artillery units, missile launchers). The +target is assigned to one, two or three batteries respectively. This is because medium +and heavy targets require the fire power of more than one battery for complete +destruction. Based on this assumption, BHQ assigns target to the batteries. Battery +components align themselves for correct orientation and elevation by computing the +target’s range and bearing (angle), load appropriate ammunition and fire the round. +When a Field component receives fire, and if the detonation is within a destruction +radius then the target is said to be destroyed otherwise it is missed, as will be +observed by the observer, who provides this information to the BHQ. This process +is restarted for other potential targets, until all the enemy-units are suppressed, which +is the ultimate goal. + +8.2.2 Field Artillery Model +Based on the above informal description of the simuland a Field Artillery Model is +constructed. There could be multiple objectives of modeling field artillery including +training, exercises, weapon testing or operational optimization. The following BOM +based models were discovered, selected and composed with respect to the simuland. + +Field Artillery Conceptual Model +The BOM based conceptual model of Field Artillery is formally defined as follows: + +Observer = 〈 EnT, EvT, S, AcT 〉 where: +EnT = Observer {C0(Id), C1(Loc), C2(CurrentTarget), C3(Result)} + +EvT = {E0(ObserveField, Observer, Field, null), E1(TargetSpotted, Field, Observer, target), +E2(CallForFireSupport, Observer, BHQ, currtgt), E3(RequestApproved, FDC, BHQ, Observer, null), +E4(RequestDenied, FDC, BHQ, Observer, null), E5(Detonation, Field, Observer, detonation), +E6(TargetDestroyed, Observer, BHQ, null), E7(TargetMissed, Observer, BHQ, null)} + +Act = {A0(ObserveField, Observer, Field, E0), A1(TargetSpotted, Field, Observer, E1), +A2(CallForFireSupport, Observer, BHQ, E2), A3(RequestApproved, FDC, Observer, E3), +A4(RequestDenied, FDC, Observer, E4), A5(Detonation, Field, Observer, E5), A6(TargetDestroyed, +Observer, BHQ, E6), A7(TargetMissed, Observer, BHQ, E7)} + +S = {S0(ObserverReady, A0, S1), S1(ObservingField, A1, S2), S2(RequestingFireSupport, A2, S3), +S3(WaitingForReponse, {A3, S4}, {A4, S0}) , S4(WaitingForImpact, A5, S5) , S5(EvaluateDamage, {A6, +S0}, {A7, S0}} +Table 34: Observer Basic-BOM + + + + + + +Chapter 8 + +Model Verification using State-space Analysis techniques + +Page 146 + +Field = 〈 EnT, EvT, S, AcT 〉 where: +EnT = Field {C4(Id), C5(FD), C6(Impacts)} + +EvT = {E8(ObserveField, Observer, Field, null), E9(TargetSpotted, Field, Observer, target), E10(Fire, +Battery1, Field, fire), E11(Fire, Battery2, Field, fire), E12(Fire, Battery3, Field, fire), E13(Detonation, +Field, Observer, Impacts), E14(UpdateField, BHQ, Field, update) } + +Act = {A8(ObserveField, Observer, Field, E8), A9(TargetSpotted, Field, Observer, E9), A10(Fire, +Battery1, Field, E10), A11(Fire, Battery2, Field, E11), A12(Fire, Battery3, Field, E12), A13(Detonation, +Field, Observer, E13), A14(UpdateField, BHQ, Field, E14) } + +S = {S6(FieldReady, {A8, S7}, {A10, S8}, {A11, S8}, {A12, S8}), S7(BeingObserved, A9, S6), +S8(TakingFire, A13, S9) , S9(WaitingForUpdate, A14, S6)} +Table 35: Field Basic-BOM + +BHQ = 〈 EnT, EvT, S, AcT 〉 where: +EnT =BHQ {C7(Id), C8(Loc), C9(CurTarget), C10(TargetStatus) } + +EvT = {E15(CallForFireSupport, Observer, Field, target), E16(ProcessRequest, BHQ, FDC, target), +E17(RequestApproved, FDC, BHQ, Observer, null), E18(RequestDenied, FDC, BHQ, Observer, null), +E19(AssignTarget, BHQ, Battery1, Battery2, Battery3, assign_target), E20(FiringCompleted, Battery1, +BHQ, null), E21(FiringCompleted, Battery2, BHQ, null), E22(FiringCompleted, Battery3, BHQ, null), +E23(TargetDestroyed, +Observer, +BHQ, +null), +E24(TargetMissed, +Observer, +BHQ, +null), +E25(UpdateField, BHQ, Field, update) } + +Act = {A15(CallForFireSupport, Observer, Field, E15), A16(ProcessRequest, BHQ, FDC, E16), +A17(RequestApproved, FDC, BHQ, Observer, E17), A18(RequestDenied, FDC, BHQ, Observer, E18), +A19(AssignTarget, BHQ, Battery1, Battery2, Battery3, E19), A20(FiringCompleted, Battery1, BHQ, +E20), A21(FiringCompleted, Battery2, BHQ, E21), A22(FiringCompleted, Battery3, BHQ, E22), +A23(TargetDestroyed, +Observer, +BHQ, +E23), +A24(TargetMissed, +Observer, +BHQ, +E24), +A25(UpdateField, BHQ, Field, E25) } + +S={S10(BHQReady, A15, S11), S11(CallFDC, A16, S12), S12(WaitingForApproval, {A17, S13}, {A18, S10}), +S13(AssigningTarget, +A19, +S14), +S14(WaitingForFire, +{A20, +S15}, +{A21, +S15}, +{A22, +S15}), +S15(WaitingForDamageReport, {A23, S16}, {A24, S16}), S16(UpdatingField, A25, S10)} + +Table 36: BHQ Basic-BOM + +FDC = 〈 EnT, EvT, S, AcT 〉 where: +EnT =FDC{C11(Id), C12(FD) , C13(CurTarget), C14(Result)} + +EvT = {E26(ProcessRequest, BHQ, FDC, target), E27(RequestApproved, FDC, BHQ, Observer, +null), E28(RequestDenied, FDC, BHQ, Observer, null)} + +Act = {A26(ProcessRequest, BHQ, FDC, E26), A27(RequestApproved, FDC, BHQ, Observer, E27), +A28(RequestDenied, FDC, BHQ, Observer, E28)} + +S = {S17(FDCReady, A26, S18), S18(Processing, {A27, S17}, {A28, S17})} +Table 37: FDC Basic-BOM + + +Chapter 8 + +Model Verification using State-space Analysis techniques + +Page 147 + +Battery1,2,336 = 〈 EnT, EvT, S, AcT 〉 where: +EnT = Battery1,2,3 {C15(Id), C16(CurTarget) } + +EvT = {E29(AssignTarget, BHQ, Battery1, Battery2, Battery3, assign_target), E30(Fire, Battery123, +Field, fire), E31(FiringCompleted, Battery123, BHQ, null)} + +Act = {A29(AssignTarget, BHQ, Battery1, Battery2, Battery3, E29), A30(Fire, Battery1/2/3, Field, E30), +A31(FiringCompleted, Battery1/2/3, BHQ, E31)} + +S = {S19(ReadyToFire, A29, S20), S20(PreparingCannon, A30, S21), S21(Firing, A31, S19)} +Table 38: Battery (1,2,3) Basic-BOM + +FA = 〈 AcTIN, AcTOUT , POI 〉 where: +AcTIN = AcTOUT = ∅ + +POI = { POI-0(!A0, ?A8), POI-1(!A9, ?A1), POI-2(!A2, ?A15), POI-3(!A16, ?A26), POI-4(!A27, +{?A17, ?A3}), POI-5(!A28, {?A18, ?A4}), POI-6(!A19, ?A29), POI-7(!A30, {?A10, ?A11, ?A12}), +POI-8(!A31, {?A20, ?A21, ?A22}), POI-9(!A13, ?A5), POI-10(!A6, ?A23), POI-11(!A7, ?A24), POI- +12(!A25, ?A14)} +Table 39: Field Artillery Composed BOM + +Figure 62 shows the formal representation of Field artillery composed model. + +36 This component has three instances. + +Chapter 8 + +Model Verification using State-space Analysis techniques + +Page 148 + + +Figure 62: Field Artillery Composed BOM + +8.2.3 Requirement Specification +We define Requirement speciation of the field artillery model as: +RS0 = 〈O, S〉 where: +Objectives O = {o1} and System Constraints S = {s1, s2 s3, s4} +o1: All the enemy units must be destroyed +s1, 2, and 3: The model should be composable at syntactic and static-semantic level. The +state-machines should match and the executable mode should correctly represent the +conceptual model. +s4: There should never be a friendly fire. + +Observer +Characteristics: +CO=ld: Integer, C1=Loc: Integer; +C2=CurrentTarget: Target; C3=Result : Bool +BHQ +FDC +Target = (Id:Integer, Grid :Integer. +Characteristics: +Characteristics: +C7=ld Integer C8=Loc: Integer; +C13=CurTarget:TARGET; C14=Result:Bool; +C11=ld: Integer; C12=FD:FIELD_DATA: +C9-CurTargetTARGET: +Action +C10=TargetStatus:Bool; +A0=ObserveField, A1=TargetSpotted +Actions: +A4=RequestDenied,A5Detonation +A2=CallForFireSupport, A3=RequestApproved +A15=CallForFireSupport +A6=TargetDestroyed, A7=TargetMissed +A16=ProcessReques +A28=RequestDenied: +A17=RequestApproved +States: +A18=RequestDenied +States: +A19=AssignTarget +S17=FDCReady: S18=Processing +S2=RequestingFireSupport; +S3=WaitingForReponse; +FDCReady +A22=FiringCompleted +A23=TargetDestroyed +Observing +A24=TargetMissed +A25=UpdateField +essing +SO +A3 +S10=BHQReady; S11=CallFDC; +42 +S3 +uppor +(A3) +S15=WaitingForDamageReport; +A6 +S16=UpdatingField: +WaitingFor +BHQReady +CallFDC +S10 +11 +A16 +(A18) +S12 +西 +WaitingFor +Approv +A18 +Battery1 +自电 +ingTarge +Characteristics: +C15=ld: Integer; C16=CurTarget: TARGET; +Actions: +WaitingForFire +A29=AssignTarget; A30=Fire: +A31=FiringCompleted: +A25 +815 +States: +S19=ReadyToFire; S20=PreparingCannon; +UpdatingFielc +S21=Firing: +ReadyToFire +PreparingCannor +S19 +$20 +Field +C4=ld: Integer; C5=FD: FIELD_DATA; +Characteristics: +C6=Impacts: IMPACTS; +FIELD_DATA = list (ld:Integer, Grid:Integer. +IMPACTS = list (Grid:Integer) +Description:S +Battery1 +Characteristics: +Actions: +A10=Fire; A11=Fire; A12=Fire +A8=ObserveField; A9=TargetSpotted; +C15=ld: Integer; C16=CurTarget: TARGET; +A13=Detonation; A14=UpdateField +Actions: +A29=AssignTarget; A30=Fire: +A31=FiringCompleted: +States: +S6=FieldReady; S7=BeingObserved; +S8=TakingFire; S9=WaitingForUpdate +States +S19=ReadyToFire; S20=PreparingCannon +自自自自 +FieldReady +ReadyToFire +PreparingCannc +A29 +S19 +S20 +A30 +TakingFire +Being +Obse +Firing +WaitingFo +Update +Battery1 +Characteristics: +C15=ld: Integer; C16=CurTarget: TARGET: +Actions: +A29=AssignTarget; A30=Fire: +A31=FiringCompleted; +States +S19=ReadyToFire; S20=PreparingCannon; +S21=Firing +ReadyToFire +S19Chapter 8 + +Model Verification using State-space Analysis techniques + +Page 149 + +8.3 Verification of the FA model using CPN State-Space +Analysis +After the BOMs are discovered, selected and composed according to Figure 62, the +conceptual model is ready for verification. We select CPN state-space analysis +technique for its verification. +8.3.1 Static and Dynamic Analysis +We assume that the model qualifies syntactic and static-semantic analysis. Also when +it undergoes state-machine matching process it is able to make progress until the +goal-states are reached. Figure 63 shows how the components interact with each other +through the exchange of events (horizontal arrows) due to which their state- +machines make progress (vertical dotted arrows). Based on the fact that the +constraint S1, S2 and S3a are satisfied we proceed to BOM-to-E-BOM extension +which is a pre-requisite step for the transformation of conceptual model into +executable model. + +Figure 63: State-machine Matching of Field Artillery Model +8.3.2 BOM to E-BOM extension +At this stage all the BOM components are extended to our proposed E-BOM +extension with the help of the modeler’s input. The following tables present E-BOM +extensions of BOMs in the FA model. + +Observer +Field +BHQ +FDC +BATTERY +(1,2,3) +Observer +Field +Ready +ObserveField +Ready +Observing +Being +Field +Observed +TargetSpotted +Requesting +BHQ +FireSupport +Ready ++ +CallForFireSupport +WaitingFor +Call +FDC Ready +Reponse +FDC +ProcessRequest +WaitingFor +Processing +Approval +RequestApproved +RequestDenied +Assigning +Ready +WaitingFor +Target +ToFire +AssignTarget +Impact +Waiting +Preparing +ForFire +Fire (1,2,3) +Cannon +- +Taking +Fire +Firing +Detonation +FiringCompleted +(1,2,3) +- +WaitingFor +Evaluate +DamageReport +Damage +TargetDestroyed +TargetMissed +WaitingFor +Updating +Update +Field +UpdateFieldChapter 8 + +Model Verification using State-space Analysis techniques + +Page 150 + +Observer E-BOM +SV and types {C0(Id:Integer), C1(Loc:Integer), C2(CurrentTarget:TARGET), C3(Result:Bool)} +where TARGET = (Id:Integer, Grid37:Integer, Description:String) + +Initial States {S0:ObserverReady} +Transitions +State +Event +Guard +{SVIN} {SVOUT} +Action +Next State +Observer +Ready +Observe +Field + + + + +Observing +Field +Observing +Field +TargetSpotted + + +C2 + +Requesting +FireSupport +Requesting +FireSupport CallForFireSupport + +C2 + + +WaitingFor +Reponse +WaitingFor +Reponse +RequestApproved + + +C2 + +WaitingFor +Impact +WaitingFor +Reponse +RequestDenied + + + + +Observer +Ready +WaitingFor +Impact +Detonation + +C2 +C3 +Action1 +Evaluate +Damage +Evaluate +Damage +Target +Destroyed +[Result=true] +C3 + + +Observer +Ready +Evaluate +Damage +Target +Missed +[Result=false] +C3 + + +Observer +Ready + +Action1 { +input (target, detonation); +output (result); +action +let + val grid= #2 target; +in + (Destroyed(grid, detonation)) +End +} +fun Destroyed (x, []) = false + | Destroyed (x, h::t) = IsDestroyed(x, h) orelse Destroyed (x, t); +fun IsDestroyed(grid, impact) = +let +val gridst = Int.toString(grid); +val impactst= Int.toString(impact); +val gridX = valOf(Int.fromString(substring (gridst, 0, 3))); +val impactX = valOf(Int.fromString(substring (impactst, 0, 3))); +val gridY = valOf(Int.fromString(substring (gridst, 3, 3))); +val impactY = valOf(Int.fromString(substring (impactst, 3, 3))); +val X = abs(gridX - impactX); +val Y = abs(gridY - impactY); +in +if (abs(X)<4 andalso abs(Y)<4) +then true + else false +end; + +Table 40: Observer E-BOM + + +Action1 is a CPN-ML script that evaluates if the target is destroyed or not. We +assume that the destruction radius of the rounds fired by artillery guns is 4x4 grids +i.e. if the round hits the target within this radius it will be destroyed otherwise missed. +Note that Action1 calls other functions which are also specified in Table 40. + + + + +37 In military map, Grid reference system is used to identify a position of an object. We assume that +the grid in this scenario is of 6 figures, first three integers define Easting and the other three define +Northings. For details see [131] + +Chapter 8 + +Model Verification using State-space Analysis techniques + +Page 151 + +Field E-BOM +SV:Types +{C4(Id:Integer), C5(FD:FIELD_DATA), C6(Impacts:IMPACTS)} +FIELD_DATA = list (Id:Integer, Grid:Integer, Description:String, +Type:String); IMPACTS = list (Grid:Integer) +Initial States +{S6: FieldReady} +Transitions +State +Event +Guard +{SVIN} {SVOUT} +Action +Next State +FieldReady +ObserveField + + + + +BeingObserved +Being Observed +TargetSpotted +[length +FD>0] +C5 +C5 +Action2 +FieldReady +FieldReady +Fire + +C6 + + +TakingFire +TakingFire +Detonation + + +C6 + +WaitingFor +Update +WaitingFor +Update +UpdateField + +C5 +C5 +Action3 +FieldReady + +Action2 { +input (fd); +output (target); +action +let +val indx = discrete (0,(length fd)); +val F = List.nth(fd, indx); +in +((#1 F, #2 F, #3 F)) +end } +Action3 { +input(update,fd); +output (ufd); +action +let + val status = #2 update; + val target = #1 update; + val U = (#1 target, #2 target, #3 target, "Enemy"); +in + if (status=true) then + rm U fd + else + fd +end } + +Table 41: Field E-BOM +Action2 randomly picks a target from a list of targets (Field Data) and sends it as +parameters to the observer, simulating that the observer has spotted a target in the +enemy area. Action3 is executed when Update-Field event is received from BHQ. This +action removes an object if the target destroyed. + +BHQ E-BOM +SV:Types +{C7(Id:Integer),C8(Loc:Integer),C9(CurrentTarget:TARGET), C10(TargetStatus:Bool)} +Initial States +{S10: BHQReady } +Transitions +State +Event +Guard +{SVIN} +{SVOUT} +Action +Next State +BHQReady +CallForFireSupport + +C9 + + +CallFDC +CallFDC +ProcessRequest + + +C9 + +WaitingFor +Approval +WaitingFor +Approval +RequestApproved + +C9 + + +Assigning +Target +WaitingFor +Reponse +RequestDenied + + + + +BHQReady +Assigning +Target +AssignTarget + + +C9 +Action4 +WaitingForFire +WaitingForFire +FiringCompleted + + + + +WaitingFor +DamageReport +WaitingFor +TargetDestroyed + +C10 + + +UpdatingField + +Chapter 8 + +Model Verification using State-space Analysis techniques + +Page 152 + +DamageReport +WaitingFor +DamageReport +TargetMissed + +C10 + + +UpdatingField +UpdatingField +UpdateField + + +C10 + +BHQReady + +Action4 { +input (target); +output (assign_target); +action +let +in +if ((#3 target) = "Artillery") then + ((#1 target, #2 target, #3 target, [true, true, true])) +else if ((#3 target) = "Tank") then + ((#1 target, #2 target, #3 target, [true, true, false])) +else + ((#1 target, #2 target, #3 target, [true, false, false])) +end} + +Table 42: BHQ E-BOM +Action 4 is used to assign light, medium or heavy targets. If a target is heavy then all +three batteries are assigned to hit the target. If the target is medium then battery 1 +and 2 are assigned otherwise only battery 1 is assigned. + +FDC E-BOM +SV:Types +{C11(Id:Integer), C12(FD:FIELD_DATA) , C13(CurrentTarget:TARGET), +C14(Result:Bool)} +Initial States +{S17: FDCReady } +Transitions +State +Event +Guard +{SVIN} +{SVOUT} +Action +Next State +FDCReady +ProcessRequest + +C12, C13, +C14 + +Action5 +Processing +Processing +RequestApproved +[Result=true] + +C13, C14 + +FDCReady +Processing +RequestDenied +[Result=false] + +C13, C14 + +FDCReady + +Action5 { +input (target, fdcd); +output (fdc_result); +action +let +val tid = #1 target; +val r = List.nth((listsub fdcd (GetFieldByID tid fdcd)),0); +in +(if (#4 r = "Enemy") then true else false) +end +} + +Table 43: FDC E-BOM + +Action 5 is used to process targets. Here we only check from the internal FDC data +that the target is an enemy unit. This method can be expanded to compute target +priorities and process other tactical and technical fire direction rules. + + + + + +Chapter 8 + +Model Verification using State-space Analysis techniques + +Page 153 + +Battery E-BOM +SV:Types +{C15(Id:Integer), C16(CurrentTarget:TARGET) } +Initial States +{S19: ReadyToFire } +Transitions +State +Event +Guard {SVIN} {SVOUT} Action +Next State +ReadyToFire +AssignTarget + +C16 + + +PreparingCannon +PreparingCannon +Fire + + +C16 +Action6 +Firing +Firing +FiringCompleted + + + + +ReadyToFire +Action6 { +input (assign_target); +output (fire); +action +let +val bid = inst(); +val tid = #1 assign_target; +val grid = #2 assign_target; val impact=grid; +in +(bid, tid, grid, impact) +end + } + +Table 44: Battery E-BOM + +Action 6 is used to initiate the fire. It creates a token of type “Fire” to the Field +component containing the information of the firing battery id, target id, grid location +of the target and the location of the impact. + +8.3.3 E-BOM to CPN Transformation +In this step, all the extended BOM models (E-BOM) are automatically transformed +into our proposed CPN components in such a way that all variables from the +corresponding E-BOMs are added in the Structural Layer (shown in Red color in the +following figures) and the State-machine is transformed into the Behavioral Layer +(shown in Green color). In communication layer (shown in blue color), receive- +events are transformed into input ports and send-events are converted into output +ports. Figure 64Figure 65Figure 66Figure 67Figure 68 represent the CPN component +models of each component: + +Chapter 8 + +Model Verification using State-space Analysis techniques + +Page 154 + + +Figure 64: Observer CPN Component + +ID +Observer +Ready +LNI +INT +Grid +205405 +ObserveField +OF +INI +Out +H +Observing +Field +INT +TargetSpotted +TS +In +TARGET +Requesting +FireSupport +INT +Current +Target +CallForFireSupport +CFS +Out +TARGET +TARCE +WaitingFor +Reponse +INT +RequestApproved +RequestDenied +RA +In +ARCET +RD +In +TARGET +WaitingFor +Impact +LNI +Detonation +Occured +D +Input (target, detonaony: +In +output(result) +DETONATIOI +Evaluate +valgrld=#2target: +Damage +result +(Cestrayed(grld, detonaton3) +INT +end +[target_shabus=true] +[target_skatus=false] +Target +Target +Destroyed +Missed +TD +Out +NUL +TM +Out +HChapter 8 + +Model Verification using State-space Analysis techniques + +Page 155 + + +Figure 65: Field CPN Component + +ID +INT +[length fd > 0] +Data +TargetSpotted +target +TS +Out +FIELD +DTA +TARGET +165505. +"Bllding +Neutral +Input (fd3: +iEnemy" +output (target +1794B1, +aatlon +Being +165465. +Tank" +Enemy +let +198468. +Tank" +"Enemy' +Observed +alnox= +disorete (o.tlength fJ): +val F +Ost.ntfan +INT +n +#1F,#2F,#3F +end +ObserveField +OF +null +In +ULI +Field +Ready +INT +Fire +E +Hre +In +LFIRE +Ist.map (ftbkdrtid. +grld +mpact)=> +mpadAre +Taking +Impacts +Fire +mpacts +LNI +Detonation +D +Imoaats +Out +DETONATION +In put update, fdy: +output (ufd): +let +Waiting +val status = #2 updater +For +1update +Update +val y =[#i target. +#2 argeat ++3arget. +"Enemy") +INT +If (shatus=true) then +myfd +else +fd +end +ufa +fd +UpdateField +UF +update +In +PDATEChapter 8 + +Model Verification using State-space Analysis techniques + +Page 156 + + +Figure 66: BHQ CPN Component + + + +BHQ +ID +Ready +LNI +INT +CallFor +FireSupport +CFS +trge +205405 +In +Grid +TARGET +INT +arget +Call +FDC +LNI +Current +target +Process +arge +Target +Request +PR +Out +TARGEK +TARGET +trger +WaitingFor +Approval +INT +Request +Request +Approved +Denied +TARCE +RA +In +Assigning +trget +target +RD +Target +In +TARGET +INT +Input (target)) +Assign +output (asslgn_target): +Target +AT +asslgn_arget +Out +ASSIGN TARGE +Hit := discrete(o,2)F +If ((3 target) +"Artillery then +Waiting +#1trget +#2 barget, +#3target,[huertue,true +ForFire +else If ((*3 target) +ITank") then +(#1 target,#2 target,#3 target,[true,true,false]3 +else +((#1 target, #2 target, #3 target, [true, false, false])) +end +Firing +Completed +In +FC +nu +NLLI +WaitingFor +DamageReport +INT +Target +Target +Destroyed +Missed +NULI +Tue +In +TD +Target +UpdatingField +TM +Status +In +1000 +H +target status +INT +target +UpdateField +UF +(target, target shabus) +Out +JPDATEChapter 8 + +Model Verification using State-space Analysis techniques + +Page 157 + + +Figure 67: Battery CPN Component + + +ReadyToFire +Assign +Target +A. +Current +Preparing +Target +Cannon +Fire +Out +Firing +Firing +Completed +FC +OutChapter 8 + +Model Verification using State-space Analysis techniques + +Page 158 + + +Figure 68: FDC CPN Component + +We assume that each transformed CPN component has passed structural evaluation +which is conducted using inspection method and behavioral evaluation conducted +using Functional Testing method therefore S3b is also partially satisfied. + +8.3.4 Composition of CPN Components +In this step all CPN modules are combined together through socket places in a CPN +Composed Model as shown in Figure 69. In this composed model some general +purpose auxiliary components are also introduced such as Join and Fork to facilitate +the composition. + +1B3508. +"camp +Enemy' +Ready +179481 +EnGmy +165465 +TEO +EnemY +LNI +Tank +Field +Bpy +Process +Data +Request +PR +arge +Input (target, fdcd): +In +FIELD_DATA +target +output (fdc_ +result +TARGET +atn +Current +Processing +let +Target +fdyresult +vald +LNI +val r = List.ntht(llstsub faked +TARGET +(GetFleldByID tid fdcd)),0) +Result +arge +end +lt +1008 +TARGET +Request +Request +Approved +Denied +RD +Out +fck_result#true] +[fdk_result=false] +RA +target +Out +TARGETChapter 8 + +Model Verification using State-space Analysis techniques + +Page 159 + + +Figure 69: Field Artillery CPN Composed Model + +When the model is composed it is executed in the CPN execution environment. The +successful execution of the model (according to Figure 63) satisfies S3b completely. + +8.3.5 State space Analysis +In the next step the state-space of the entire Field Artillery Model is generated using +CPN state-space calculation tool, and is used to perform verification. The generated +state-space graph consists of 1960 nodes and 6469 arcs as shown in Figure 70. + +Battery3] +Battery2 +Battery1 +F3 +F2 +F1 +AT +AT +Bty3 +Bty2 +Btv1 +JoinFire +JoinFC +ForkAT +FC +Field +OF +CFS +Observer +TD +BHQ +TM +ORD +ORA +BR +BRD +FDC +PRChapter 8 + +Model Verification using State-space Analysis techniques + +Page 160 + + +Figure 70: State space of Field Artillery CPN Model (1960 nodes, 6469 edges) + +After the state-space is constructed in CPN tools, it is exported into a GraphML file +format. It is to be noted that the layout of the state-space graph in Figure 70 is +rendered using Gephi Tool. In that “node-1” represents initial marking of the +composed model whereas “node-1956” represents the goal state (explained later in +this section). Shades of green color (from dark to light) represent proximity from +node 1. All the nodes are connected with edges (some of which may not be visible +due to light colors). + + + + + + + +Goal State: +(Main:TS:1' (0,0,") +1956 +Initial Marking +: +8 +O +O +C +5.Chapter 8 + +Model Verification using State-space Analysis techniques + +Page 161 + +Translation of Requirements specification into CPN Properties +To proceed with the verification we first translate Objectives and Constraints defined +in the requirement specification to CPN properties. We assume that the default +constraints S1, S2 and S3 are already verified. +Objective +O1: All the enemy units must be destroyed +CPN Translation +As the Observer detects enemy units, therefore we say that if no more +enemy units can be detected (because field-data is empty) then all the +enemies should be destroyed. Therefore a marking where TS (Target- +spotted) place has a null token should exist. If such marking is found then +the objective is said to be reached. The following CPN function can be +used to verify this property. +CPN Function +fun AllTargetDestroyed() = +let + val token = 1`(0,0,""); /*Create a search criteria */ + val predicate = fn n => (Mark.Main'TS 1 n) = token; /*Create a predicate +function*/ + val TS = PredAllNodes (predicate); /* Built-in Node search function +in + if (length TS > 0) + then true + else false +end; +Result +When the function AllTargetDestroyed() is executed it returns True. This is +also evident from Figure 70 where the marking 1956 represents the goal- +state and is reachable form the initial state 1. + +Constraint +S4: There should never be a friendly fire. +CPN Translation +When “UpdateField” (UF) place gets a token from BHQ component +(which will be taken as input by the Field component), it shows which +field unit is destroyed. We can collect all such nodes in the state-space +(where UF field has tokens) and compare that all field units that have +been destroyed are of type “enemy”. If this condition holds in the entire +state-space then S4 holds. Following CPN-ML function can be used to +check if friendly fire has ever happened or not. The result should be false +to satisfy S4 +CPN Function +fun CheckFriendlyFire() = +let + val predicate = fn n => IsNotEnemy(Mark.Main'UF 1 n) = true; + val ListOfFrieldlyUnits = PredAllNodes (predicate); +in + if (length ListOfFrieldlyUnits > 0) /* Means there is a friendly fire */ + then true + else false +end; +fun IsNotEnemy (update) = +let + val upd:UPDATE = List.nth(update, 0); + val target = #1 upd; /*Extract information from the token at the place: UF */ +in + if GetType(#1 target) <> "Enemy" then true /* Checks field unit type*/ +else + false +end; +Result +The function CheckFriendlyFire() results false because no such incidence +occurred with the data (initial state) provided to the model. +To check that this function works correctly we created a counter example +in which FDC component is assumed to be erroneous (i.e. it wrongly +accepts fire support requests of the friendly units), we ran the routine and +found traces of the occurrence of friendly fire. + +Chapter 8 + +Model Verification using State-space Analysis techniques + +Page 162 + +As all the constraints and Objectives are satisfied we say that the field artillery model +is composable at all levels and is verified with respect to its given specifications. +Therefore the BOM based composed model is qualified for further implementation. + +8.4 State Space Reduction +In this section the application of our proposed state-space reduction technique is +presented. In order to proceed with the state-space reduction of the FA model +generated by CPN tools we perform following steps. + +1. Trimming Node Description +Each node in the CPN state-space graph has a description. This description +essentially tells about the presence of tokens (or multiple tokens) in all places of the +model, which is called marking. This description is very lengthy if the model has +many places or sub-models. In this step we remove all the descriptions and only keep +the information related to the places of the main model. To perform this step we use +the library function NodeDescriptorOptions() (see manual [73]). When the +descriptions are trimmed we will only get information of a node pertinent to the +main places otherwise it will be a “Null” string. (This is an important difference for +further steps). +Conceptually we hypothesize that trimming the node description does not cause loss +of information because all the information other than the one in the main places is +produced by the internal logic of the composed components. Since the composed +components are considered as black boxes and they will eventually output important +information (in form of tokens) in any of the main places. This information would be +sufficient to answer any verification query related to the model under consideration. + + +2. Export to GraphML +In the next step we export the state-space graph to an external file. Since CPN state- +space graph cannot be manipulated internally within the CPN environment therefore +we export the graph to a standard GraphML format [128] along with the trimmed +node descriptions and the information of the edges. To perform this step we develop +a GraphML writer function in CPN-ML. + +3. Reduction Algorithm +In the next step, we apply our reduction algorithm specified in Table 16. This +algorithm is implemented in a Java application which uses JUNG library for graph +manipulation functions. In brief, all the nodes which have “Null” descriptions are +removed (because they are irrelevant). When a node is removed all its incoming and +outgoing edges are removed. So we connect each predecessor of the node with each +successor to preserve the structure of the graph. When all the nodes are checked the +reduction is completed. The output of the reduce graph of Field Artillery mode is +shown in Figure 71. + +Chapter 8 + +Model Verification using State-space Analysis techniques + +Page 163 + + +Figure 71: Reduced State-Space graph of Field Artillery Model + +In Figure 71 node-2 represents initial marking (note that node-1 was trimmed in the +reduction process). Also Node-1956 still represents goal state. (Note that the nodes +IDs remain the same in the reduction process). + + +Reduced Graph Original Graph Percentage +Nodes 428 +1960 +21% +Edges 2503 +6469 +38 % +Table 45: Reduction Statisitics +Table 45 shows that the nodes are reduced to 21% and the edges are reduced to 38% +of the original graph. + + + +Initial Marking +2 +GoalState: +(Main:TS:1 (0,0,"")) +1956Chapter 8 + +Model Verification using State-space Analysis techniques + +Page 164 + +8.5 Summary +In this chapter the verification of BOM based composed models is discussed using +CPN based state-space analysis technique. An example model of Field Artillery is +introduced and the entire verification process is applied on this model. It is shown +how requirement specifications are translated into CPN properties and how they are +verified using state-space analysis and Query functions. + +State-space analysis is advantageous as it is exhaustive and leads the modeler to all of +the possibilities that can occur during the abstract level execution of a composed +model. A state-space graph helps to study all of these possibilities and to understand +the dynamic behavior of the components in detail. Also a state-space query functions +proposed along with the approach help in answering different verification questions +and evaluate the correctness of model with respect to the requirements. This +approach however is vulnerable to the state-space explosion as for a simple model of +Field Artillery 2503 nodes and 6469 edges were formed. To deal with this situation +we proposed an effective state-space reduction technique which not only reduces +large state-spaces into reasonable size but also preserves important information for +correct verification. We demonstrated how our proposed state-space reduction +technique is applied to the Field Artillery model for proof of concept. + + + + +Page 165 + +Chapter 9 +Model Verification using CSP based +Model Checking Technique + +Model Checking is becoming a standard approach for the software verification due to its numerous +advantages over traditional formal methods. Communicating Sequential Processes (CSP) is an event +based formal language for describing patterns of interactions in concurrent systems and very useful for +concurrent behavioral specification and verification due to its theoretical foundations of process +algebra (also called process calculi). The application of CSP based Model Checking technique in the +Composability verification also proves to be very useful, especially with a focus on the dynamic +semantic composability level. In this chapter the Field Artillery Model presented in Chapter 8 is +reused and extended with information to capture the behavior of a real-time probabilistic system. It is +shown how the Probabilistic-Timed Field Artillery Model is transformed into a composed CSP +model and verified using PAT. + +In this chapter, the modified version of Field Artillery Model presented in chapter 8 +is discussed as an example. The objective of this example is to represent a model of a +system with time constraints and probabilistic behavior. To the best of our +knowledge the PN algebraic approach does not support verification of the timed +models or probabilistic systems at all. Also the CPN based approach has a limited +support for the verification of timed system but it does not cover probabilistic +systems. We therefore propose to apply Modeling Checking for real-time +probabilistic systems and show how a composed model of one such system can be +verified using a CSP based Model checker called PAT (see 3.2.7). +9.1 +Field Artillery Scenario +The scenario of the Field Artillery Model is slightly different. It is assumed that a +soldier observes the field and detects enemy units. When a target is spotted, he calls +BHQ for fire support and provides the target details. In military practice, Time-On- +Target (TOT) is a Field Artillery coordination protocol observed by multiple firing +units. This technique was developed by the U.S. Army during World War II. It uses a +precise pre-determination of the estimated preparation time and the time of flight of +the munitions from each firing battery to the target area. When a Time on Target +(TOT) is designated each battery that will join in firing on that target subtracts the +time of flight from the TOT to determine the time to fire. The firing units fire their +rounds so that all the munitions arrive at the target at precisely the same time. This is +done in order to achieve maximum target destruction. If there is a gap between the +multiple impacts the enemy soldiers get time to prone or takeover in the hideouts +and mobile vehicles can escape [129]. +BHQ assigns target to the batteries, and also schedules a certain “TOT” for the +batteries to comply. Each battery needs some time to prepare for loading appropriate +ammunition and setting up the correct alignment and orientation of the barrel +according to the computed firing solution using range (distance) and bearing (angle) + +Chapter 9 + +Model Verification using CSP based Model Checking Technique + +Page 166 + +of the assigned target. It is assumed that each battery needs a random preparation +delay. When each battery is ready, it will fire in its own time such that all the rounds +hit the target at the given TOT. We also assume that the probability of hitting on the +exact target location for each battery is ‘0.9’. In contrast to the previous scenario in +chapter 8, we assume that there is only one target in the field component and all +three batteries are taking part in the firing operation. To construct a conceptual +model for this scenario, the following BOM components are composed: +Field: +Target location (We assume there is only one target). +Observer: +A soldier who request for the fire support from BHQ. +BHQ: +Supervises the entire operation of fire support, responds to the calls +for fire support and assigns targets to the batteries. +Battery: +Three units of artillery batteries (cannons and crew) responsible to hit +the target exactly at a given time. +(Note that FDC component is removed from the composition. Also some entity +characteristics and event parameters are reduced for simplification). The modified +BOM components of the Field Artillery conceptual model are formally defined as +follows: + +Observer = 〈 EnT, EvT, S, AcT 〉 where: +EnT = Observer { C0(target)} + +EvT = {E0(CallForFireSupport, Observer, BHQ, target), E1(Detonation, Field, Observer, +detonation)} + +Act = {A0(CallForFireSupport, Observer, BHQ, E0), A1(Detonation, Field, Observer, E1)} + +S = {S0(ObserverReady, A0, S1), S1(WaitingForImpact, A1, S0) } +Table 46: Observer Basic-BOM + +Field = 〈 EnT, EvT, S, AcT 〉 where: +EnT = Field {C1(destruction[3])} + +EvT = {E2(Fire, Battery1, Field, BID), E3(Fire, Battery2, Field, BID), E4(Fire, Battery3, Field, BID), +E5(Detonation, Field, Observer, destruction)} + +Act = {A2(Fire, Battery1, Field, E2), A3(Fire, Battery2, Field, E3), A4(Fire, Battery3, Field, E4), +A5(Detonation, Field, Observer, E5) } + +S = {S2(FieldReady, {A2, S3}+{A3, S3}+{A4, S3}) , S3(TakingFire, A5, S2)} +Table 47: Field Basic-BOM + + + + + + +Chapter 9 + +Model Verification using CSP based Model Checking Technique + +Page 167 + +BHQ = 〈 EnT, EvT, S, AcT 〉 where: +EnT =BHQ {C2(TOT) } + +EvT = {E6(CallForFireSupport, Observer, Field, target), E7(AssignTarget, BHQ, Battery1, Battery2, +Battery3, TOT), E8(FiringCompleted, Battery1, BHQ, null), E9(FiringCompleted, Battery2, BHQ, +null), E10(FiringCompleted, Battery3, BHQ, null} + +Act = {A6(CallForFireSupport, Observer, Field, E6), A7(AssignTarget, BHQ, Battery1, Battery2, +Battery3, E7), A8(FiringCompleted, Battery1, BHQ, E8), A9(FiringCompleted, Battery2, BHQ, E9), +A10(FiringCompleted, Battery3, BHQ, E10)} + +S={S4(BHQReady, A6, S5), S5(AssigningTarget, A7, S6), S6(WaitingForFire, {A8, S4} + {A9, S4} + +{A10, S4})} +Table 48: BHQ Basic-BOM + +Battery1,2,3 = 〈 EnT, EvT, S, AcT 〉 where: +EnT = Battery1,2,3 { C3(BID), C4(Destroyed) } + +EvT = {E11(AssignTarget, BHQ, Battery1, Battery2, Battery3, TOT), E12(ReadyToFire, Battery1/2/3, +Battery1/2/3, null), E13(Fire, Battery123, Field, BID, Destroyed), E14(FiringCompleted, Battery123, +BHQ, null)} +Act = {A11(AssignTarget, BHQ, Battery1, Battery2, Battery3, E11), A12(ReadyToFire, Battery1/2/3, +Battery1/2/3, E12), A13(Fire, Battery1/2/3, Field, E13), A14(FiringCompleted, Battery1/2/3, BHQ, +E14)} + +S = {S7(BatteryIdle, A11, S7), S8(Preparing, A12, S9), S9(ReadyToFire, A13, S10), S10(Firing, A14, S7)} +Table 49: Battery (1,2,3) Basic-BOM + +FA = 〈 AcTIN, AcTOUT , POI 〉 where: +AcTIN = AcTOUT = ∅ +POI = { POI-0(!A0, ?A6), POI-1(!A7, ?A11), POI-2(!A12), POI-3(!A13, {?A2, ?A3, ?A4}), POI- +4(!A14, {?A8, ?A9, ?A10}), POI-5(!A5,?A1} +Table 50: Field Artillery Composed BOM + +The composed field artillery model is shown in Figure 72 using our proposed +graphical notation. + + +Chapter 9 + +Model Verification using CSP based Model Checking Technique + +Page 168 + +Observer +S1 +Observer +Ready +Waiting +forImpact +S0 +Characteristics: +C0 = target : Integer +Actions: +A0 = CallForFireSupport +A1 = Detonation +States: +S0 = ObserverReady +S1 = WaitingForImpact +C0 +z +Field +A2 +S2 +FieldReady +TakingFire +A1 +S3 +Characteristics: +C1 = destruction : Boolean +Actions: +A2 = Fire +A3 = Fire +A4 = Fire +A5 = Detonation +States: +S2 = FieldReady +S3 = TakingFire +C1 +A3 +A4 +BHQ +A8 +S6 +WaitingForFire +BHQReady +A6 +S4 +Characteristics: +C2 = TOT : Integer +Actions: +A6=CallForFireSupport +A7=AssignTarget +A8=FiringCompleted +A9=FiringCompleted +A10=FiringCompleted +States: +S4=BHQReady +S5=AssigningTarget +S6=WaitingForFire +C2 +A9 +A10 +A7 +S5 +AssigningTarget +Battery1 +A14 +S9 +ReadyToFire +BatteryIdle +A11 +S7 +Characteristics: +C3=BID:Integer=1 +C4=Destroyed:Boolean +Actions: +A11=AssignTarget +A12=ReadyToFire +A13=Fire +A14=FiringCompleted +States: +S5=BatteryIdle +S6=Preparing +S7=ReadyToFire +S8=Firing +C3, C4 +A13 +A12 +S8 +Preparing +S10 +Firing +Battery2 +A14 +S9 +ReadyToFire +BatteryIdle +A11 +S7 +Characteristics: +C3=BID:Integer=1 +C4=Destroyed:Boolean +Actions: +A11=AssignTarget +A12=ReadyToFire +A13=Fire +A14=FiringCompleted +States: +S5=BatteryIdle +S6=Preparing +S7=ReadyToFire +S8=Firing +C3, C4 +A13 +A12 +S8 +Preparing +S10 +Firing +Battery3 +A14 +S9 +ReadyToFire +BatteryIdle +A11 +S7 +Characteristics: +C3=BID:Integer=1 +C4=Destroyed:Boolean +Actions: +A11=AssignTarget +A12=ReadyToFire +A13=Fire +A14=FiringCompleted +States: +S5=BatteryIdle +S6=Preparing +S7=ReadyToFire +S8=Firing +C3, C4 +A13 +A12 +S8 +Preparing +S10 +Firing +A0 +A1 + +Figure 72: Field Artillery Composed Model +9.2 Requirement Specification +We define Requirement speciation of the modified field artillery model as: + +RS0 = 〈O, S〉 where: +Objectives O = {o1, o2} and System Constraints S = {s1, s2 s3, s4} +o1: All the firing units should fire precisely at the target location +o2: All the firing units should fire at the target exactly at the given time (i.e., the Time +on Target property should be satisfied) + +s1, 2, and 3: The model should be composable at syntactic and static-semantic level. The +state-machines should match and the executable mode should correctly represent the +conceptual model. + +Chapter 9 + +Model Verification using CSP based Model Checking Technique + +Page 169 + +9.3 Verification using Model Checking +After the BOM are discovered, selected they are composed to form a conceptual +model according to the simuland. This composed model is now ready for +verification. At this stage we select model checking technique for its verification. +9.3.1 Static and Dynamic Analysis +We assume that the model qualifies syntactic and static-semantic analysis. Also when +it undergoes state-machine matching process it is able to make progress until the +goal-states are reached. Figure 73 shows the interaction of the state-machine of each +component during the state-machine matching process. +Based on the fact that the constraint S1, S2 and S3a are satisfied we proceed to +BOM-to-E-BOM extension. +Observer +BHQ +Field +Observer +Ready +WaitingFor +Impact +Field +Ready +Taking +Fire +BHQ +Ready +Assigning +Target +Waiting +ForFire +BATTERY +(1,2,3) +Idle +Preparing +Firing +CallForFireSupport +AssignTarget +Fire (1,2,3) +FiringCompleted +(1,2,3) +Detonation +ReadytoFire + +Figure 73: State-machine Matching of Field Artillery Model +9.3.2 BOM to E-BOM extension +At this stage all the BOM components are extended to our proposed E-BOM +extension with the help of the modeler’s input. Here additional information such as +timing constraints and probabilistic factors are proposed to be included. Following +tables present E-BOM extensions of BOMs in the FA model. +Observer E-BOM +SV and types +{C0(Target:Integer} +Initial States +{S0:ObserverReady} +Transitions +State +Event +Time +Guard +Action +Next State +Observer +Ready +CallForFireSupport + + + +WaitingFor +Impact +WaitingFor +Impact +Detonation + + + +Observer +Ready + +Table 51: Observer E-BOM + + + +Chapter 9 + +Model Verification using CSP based Model Checking Technique + +Page 170 + +Field E-BOM +SV and types {C1(Firing_Result_Of_Battery1:Boolean}, +{C1(Firing_Result_Of_Battery2:Boolean}, +{C1(Firing_Result_Of_Battery3:Boolean} +Initial States +{S2:FieldReady} +Transitions +State +Event +Time +Guard +Action +Next State +FieldReady +Fire(1) + + +Action1 +TakingFire +Fire(2) + + +Action2 +Fire(3) + + +Action3 +TakingFire +Detonation + + + +FieldReady + + /* A CSP script for defining a probabilistic action, with 95% chance that the +target will be destroyed when an event fire is received from battery1 and 5% chance +that the target will be missed */ +Action1{ +pcase{ + [0.05] : fire?1 → atomic{tau{ Destruction [0]=False;} → Skip} + default : fire?1→ atomic{tau{ Destruction [0]=True;}→ Skip} + } + +} +/* From battery 2 */ +Action2{ +pcase{ + [0.05] : fire?2 → atomic{tau{ Destruction [1]=False;} → Skip} + default : fire?2→ atomic{tau{ Destruction [1]=True;}→ Skip} + } + +} +/* From battery 3 */ +Action3{ +pcase{ + [0.05] : fire?3 → atomic{tau{ Destruction [2]=False;} → Skip} + default : fire?3→ atomic{tau{ Destruction [2]=True;}→ Skip} + } + +} + +Table 52: Field E-BOM + + +BHQ E-BOM +SV and types +{C2(TOT:Integer} +Initial States +{S4: BHQReady } +Transitions +State +Event +Time +Guard +Action +Next State +BHQReady CallForFireSupport + + + +AssigningTarget +AssigningTarget +AssignTarget + + + +WaitingForFire +WaitingForFire +FiringCompleted(1) + + + +BHQReady +FiringCompleted(2) + + + +FiringCompleted(3) + + + + +Table 53: BHQ E-BOM + + + +Chapter 9 + +Model Verification using CSP based Model Checking Technique + +Page 171 + +Battery(1,2,3) E-BOM +SV and types +{C3(BID:Integer} +Initial States +{S7: BatteryIdle } +Transitions +State +Event +Time +Guard +Action +Next State +BatteryIdle +AssignTarget + + + +Preparing +Preparing +readytofire +Wait[Prob] + +Action1 ReadyToFire +ReadyToFire +Fire + + + +Firing +Firing +FiringCompleted + + + +BatteryIdle + +/* A CSP script for defining a probabilistic wait action, with 94% chance that each +battery will launch the fire exactly at given time on target, and 6% chance that it +will fire earlier or later */ +Action1{ +pcase{ + +[0.01] : Wait[TOT-3]; readytofire → ReadyToFire(i) + +[0.01] : Wait[TOT-2]; readytofire → ReadyToFire(i) + +[0.01] : Wait[TOT-1]; readytofire → ReadyToFire(i) + +[0.94] : Wait[TOT]; readytofire → ReadyToFire(i) + +[0.01] : Wait[TOT+1]; readytofire → ReadyToFire(i) + +[0.01] : Wait[TOT+2]; readytofire → ReadyToFire(i) + +[0.01] : Wait[TOT+3]; readytofire → ReadyToFire(i) + +}; + +} + +Table 54: BHQ E-BOM +9.3.3 E-BOM to CSP# Transformation +In this step, all the probabilistic timed extended BOM models are automatically +transformed into CSP# using our automatic BOM-to-CSP transformation tool. +Figure 74 shows the global code block which is used to define global variables and the +communication channels for each BOM send-receive event pair. + +//------------Global Block ---------------------------------- +#define TOT 30; //Constant pre-defined Time on Target +enum {Hit, Miss}; //Hit or Miss flag +//Each battery has a hit/miss ratio = 95:5 % +var Firing_Result_Of_Battery1=Miss; +var Firing_Result_Of_Battery2=Miss; +var Firing_Result_Of_Battery3=Miss; + +//For each event a channel is defined +channel callforfire 0; +channel detonate 0; +channel assigntarget 0; +channel firingcomplete 0; +channel fire 0; + +Figure 74: Global code Block of Field Artillery Model + + + + + +Chapter 9 + +Model Verification using CSP based Model Checking Technique + +Page 172 + +Figure 75 shows the CSP code of Observer BOM component. The send-events are +transformed into channels with send operator ‘!’ and receive-events are transformed +into channels with receive operator ‘?’. + + +//=========================================================== +//OBSERVER Component +//=========================================================== + +ObserverSM = ObserverReady(); //Initial State + +ObserverReady()= + (callforfire!0 ->WaitingForImpact()); + +WaitingForImpact()= + (detonate?0 -> ObserverReady()); + +//=========================================================== +Figure 75: CSP representation of Observer Component + + + +//=========================================================== +//BHQ +//=========================================================== +BHQSM = BHQReady();//Initial State + +BHQReady()= +(callforfire?0 ->AssigningTarget()); + +AssigningTarget()= +(assigntarget!> assigntarget!2 -> assigntarget!3 -> + +Waitingforfire()); +//Sending assigntarget to multiple recievers + +Waitingforfire()= + +firingcomplete?>firingcomplete?2->firingcomplete?3-> + + +BHQReady(); +//Recieving firingcomplete from multiple senders + + +//=========================================================== +Figure 76: CSP representation of BHQ Component + + + + + + + +Chapter 9 + +Model Verification using CSP based Model Checking Technique + +Page 173 + +//=========================================================== +//BATTERY i={1,2,3} +//=========================================================== +BatterySM(i) = BatteryIdle(i); //Initial State +BatteryIdle(i)= +(assigntarget?i->Preparing(i)); +Preparing(i)= pcase{ + + +[0.01] : Wait[TOT-3]; readytofire-> ReadyToFire(i) + + +[0.01] : Wait[TOT-2]; readytofire-> ReadyToFire(i) + + +[0.01] : Wait[TOT-1]; readytofire-> ReadyToFire(i) + + +[0.94] : Wait[TOT]; readytofire-> ReadyToFire(i) + + +[0.01] : Wait[TOT+1]; readytofire-> ReadyToFire(i) + + +[0.01] : Wait[TOT+2]; readytofire-> ReadyToFire(i) + + +[0.01] : Wait[TOT+3]; readytofire-> ReadyToFire(i) + + +}; +// TOT is a global constant +//readytofire is an internal event + + +ReadyToFire(i)= fire!i->Firing(i); +Firing(i)= firingcomplete!i ->BatteryIdle(i); +//=========================================================== +Figure 77: CSP representation of Battery Component + +//=========================================================== +//FIELD Component +//=========================================================== +FieldSM = FieldReady(); //Initial State + +FieldReady()= + + + + +pcase{ + +[0.05]: fire?1 -> + + +atomic{tau{Firing_Result_Of_Battery1=Miss;} -> Skip} + default : fire?1 -> + +atomic{tau{Firing_Result_Of_Battery1=Hit;} -> Skip} + } +||| +/* ||| is the interleaving operator between the synchronizing events +fire(1), fire(2) and fire(3) */ + +pcase{ + + +[0.05]: fire?2 -> + + + +atomic{tau{Firing_Result_Of_Battery2=Miss;} -> Skip} + + +default : fire?2 -> + + +atomic{tau{Firing_Result_Of_Battery2=Hit;} -> Skip} + } +||| + +pcase{ + + +[0.05]: fire?3 -> + + + +atomic{tau{Firing_Result_Of_Battery3=Miss;} -> Skip} + + +default : fire?3 -> + + + atomic{tau{Firing_Result_Of_Battery3=Hit;} -> Skip} + }; + + +/* This code randomly sets hit or miss effect for the firing of each +battery */ + +Detonation(); +Detonation()= detonate!0 -> FieldReady(); +//=========================================================== + +Figure 78: CSP representation of Field Component + + +Chapter 9 + +Model Verification using CSP based Model Checking Technique + +Page 174 + +// FIELD ARTILLERY COMPOSED MODEL +//====================================================================== + +FieldArtillery = ObserverSM || BHQSM || FieldSM || BatterySM(1)|| +BatterySM(2)|| BatterySM(3) + +// || is the parallel operator between all the components +// BatterySM has three instances initialized with battery id parameter. + +Figure 79: Field Artillery Composed Model + +Figure 79 shows the CSP representation of how the transformed components are +composed using the parallelism operator ‘||’. This means that all the components +execute in parallel, however they perform barrier synchronization while exchanging +events in their respective communication channels. + +9.3.4 Model Checking of Field Artillery Model +The CSP based Field Artillery Model can be opened and executed in PAT tool. A +successful compilation of this model shows that it has no errors. When this model is +executed, and if each component reaches its final states then we say that the +constraint S3b of requirement specification is satisfied i.e., the transformed +executable model correctly represents the behavior of its conceptual model. +In the verification process, we define the following assertions to be verified by PAT +built-in model checker. Since the nature of the input model is probabilistic and real- +time, we use Probabilistic-Real-Time module of the PAT tool. +Figure 80 shows how we define goal reachability assertions using PAT’s Probabilistic +CSP LTL specification. + +//=========================================================== +// FIELD ARTILLERY COMPOSABILITY VERIFICATION +//=========================================================== + +// ASSERT1: Goal state Reachability +#assert FieldArtillery |= [](callforfire.0 -> <>detonate.0); + +// Goal Definition +#define goal (Firing_Result_Of_Battery1==Hit +&& Firing_Result_Of_Battery2==Hit +&& Firing_Result_Of_Battery3==Hit); + +//ASSERT2: //Goal Reachability +#assert FieldArtillery |= <>goal with prob; + +Figure 80: Field Artillery Verificataion Assertions + +Assertion1 uses LTL construct to verify that if there is a “callforfire” then detonation +at the target location will eventually occur. If assertion1 is satisfied, it shows that +there exists a valid execution path, which leads to the goal state. + + + +Chapter 9 + +Model Verification using CSP based Model Checking Technique + +Page 175 + +The result of PAT model checker is shown in Figure 81 which shows that the goal +state is reachable. +********Verification Result******** +The Assertion (FieldArtillery() |= []( callforfire.0-><> detonate.0)) is VALID. + +********Verification Statistics******** +Visited States:160477 +Total Transitions:475422 +Time Used:8.8263759s +Estimated Memory Used:111668.696KB +Figure 81: Verification Result of assertion 1 + +Assertion2 uses an LTL construct to verify that the “goal” is eventually reachable +where “goal” is defined as a condition that all the batteries successfully hit at the +exact location of the target. Note that assertion2 uses “with prob” construct, which +makes it a PLTL statement. Figure 82 shows the verification result which means that +the probability of reaching the goal is between 77% and 94%. +********Verification Result******** +The Assertion (FieldArtillery() |= <> goal with prob) is Valid with Probability [0.77378, 0.94526]; + +********Verification Statistics******** +Visited States:84019 +Total Transitions:245561 +MDP Iterations:63123 +Time Used:5.5017483s +Estimated Memory Used:97028.192KB +Figure 82: Verification result of assertion 2 + +Now we check whether the goal is reachable within the time constraints defined by +Time-On-Target property. To perform this evaluation we use the PAT’s deadline +operator as shown in Figure 83. We define three assertions: Early, Exactly and Late. +//=========================================================== +// FIELD ARTILLERY COMPOSABILITY VERIFICATION +//=========================================================== + +//Goal Reachability with TOT constraint +Early = FieldArtillery deadline[TOT-3]; +Exactly = FieldArtillery deadline[TOT]; +Late = FieldArtillery deadline[TOT+3]; + + +//ASSERT3: //Goal Reachability at TOT +#assert Early reaches goal with prob; +#assert Exactly reaches goal with prob; +#assert Late reaches goal with prob; + +Figure 83: Field Artillery Verificataion Assertions with TOT + + + + +Chapter 9 + +Model Verification using CSP based Model Checking Technique + +Page 176 + +The verification result of assertion 3 is shown in Figure 84 according to which the +early reachability of the goal is impossible. Whereas the maximum probability of +reaching the goal exactly on TOT is 86% which satisfies objectives O1 and O2 +However the maximum probability of reaching goal at a later time is 94% which +satisfies O1 with a higher probability but does not satisfy O2. + +********Verification Result******** +The Assertion (Early() reaches goal with prob) is NOT valid. + +********Verification Statistics******** +Visited States:58414 +Total Transitions:146548 +MDP Iterations:2557 +Time Used:4.46633s +Estimated Memory Used:69901.84KB + +********Verification Result******** +The Assertion (Exactly() reaches goal with prob) is Valid with Probability [0, 0.86271]; + +********Verification Statistics******** +Visited States:169998 +Total Transitions:342091 +MDP Iterations:28115 +Time Used:9.6064619s +Estimated Memory Used:148703.552KB + +********Verification Result******** +The Assertion (Late() reaches goal with prob) is Valid with Probability [0, 0.94526]; + +********Verification Statistics******** +Visited States:274934 +Total Transitions:584498 +MDP Iterations:112797 +Time Used:15.4390606s +Estimated Memory Used:232989.792KB + +Figure 84: Verification result of assertion 3 + +Based on the verification results, we can say that the field artillery model satisfies it’s +given requirements with a certain probability factor. Since it is a non-deterministic +model, the reliability of the success depends on the threshold between how tight the +Time-On-Target deadline is that BHQ can assign and how efficiently the batteries +can prepare and how accurately they can fire on the target. +9.4 Summary +In this chapter the model checking approach is presented with an example and +verified using Process Analysis Toolkit (PAT). The example of Field Artillery Model +(from chapter 8) is modified to represent a Probabilistic-Timed model in order to +explain how the CSP based model checking approach using PAT can be effective in +the composability verification. Using the example of Field Artillery model, it is +explained how the verification of time constraints is performed and how different +property assertions are verified with probability using PLTL. A successful verification +of this approach is a result of satisfaction of all the assertions defined in the +requirement specification, with an acceptable probability factor, and hence shows +that the components are composable. + + + +Page 177 + +Chapter 10 +Summary and Conclusion + +This chapter makes a comparison between the composability verification approaches presented in this +thesis and provides some guidelines for choosing the appropriate approach according to the nature of +the composed model. This discussion is followed by a summary of the major contributions of the thesis +and some suggestions for future research in this area are suggested. + +In this thesis we propose a verification framework that follows the fundamental +principles of M&S domain in terms of the notions of model correctness. It integrates +several methods, techniques and tools to support different tasks in the multi-tier +composability verification process of a composed model. It also inherits useful +technological characteristics related to model verification from other communities +such as Petri Nets, Model Checking and Process-Algebra community. And utilizes +the existing knowledge shared by these communities for the verification of +component based simulation models. These simulation models are called +component based models because they are designed in form of components and can +further be composed to construct sophisticated models (called composed models or +compositions). To ensure correctness, a composed simulation model is required to +be verified at its different composability levels, where each level poses certain degree +of difficulty in verification. The initial levels of composability require that all the +components in a composition can be syntactically connected to each other through +valid interfaces. And they can correctly communicate with valid semantics. Whereas a +deeper level of composability is the dynamic-semantic composability which requires +that all the composed components should possess suitable behavior in order to +correctly interact with each other for pursuing mutual objectives. The validity of +behavior in a component composition relies on two factors: (i) each component +should always be at the right state while interacting with the others and (ii) the +composition should satisfy required behavioral properties, as prescribed in the +requirement specifications. +The proposed verification framework not only provides complete support for the +verification of initial composability levels, but also the most important characteristic +of this framework is its ability to verify the composed model components at the +deeper level of dynamic-semantic composability. Composability Verification at this level is +a daunting task and requires a dynamic analysis approach. The behavior of +components can be studied when they are set to interplay with each other in an +execution environment, where they communicate through the exchange of events +and make progress by the change of their internal states. Therefore an appropriate +dynamic analysis approach is required which not only provides suitable execution +environment but also support built-in verification techniques to evaluate the +composability behavior at the runtime. +According to our findings not a single approach completely covers all the intricacies +required for proving correctness at this the dynamic-semantic composability level +due to its complex nature. The effectiveness of a certain approach also varies due to +the varied nature of the composed model and the modeling formalism used. Since + +Chapter 10 + +Summary and Conclusion + +Page 178 + +some models have complicated structure and demand rich expressiveness in terms of +data-centric details for the abstraction of a system; Whereas others have behavior of +complex nature including notions of concurrency and temporal constraints. Besides +the system behavior can be deterministic or stochastic. Therefore it is difficult to +depend on a single approach for the challenging task of dynamic-semantic +composability verification. +For this reason we investigated three different dynamic analysis approaches in our +framework namely: (i) PN based Algebraic Analysis, (ii) CPN based State-Space +Analysis and (iii) CSP based Model Checking Technique. These approaches inherit +theories, methods, tools and techniques from their corresponding ancestry +communities such as PN, CSP and Model checking. We adapt these inherited +resources and integrate them in our framework. We also propose several extensions +in each approach to suit the needs of dynamic-semantic composability verification. +Some of these extensions are listed as follows: + A component-based description format is proposed. This description format is +used to represent the BOM based composed model in the required form in order +to apply the selected approach. For instance a CPN based component model is +proposed which represents the structural and behavioral aspects of a BOM +component in form of a CPN model. Similarly for CSP, a Component oriented +CSP process model is introduced which represents a BOM component using CSP +notation. + For each approach a rule based transformation technique is proposed which +converts BOM components into the description format of the corresponding +approach while keeping the structure and behavior of the model preserved. To +ensure this fact methods are proposed to compare the original model (BOM) and +the transformed model to assert that the latter correctly represents the former. + For PN algebraic approach algorithms are proposed to automate the process. +Also a function library is developed for the ease of conducting repeated +verification tasks. + In case of state-space analysis, a reduction technique is proposed which helps in +reducing a large state-space and ease the process of verification. +The advantages and disadvantages of these three approaches are categorized as +follows: + +Category: +Kinds of properties that can be verified +PN Algebraic +Analysis +This approach only verifies a limited number of properties because it depends +on the applicability of underlying mathematical theorems which are limited in +number and may not cover all types of properties +CPN State- +Space Analysis +It constructs state-space of all possibilities that a system could be in. Therefore +it allows to specify and verify different kinds of general system properties as +well as scenario specific properties. +CSP based +Model Checking +In this approach the verification depends on the specification of properties +using LTL or CTL assertions, which along with their variety of extensions +provide rich expressiveness to define different kinds of properties. Therefore it +covers a bigger pool of verification questions both in terms of generic as well +as scenario specific properties +Table 55: Kinds of properties that can be verified + +Advantage +Disadvantage +Neutral + +Chapter 10 + +Summary and Conclusion + +Page 179 + +Category: +Type of the models that can be verified +PN Algebraic +Analysis +This approach supports simple event-driven PN models. It does not support +models with rich data, or models of real-time or probabilistic systems. +CPN State- +Space Analysis +This approach support models with rich data-centric structure and behavior +since it offers flow of the tokens of complex data-types and their manipulations +during the transitions. It also offers limited support for Timed systems. +However it does not support model verification of probabilistic nature. +CSP based +Model Checking +This approach limits size of information in the model and does not entertain +models with rich data-centric expressiveness. However it offers a variety of +types of systems that can be verified such as reactive systems, real-time +systems, probabilistic and stochastic systems. Therefore this approach is much +stronger in verifying different kinds of systems. +Table 56: Type of the models that can be verified + + +Category: +Scalability +PN Algebraic +Analysis +Verification is dependent on the structure of the PN model (i.e., number of +places and transitions). This factor is much less than the number of reachable +markings produced by other approaches. Therefore for larger models this +approach proves to be scalable +CPN State- +Space Analysis +Verification is dependent on the state-space, which tends to grow large for +even ordinary models and hence can easily subject to state-space explosion. +Some reduction techniques (including one of our own) may minimize this risk +but cannot completely omit it. +CSP based +Model Checking +Model checking is also exposed to state-space explosion however it has gone +through a continuous evolution of improved algorithms and compact data- +structures to minimize this risk. Therefore it promises a better resolution of +scalability as compared to the State-space analysis. +Table 57: Scalability + + +Category: +Infinite Model Verification +PN Algebraic +Analysis +It is not affected in its reasoning if the model is finite or infinite, because in +most of the cases it uses invariants for reasoning which are derived from the +algebraic computations and do not depend upon the number of reachable +system states +CPN State- +Space Analysis +If the model is infinite it will require a construction of infinite state-space +which is infeasible. +CSP based +Model Checking +Infinite model verification using this approach is possible by applying bounded +model checking or by abstracting an infinite system into a finite one however +this may lead to results with partial correctness. +Table 58: Infinite Model Verification + + + + + + +Chapter 10 + +Summary and Conclusion + +Page 180 + + +Category: +Usability +PN Algebraic +Analysis +This approach is difficult to use due to complex mathematics and requirement +to underlying applicable theorems for correct reasoning. +CPN State- +Space Analysis +This approach is easy to use. Most of the operations are automatic. +CSP based +Model Checking +This approach requires some effort to understand the formalisms used for +model input and property specifications. However its operations are easy and +all run in a black box i.e., the model checker. +Table 59: Usability + +Category: +Automation +PN Algebraic +Analysis +This approach is not automatic because the definition of a property and its +theorem applicability requires manual effort. When a property is defined, and a +theorem is selected, the modeler has to perform mathematical computations +and manually infer whether a condition is satisfied or not. +CPN State- +Space Analysis +This approach is semi-automatic because defining a verification task and a +suitable verification function requires modeler’s input. However the execution +of the function is automatic and it searches all state-space to return a result. +CSP based +Model Checking +This approach is totally automatic. Once a temporal logic assertion is defined, it +is executed automatically by and model checker to find out whether it is +satisfied or otherwise a counter example is generated. +Table 60: Automation + +Table 55 compares the proposed approaches in terms of the different types of +properties that can be verified. It highlights that the PN algebraic technique is limited +to verify only general properties (such as deadlock, liveness, fairness) since it depends +on the underlying theorems for the proof of their satisfiability. Whereas the other +two approaches are relatively more flexible to the specification and verification of +properties of varied types, including general and scenario specific properties. Table 56 +presents a comparison of the proposed approaches in terms of the type of models. +PN Algebraic approach only supports PN models with simple events without any +parameters, guards, actions or input/output state-variables. These features are rather +supported by CPN based state-space analysis approach which also provides limited +support for Time based CPN models. But for models of complex real-time systems +or probabilistic systems Model Checking approach is the suitable choice. + +Table 57 compares these approaches in terms of scalability of the models. In case of +Algebraic technique most of the operations in the property verification require +matrix computations such as Incidence matrix, P-Invariants, T-invariants. Therefore, +the scalability factor is dependent on the size of the matrix i.e., the number of places +× number of transitions of the composed model. Thus, the algebraic technique is +relatively salable. With regard to scalability the CPN based state-space approach has +serious limitations due to its rich data expressiveness and enumeration features. It is +reported [130] that if the model is very large it generates state-space around 105 -106 +nodes. Consequently ordinary PCs cannot easily handle such a large state-space. +However there are different approaches to make it more scalable. We also believe + +Chapter 10 + +Summary and Conclusion + +Page 181 + +that if our proposed state-space reduction technique is directly implemented in the +CPN tools environment, this limitation can further be relaxed. Model Checking +technique is relatively more scalable. Since it relies on the usage of PAT tool which +can handle about 107 states in a reasonable amount of time [98]. This should be +sufficient for the verification of most industrial scale system models. + +According to the Table 58 the algebraic approach is indifferent whether the model is +finite or infinite in nature. An infinite model is a non-terminating model which keeps +on evolving indefinitely. Such models are difficult to be verified using State-space +approach because its state-space construction is impossible. Although some +techniques have been developed such as coverability graphs, to resolve this problem +however they fail in some cases, such as in case of timed models. To verify infinite +models using Model Checking is somewhat possible using bounded model checking +or by abstracting an infinite system into a finite one. However this may lead to results +with partial correctness because only a portion of the system state-space can be +considered for the reasoning of property correctness. Table 59: UsabilityTable 59 and +Table 60 compare the ease of use of these approaches in terms of their application in +a verification task and the extent of automation they provide. +In short, there is no ultimate winner and making the right choice of an approach +entirely depends on the kind of model under investigation and the types of +verification properties in question. There are also no exact rules however some +fundamental guidelines can be used to help the modeler select a suitable approach: +10.1 Guidelines for choosing an approach +In this section some basic guidelines are presented for the modelers in making a +suitable choice +10.1.1 PN Algebraic Technique +This approach is most suitable when the analysis of a BOM composition is in +question which with simple state/transitions and does not require any extension (i.e., +it does not have state-variables, or complex notions of transitions with parameters, +guards, actions, inputs and outputs etc.). Also its requirement specification includes +properties which can be translated in form of PN properties (for which the solution +of PN algebraic verification exist). Therefore it should be used when the requirement +specifications can be defined in terms of PN properties. For instance, in chapter 7 +the objectives are translated into “Fairness” which means that they can be satisfied if +the model is fair so the objective of verification is to prove this assumption and can +be done using PN algebraic approach. Also it is not effected by the model size, +because it performs computations on matrices of the order of (No. of places × No. +of Transitions) which remain static, therefore it can also be used for somewhat larger +models. +It should not be used if the requirement specification contains reachability +properties. Though it is possible to verify them using the PN state equation however +it is rather difficult and inefficient as compared to State-Space Analysis approach. +This approach cannot be used if the composed model has notions of time, colored- +tokens (i.e., the BOM events have parameters) or non-determinism. + +Chapter 10 + +Summary and Conclusion + +Page 182 + +10.1.2 CPN based State-Space analysis Technique +This approach is best suitable when the given model has (or requires) rich data- +centric structure and behavior such as state-variables, events parameters, guards and +actions. In this case the BOM components are required to be extended to capture +more details. If the modeler has the necessary information to extend the BOM +components then he should use this approach otherwise he should choose the +Algebraic technique. This approach is also suitable if the modeler wants to execute +the composed model at an abstract level to study the behavior of the components +before actually implementing them. Although other proposed approaches also have +execution/simulation environments, but the CPN based execution is more detailed +and comprehensive to study the interaction between composed components, as it +provides a hierarchical interconnection between the CPN components and their +execution is shown by the flow of data carrying colored tokens among inputs and +outputs of each component in an interactive, step-by-step or an automatic fashion. +This allows the modeler to closely inspect the composition and its dynamics in a run- +time environment. Using this approach has many benefits from a component-based +development point of view and the chances of its success are further elevated with +our proposed state-space reduction technique called “Compositional State-Space”, +which reduces the risk of state-space explosion. +This approach can also be used for timed systems since CPN environment supports +modeling and verifying timed systems. However few limitations exist since the state- +space of timed systems is much more expensive and memory intensive, due to the +fact that each state carries an overhead of timed-stamps so even for a simpler model, +its state-space will be much heavier than a similar model with no time. Moreover, if +the model has even one non-terminating loop, its state-space cannot be constructed +as it keeps growing to infinity by incrementing the time-stamps. (i.e., the system may +return back to previous states in loops and no new state is being added in the state- +space but the time increases so the time-stamps keep on increasing. Therefore with +different time-stamps the same states keep on adding infinitely). +This approach however completely fails when certain non-determinism is involved in +the model. Even though CPN specification allows using different probability +distribution functions, but when they are used, the resultant state-spaces are +generated with variations, which cannot be used for verification reasoning. Therefore +we do not recommend this approach if the model is stochastic in nature. + +10.1.3 CSP based Model Checking Technique +This approach is usually favored by majority of the software verification community. +It also has a greater flexibility of adopting a new technique or algorithm with specific +requirements at hand, and thus can be useful in a variety of contexts. This approach +allows the modeler to execute the composed model using PAT simulator (see 3.2.7) +therefore it also contends with CPN based State-space analysis in terms of studying +system behavior at runtime. However its main strength is revealed when it offers +answers to a variety of verification questions, and to a variety of types of systems +(real-time, probabilistic etc.) using model checking. +This approach however restricts model expressiveness since it limits the use of data +types such as strings, products, records (unlike CPN). This requires an extra effort +from the modelers to represent a model in reduced or compact forms using smaller + +Chapter 10 + +Summary and Conclusion + +Page 183 + +data-types. For instance Boolean flags may be used instead of strings in the +parameters such as a pair of string parameters: “Target_Destroyed”, “Target_Missed” can +be represented as True/False. Similarly a set of string parameters: {“Red”, “Blue”, +“Green”} can be represented by corresponding integer values {0, 1, 2}. This kind of +reduction is required for this approach to work correctly. +For example, we presented a detailed data-centric model of field artillery in chapter 8 +to be verified with CPN state-space analysis approach. But when it was required to +verify a specific timed property (with non-determinism) we reduced unnecessary +details and presented a simpler prototype of the Field Artillery model in chapter 9, +focusing only on its behavior relevant to the desired property. By doing this +modification the model was useable with this approach which successfully verified +the required properties that could not be verified using CPN based approach. +As a final note, each approach has its own benefits and drawback and the choice +depends on the modeler’s objectives, nature of the task and available information. +However we also encourage using multiple approaches for a single task and +comparing the results. It gives different perspectives and can better help in +confirming correctness. + +10.2 Thesis Contributions +Component based modeling and simulation is a promising approach to develop and +simulate system models. It incorporates numerous benefits such as modular design, +logical separation, flexible change management, reusability of existing components, +cross-domain model integration and thus consequently helps in reducing cost, time +and system complexity. A key characteristic in this expedient paradigm is composability +that is the ability to add or select and assemble reusable components in order to +satisfy user’s requirements. In this thesis we mainly endeavored to investigate +different aspects of this quality characteristic of component based model design and +proposed a composability verification framework for the assessment of its +correctness. Our proposed framework uses Base Object Model (BOM), a SISO +standard for component based modeling, and performs composability verification of +BOM based model compositions with respect to given requirement specifications. In +order to prove the correctness of composability of a set of BOM components, our +framework undergoes a prescribed verification process, which has different phases +starting from system abstraction, requirement gathering, selection of BOM +components, their composition to form a conceptual model and then verifying its +different levels of composability, in an iterative top-down refinement fashion. When +the entire process is completed successfully the composed model is said to be +verified with respect to its specifications and can be used for implementation using +an implementation architecture (such as HLA) and simulated to serve its purpose. + +Following are the key contributions of this thesis: + We developed a composability verification framework, which stands on +fundamental verification principles and backed by the theoretical underpinnings +of M&S, the details of which are mainly covered in Part-I. It integrates different +methods, techniques, paradigms, algorithms, formalisms, templates, tools and 3rd +party libraries (or APIs) to support different tasks in the multi-tier composability + +Chapter 10 + +Summary and Conclusion + +Page 184 + +verification process of a composed model with respect to its requirement +specification. + We outlined a component based modeling and simulation (CBM&S) life-cycle by +categorizing its different phases, and activities under each phase. A pictorial +representation has been used to explain different tasks conducted under each +phase. This life-cycle provides guidelines for using various features of our +framework, and allows the user to conduct verification operations in a systematic +fashion. + A template to define and express requirements in a formal way is proposed. Our +requirement specification template can be used to specify a set of objectives and +system constraints. Objectives can be seen as ultimate goals while the constraints +are necessary quality requirements that must be satisfied for achieving the +objectives. + Inspired from the Discovery, matching and composition (DMC) paradigm of +model development [19], we propose method for rapid development of BOM +based conceptual models. + We propose a formal description of BOM components and their compositions +for documentation purpose. We also propose a graphical notation38 to describe +the structure of the BOM component and to show how they are connected to +each other in a compact form. This notation can be used as blue prints of +different model compositions and can be shared among different teams or +archived in the repository for reference. + We propose methods for evaluating the structural consistency of the composed +BOMs using rule based static analysis technique. The structural analysis involves +checking that the components are correctly connected and they can communicate +with each other with correct semantics. For semantic analysis, we propose an +OWL based differencing approach which checks that the communication of the +components is semantically consistent, meaningful and is understood as intended. + We suggest a behavioral evaluation technique which implicates that the +components can correctly interact with each other in a right causal order to reach +final states or pass through the goal states. For this purpose we propose state- +machine matching process, which transforms BOM state-machines of each +component into an executable SCXML format and execute them to analyze their +interaction. If there is no deadlock and all the state-machines make required +progress then the behavior of the components is reported to be consistent. + For the evaluation of dynamic-semantic composability level, our framework +incorporates three main approaches: (a) PN Algebraic technique (b) CPN-based +State-space analysis technique and (c) CSP based model checking. These three +approaches are offered to be used as alternatives to each other and their selection +is dependent on the nature of the model being investigated and decision of the +modeler. We also present basic guidelines to help the modeler choose an +appropriate approach. + For each approach we develop automatic transformation tool that transforms a +BOM based composed model into its respective executable model description +formalism. This method is inspired from Model Driven Architecture, in which a +platform independent model is transformed into platform specific model using + +38 It should be noted that different UML diagrams such as State charts and sequence diagrams are +used to describe BOMs informally. Our graphical notation follows the pattern of CBSE. + +Chapter 10 + +Summary and Conclusion + +Page 185 + +some transformation rules. We also propose BOM extensions based on certain +additional details that are required for correct transformation. For this purpose we +develop a BOM extension editor that takes modeler’s input for extending BOM +components. + We have applied our proposed approaches in three different case studies +discussed in chapter 7, 8 and 9 respectively. Each case study provides a proof of +concept and validates specific characteristics of our framework. For PN based +algebraic technique we presented a manufacturing system, in which fairness +property is verified. For CPN-based state-space analysis approach a field artillery +model is presented in which a set of scenario specific properties are verified. For +model checking, the same field artillery scenario is modified into a timed non- +deterministic model and a particular time property is verified with some +probabilistic assumptions. + We introduce a CPN based component model in order to describe a BOM +component (or any other simulation component) in form of an executable model +that can be executed using CPN execution environment. This CPN component +model can also represent any other simulation component using its three layers +namely (i) structural layer: which is used to define component attributes and +variables; (ii) behavioral layer: which is used to describe the state-machine of a +component and (iii) communication layer: which is used to describe components +interfaces and how it can connect with other components and communicate. We +transform all BOM components into the proposed CPN based component model +and compose them to form a composed model which can be executed in CPN +environment and verified using CPN based state-space analysis technique. + We introduce a State-space reduction technique called Compositional state-space. +This technique assumes that all the composed components are black-boxes and +their inputs and outputs are exchanged in the main model. Therefore we can +select all the nodes from the state-space which are relevant to any activity +happening in the main model and filter all the other nodes, by replacing them with +edges. The resultant graph will be a reduced state-space representing only those +nodes which describe the interactions of components in the main model and +provide sufficient information for composability verification. + +10.3 Conclusions +The verification framework proposed in this thesis expedites the process of +composability verification of BOM based composed models with respect to the +requirement specifications. A verified composed model ensures consistent structure +and behavior and guarantees the satisfaction of its objectives and required +constraints. A rapid development of the conceptual model using Discovery, +Matching and Composition paradigm, its automatic transformation into an +executable form and its composability verification helps in studying its structural and +behavioral correctness with respect to the given requirement specifications. This +helps in rectifying any possible defects in the model design before it is actually +implemented and simulated to serve its purpose, and thus saves a significant amount +of time, cost and achieve robustness. Moreover this process strongly supports +reusability as the entire process can easily be repeated to compose same components +for different scenarios with varied configurations or with different requirement +specifications (as in chapter 8 and 9). + +Chapter 10 + +Summary and Conclusion + +Page 186 + +The entire composability verification framework is acclimated by a systematic +Component Based M&S life-cycle which gives an outline of different phases of +component based M&S development process, where each phase has different +activities. This life-cycle inherits important features and characteristic of some +existing M&S development life-cycles and the Model Driven Architecture with an +expansion of component based model development and guides the modelers with +necessary directions to perform different tasks at different phases. +An important feature of this life-cycle is the software engineering principle of top- +down refinement. According to this principle a conceptual model is refined into an +executable form through a number of intermediary steps. Each step generates a +relatively detailed version of the abstract model and is easier to reason about its +correctness based on assumptions of its previously verified version. For instance, +when the state-machine matching process is successful we can proceed to a more +detailed dynamic level execution/verification with an assumption that the behavior +of the composed components is consistent. +Our experience with the three different dynamic analysis approaches proves to be +very constructive for composability verification. Each approach in its own way +provides significant improvement on efficient and accurate reasoning regarding +model correctness. We profess that the cross domain sharing of existing knowledge +and valuable contributions from other communities (such as PN, CSP, model +checking in our case) bridges cooperation in problem solving and helps in +accomplishing quality research. +10.4 Future Directions +Some of the key future directions of this work include: + We intend to deploy the composability verification framework in different +application areas to evaluate its potential and to make use of its valuable features +in verification. One area is the component based design for robotics applications. +Many software architectures for robotic applications support component oriented +design and thus can be explored for the utilization of our composability +verification process, such as in studying various aspects of behavioral +composability in different robotic applications. + + In the context of improvements in the verification framework following are some +key future directions: +o We intend to include verification of requirement specifications. Correctness +of requirements is a necessary aspect for successful verification. + +o We also intend to produce viable solution for the validation of the composed +model with respect to the real system. + +o We defined Pragmatic composability level in chapter 2 however the +composability verification at this level is still under investigation. We intend +to explore this direction in future. + + In general we are interested to explore the area of component based design +optimization and to study the composability of component design for +optimization with multiple objectives. + + +Page 187 + +References +[1] Eric Winsberg, Science in the Age of Computer Simulation.: University Of Chicago +Press, 2010. +[2] Louis G. Birta and Gilbert Arbez, Modelling and Simulation Exploring Dynamic +System Behaviour, 1st ed.: Springer, 2007. +[3] Christopher A. Chung, Simulation modeling handbook a practical approach, 1st ed.: +CRC PRESS, 2004. +[4] Catherine M. Banks, "What Is Modeling and Simulation?," in Principles of +Modeling and Simulation: A Multidisciplinary Approach. Norfolk, VA: WILEY, +2009, ch. 1. +[5] O Balci, J D Arthur, and W F Ormsby, "Achieving reusability and +composability with a simulation conceptual model," Journal of Simulation, vol. +5, no. 3, pp. 157-165, August 2011. +[6] Charles W. Krueger, "Software reuse," ACM Computing Surveys, vol. 24, no. 2, +pp. 13183, 1992. +[7] Johannes Sametinger, Software Engineering with Reusable Components, 1st ed.: +Springer, May 25, 2001. +[8] Robert G. Bartholet, David C. Brogan, Paul F. Reynolds, and Joseph C. +Carnahan, "In Search of the Philosopher’s Stone: Simulation Composability +Versus Component-Based Software Design," in Proceedings of the Fall +Simulation Interoperability Workshop, Orlando, FL, 2004. +[9] Ivica Crnkovic, Brahim Hnich, Torsten Jonsson, and Zeynep Kiziltan, "Basic +Concepts in CBSE," in Building Reliable Component-Based Software Systems. MA, +USA: Artech House, 2002, ch. 1. +[10] Clemens Syperski, Component Software Beyond Object-Oriented Programming, 2nd +ed. New York: Addison-Wesley, 2002. +[11] Elfatatry Ahmed, "Dealing with change: components versus services," +Commun. ACM, vol. 50, no. 8, August 2007. +[12] Marko Hofmann, "Component based military simulation: lessons learned +with ground combat simulation systems," in Proceedings 15th European +Simulation Symposium, Delft, Netherlands, 2003. +[13] Andreas Tolk, "Interoperability and Composability," in MODELING AND +SIMULATION FUNDAMENTALS Theoretical Underpinnings and Practical +Domains.: John Wiley, 2010, ch. 12. +[14] Judith A. Stafford and Kurt Wallnau, "Component Composition and +Integration," in Building Reliable Component-Based Software Systems. MA, USA: +Artech House, Inc., 2002, pp. 179 - 192. +[15] Scott A. Hissam, Gabriel A. Moreno, Judith Stafford, and Kurt C. Wallnau, + + +Page 188 + +"Packaging predictable assembly with Prediction-Enabled Component +Technology," Carnegie Mellon University, Pittsburgh, PA, Technical Report +CMU/SEI-200TR-024, November 2001. +[16] Stephen Kasputis, "Composable Simulations," in Winter Simulation Conference, +Orlando, USA, 2000, pp. 1577–1584. +[17] Paul K. Davis and Robert H. Anderson, Improving the composability of department +of defense models and simulations.: RAND National Defense Research Institute, +2003. +[18] Hessam S. Sarjoughian, "MODEL COMPOSABILITY," in Winter Simulation +Conference, Monterey, CA, USA , 2006. +[19] Farshad Moradi, "A Framework for Component Based Modelling and +Simulation using BOMs and Semantic Web Technology," School of +Information and Communication Technology, KTH-Royal Institute of +Technology, Stockholm, Ph.D. Dissertation KTH/ICT/ECS AVH-08/05— +SE, 2008. +[20] Claudia Szabo, "Composable simulation models and their formal validation," +Department of computer science national university of singapore, Singapore, +Ph.D. Dissertation 2010. +[21] Andy Ju An Wang and Kai Qian, Component-oriented programming, 1st ed.: John +Wiley & sons, Publication, 2005. +[22] Ernest H. Page, "Theory and Practice for Simulation Interconnection: +Interoperability and Composability in Defense Simulation," in Handbook of +Dynamic System Modeling.: Chapman & Hall, 2007, ch. 16. +[23] Andreas Hansson and Kees Goossens, On-Chip Interconnect with Aelite +Composable and Predictable Systems, 1st ed. New York: Springer , 2011. +[24] Hsu-Chun Yen, "Introduction to Petri Net Theory," in Recent Advances in +Formal Languages and Applications.: Springer Berlin, 2006, ch. 25. +[25] Christos G. Cassandras and Stéphane Lafortune, Introduction to Discrete Event +Systems, 2nd ed.: Springer, 2008. +[26] James L. Peterson, Petri Net theory and the modeling of systems, 1st ed.: +PRENTICE-HALL, INC., Englewood Cliffs, N.J. 07632, 1981. +[27] Jos C M Baeten, "A brief history of process algebra," Theoretical Computer +Science - Process algebra, vol. 335, no. 2-3, pp. 131 - 146, May 2005. +[28] Osman +Balci, +"VERIFICATION, +VALIDATION +AND +ACCREDITATION OF SIMULATION MODELS," in Proceedings of the +Winter Simulation Conference, Atlanta, GA, 1997. +[29] Mikel D. Petty, "Verification and Validation," in Principles of Modeling and +Simulation.: John Wiley & Sons, 2009, ch. 6. +[30] Stewart Robinson, Roger Brooks, Kathy Kotiadis , and Durk-Jouke Van Der +Zee, Conceptual Modeling for Discrete-Event Simulation. FL, USA: CRC Press, Inc., + + +Page 189 + +Boca Raton, 2010. +[31] Paul A. Fishwick, Simulation Model Design and Execution: Building Digital Worlds +(1st edition). NJ, USA: Prentice Hall PTR, 1995. +[32] Stephan MERZ, "An Introduction to Model Checking," in Modeling and +Verification of Real-time Systems, Nicolas Navet and Stephan Merz , Eds.: Wiley, +2010, ch. 3. +[33] Susan Harkrider and Lunceford H. W. , "Modeling and simulation +composability," in Proceedings of the Interservice/Industry Training, Simulation and +Education Conference, Orlando, FL, 1999. +[34] Mikel D. Petty and Eric W. Weisel, "A theory of simulation composability," +Virginia Modeling Analysis & Simulation Center, Old Dominion University, +Norfolk, Virginia, 2004. +[35] Ernest H. Page and Jeffrey M. Opper, "Observations on the complexity of +composable simulation," in Proceedings of the Winter Simulation Conference., NJ, +1999, pp. 553–560. +[36] David R. Pratt, Charles L. Ragusa, and Sonia von der Lippe, "Composability +as an Architecture Driver," in The Interservice/Industry Training, Simulation & +Education Conference (I/ITSEC), 1999. +[37] Paul K. Davis, Paul A. Fishwick, Michael C. Overstreet, and Dennis C. +Pegden , "Model Composability As A Research Investment: Responses To +The Featured Paper," in Winter SimulationConference, Orlando, FL, 2000, pp. +1585–1591. +[38] Mikel D. Petty and Eric W. Weisel, "A Composability Lexicon," in Proceedings +of the Spring 2003 Simulation Interoperability Workshop, Orlando, FL, April 2003. +[39] Extensible +Modeling +and +Simulation +Framework +(XMSF). +https://www.movesinstitute.org/xmsf/xmsf.html +[40] DEVS. http://en.wikipedia.org/wiki/DEVS +[41] OSA. http://osa.inria.fr/publications.html +[42] Base Object Model. www.boms.info/ +[43] Paul Davis, "Composability," in Defense Modeling, Simulation, and Analysis: +Meeting the Challenge. Washington, D.C.: The National Academies Press, 2006. +[44] Jay Larson, Robert Jacob, and Everest Ong, "The Model Coupling Toolkit: A +new Fortran90 toolkit for building multiphysics parallel coupled models," +International Journal of High Performance Computing Applications, vol. 19, no. 3, pp. +277–292, 2005. +[45] Simon Portegies Zwart, Steve McMillan, and et al (24 authors in total), "A +multiphysics and multiscale software environment for modeling astrophysical +systems," in 8th International Conference on Computational Science, Berlin, 2008, pp. +207–216. + + +Page 190 + +[46] Rob Armstrong et al., "The CCA component model for high-performance +scientific computing," Concurr. Comput. : Pract. Exper., vol. 18, no. 2, pp. 215- +229, 2006. +[47] Maciej Malawski, Marian Bubak, Michal Placek, Dawid Kurzyniec, and Vaidy +Sunderam, "Experiments with distributed component computing across grid +boundaries," in In Proceeding of the HPC-GECO/CompFrame Workshop, Paris, +France, 2006. +[48] Jan Hegewald, Manfred Krafczyk, Jonas Tölke, Alfons Hoekstra, and Bastien +Chopard, "An agent-based coupling platform for complex automata," in 8th +International Conference on Computational Science, Berlin, 2008, pp. 227–233. +[49] Katarzyna Rycerz and Marian Bubak, "Building and Running Collaborative +Distributed Multiscale Applications," in Large-Scale Computing Techniques for +Complex System Simulations, Albert Y. Zomaya, Ed.: John Wiley & Sons, 2012, +ch. 6. +[50] Eric W. Weisel, Mikel D. Petty, and Roland R. Mielke, "Validity of Models +and Classes of Models in Semantic," in Fall Simulation Interoperability Workshop, +Orlando, FL, 2003. +[51] Stewart Robinson, Richard E. Nance, Ray J. Paul, Michael Pidd , and Simon +J.E. Taylor, "Simulation model reuse: definitions, benefits and obstacles," +Simulation Modelling Practice and Theory, , vol. 12, no. 7–8, pp. 479-494, +November 2004. +[52] Ernest H. Page, Richard Briggs, and John A. Tufarolo , "Toward a family of +maturity models for the simulation interconnection problem," in Proceedings of +the Simulation Interoperability Workshop, Arlington, VA, 2004. +[53] Brahim Medjahed and Athman Bouguettaya, "A Multilevel Composability +Model for Semantic Web Services," Journal of IEEE Transactions on Knowledge +and Data Engineering, vol. 17, no. 7, (July 2006. +[54] Farshad Moradi, Rassul Ayani, Shahab Mokarizadeh, Gholam Hossein +Akbari Shahmirzadi, and Gary Tan, "A Rule-based Approach to Syntactic +and Semantic Composition of BOMs," in 11th IEEE Symposium on Distributed +Simulation and Real-Time Applications, Chania, 2007. +[55] Robert Porzel , Contextual Computing Models and Applications, 1st ed. Berlin +Heidelberg : Springer-Verlag , 2011. +[56] Micheal Axelsen, "Information request ambiguity and end user query +performance : theory and empirical evidence," School of Business, University +of Queensland, Queensland, Australia, Master's Thesis 2000. +[57] Bernard P. Zeigler , Herbert Praehofer , and Tag Gon Kim, Theory of Modeling +and Simulation, 2nd ed.: Academic Press, 2000. +[58] Paul Gustavson, "Building and Using Base Object Models (BOMs) for +Modeling +and +Simulation +(M&S) +focused +Joint +Training," +in +Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC), + + +Page 191 + +Orlando, Florida, 2005. +[59] SISO-I, "Base Object Model (BOM) Template Specification," Simulation +Interoperability Standard Organization (SISO), Orlando, FL USA, 2006. +[60] SISO-II, "Guide for Base Object Model (BOM) Use and Implementation," +Orlando, FL, 2006. +[61] Paul Gustavson and Tram Chase, "Building Composable bridges between the +conceptual space and the implementation space," in Proceedings of the winter +simulation conference, Washington, DC, USA, 2007. +[62] Mikel D. Petty and Paul Gustavson, "Combat Modeling with the High Level +Architecture and Base Object Models," in Engineering Principles of Combat +Modeling and Distributed Simulation, Andreas Tolk, Ed.: A John Wiley & Sons, +Inc., Publication, 2012, ch. 19. +[63] Robinson Stewart, Roger Brooks, Kathy Kotiadis, and Durk-Jouke Van Der +Zee, Conceptual Modeling for Discrete-Event Simulation. FL, USA: CRC Press, Inc., +2010. +[64] Fishwick A. Paul, Simulation Model Design and Execution: Building Digital Worlds, +1st ed. NJ, USA: Prentice Hall PTR, , 1995. +[65] BOM Works. http://www.simventions.com/bomworks/ +[66] Hruz Branislav and Meng Chu Zhou, Modeling and Control of Discrete-event +Dynamic Systems with Petri Nets and Other Tool, 1st ed.: Springer, 2007. +[67] ZhiWu Li and Meng Chu Zhou, Deadlock Resolution in Automated Manufacturing +Systems A Novel Petri Net Approach, 1st ed.: Springer-Verlag, 2009. +[68] René David and Hassane Alla, Discrete, Continuous, and Hybrid Petri Nets, 1st +ed.: Springer, 2010. +[69] Girault Claude and Valk Rüdiger, Petri Nets for Systems Engineering A Guide to +Modelling, Verification, and Applications.: Springer-Verlag, 2001. +[70] Tadao Murata, "Petri nets: Properties, analysis and applications 77(4), 541– +580 (1989)," in Proceedings of the IEEE, 1989. +[71] Gianfranco Balbo, "Introduction to Stochastic Petri Nets," in Lectures on +Formal Methods and Performance Analysis, Holger Hermanns and Joost-Pieter +Katoen, Eds.: Lecture Notes in Computer Science Springer Berlin, 2001, pp. +84-155. +[72] Zohar Manna and Amir Pnueli, The Temporal Logic of Reactive and Concurrent +Systems: Specification, 1st ed.: Springer Verlag, 1992. +[73] Kurt Jensen, Søren Christense, and Lars M Kristensen, "CPN Tools State +Space Manual," Aarhus , Denmark, Manual 2006. +[74] Lars Michael Kristensen, "State Space Methods for Coloured Petri Nets," +Department of Computer Science, University of Aarhus, Aarhus, Denmark, +Ph.D. Dissertation 2000. + + +Page 192 + +[75] Søren Christensen, Lars Kristensen, and Thomas Mailund, "A Sweep-Line +Method for State Space Exploration," in Tools and Algorithms for the Construction +and Analysis of Systems.: Springer Berlin / Heidelberg, 2001, pp. 450-464. +[76] Michael Westergaard, Lars Michael Kristensen, Gerth Stølting Brodal, and +Lars Arge, "The ComBack Method – Extending Hash Compaction with +Backtracking," in Petri Nets and Other Models of Concurrency.: Springer Berlin / +Heidelberg, 2007, pp. 445-464. +[77] Louise Elgaard, "The Symmetry Method for Coloured Petri Nets Theory, +Tools and Practical Use," Aarhus, Denmark, PhD Dissertation July 2002. +[78] Kurt Jensen and Lars M Kristensen, Coloured Petri Nets Modelling and Validation +of Concurrent Systems.: Springer, 2009. +[79] Kevin Mcleish. Petri Nets +http://www.peterlongo.it/Italiano/Informatica/Petri/index.html +[80] Standard ML. http://www.smlnj.org/ +[81] Kurt Jensen, "Coloured Petri Nets," Computer Science Department +University of Aarhus, Technical Report. +[82] CPN Tools. http://cpntools.org/ +[83] Wojciech Penczek and Agata Półrola, A Temporal Logic Approach Advances in +Verification of Time Petri Nets and Timed Automata, 1st ed.: Springer, 2006. +[84] Charles Antony Richard Hoare, Communicating Sequential Processes, 1st ed.: +Prentice Hall International, 1985. +[85] Stephen D. Brookes and Charles Antony Richard Hoare , "A Theory of +Communicating Sequential Processes," Journal of the ACM, vol. 31, no. 3, pp. +560 - 599, July 1984. +[86] Christel Baier and Joost-Pieter Katoen, Principles Of Model Checking, 1st ed.: +The MIT Press, April 2008. +[87] Ganesh Gopalakrishnan, "Model Checking: Basics," in Computation Engineering +Applied Automata Theory and Logic, Ganesh Gopalakrishnan, Ed. University of +Utah, Salt Lake City, UT: Springer, 2006, ch. 21. +[88] Malay Ganai and Aarti Gupta, SAT-Based Scalable Formal Verification Solutions, +1st ed., Anantha Chandrakasan, Ed.: Springer, 2007. +[89] BDD. http://en.wikipedia.org/wiki/Binary_decision_diagram +[90] SAT. http://en.wikipedia.org/wiki/Boolean_satisfiability_problem +[91] Fred Kroger and Stephan Merz, Temporal Logic and State Systems, 1st ed.: +Springer, 2008. +[92] George M. Reed and William A. Rosco, "A Timed Model for +Communicating +Sequential +Processes," +in +Automata, Languages and +Programming, 13th International Colloquium, ICALP86, Rennes, France, 1986, + + +Page 193 + +pp. 314-323. +[93] Communicating sequential processes +http://en.wikipedia.org/wiki/Communicating_sequential_processes#Analysi +s_tools +[94] Formal Systems. http://www.fsel.com/software.html +[95] The Adelaide Refinement Checker + http://cs.adelaide.edu.au/~esser/arc.html +[96] The ProB Animator and Model Checker. http://www.stups.uni- +duesseldorf.de/ProB/index.php5/Main_Page +[97] PAT: Process Analysis Toolkit. http://www.comp.nus.edu.sg/~pat/ +[98] Jun Sun, Yang Liu, and Jin Song Dong , "Model checking csp revisited: +Introducing a process analysis toolkit," in 3rd International Symposium on +Leveraging Applications of Formal Methods, Verification and Validation , Greece, +2008. +[99] Janusz Laski and William Stanley, Software Verification and Analysis An +Integrated, Hands-On Approach, 1st ed.: Springer, 2009. +[100] Jerry Banks , Handbook of Simulation: Principles, Methodology, Advances, +Applications, and Practice, 1st ed.: Wiley, 1998. +[101] Collection of software bugs. http://www5.in.tum.de/~huckle/bugse.html +[102] Klaus Schneider, Verification of Reactive Systems: Formal Methods and Algorithms, +2nd ed.: Springer-Verlag, 2004. +[103] William L. Oberkampf and Christopher J. Roy, Verification And Validation In +Scientific Computing, 1st ed.: Cambridge University Press, 2010. +[104] Avner Engel, Verification, validation, and testing of engineered systems, 1st ed., +Andrew P. Sage, Ed.: A John Wiley & Sons, Inc., Publication, 2010. +[105] Steve McConnell, Code Complete, 2nd ed.: Microsoft Press, 2004. +[106] Bertrand Meyer, Object Oriented Software Construction, 2nd ed.: Prentice-Hall, +1997. +[107] Matthew Wilson, "Quality Matters: Correctness, Robustness and Reliability," +Overload Journal Process Topics , no. 93, October 2009. +[108] Robert G. Sargent, "Verification, validation, and accreditation of simulation +models," in Proceedings of the 2000 Winter Simulation Conference, Orlando, FL, +2000. +[109] Mourad Debbabi, Fawzi Hassaïne, Yosr Jarraya, Andrei Soeanu, and Luay +Alawneh, Verification and Validation in Systems Engineering Assessing +UML/SysML Design Models, 1st ed.: Springer, 2010. +[110] Pallab Dasgupta, A roadmap for formal property verification, 1st ed.: Springer, + + +Page 194 + +2006. +[111] Didar Zowghi and Vincenzo Gervasi , "The Three Cs of Requirements: +Consistency, Completeness, and Correctness," in Proceedings of 8th International +Workshop on Requirements Engineering: Foundation for Software Quality, +(REFSQ'02), 2002. +[112] OWL-API. http://owlapi.sourceforge.net/ +[113] Imran Mahmood, Rassul Ayani, Vladimir Vlassov, and Farshad Moradi, +"Statemachine Matching in BOM Based Model Composition," in In +Proceedings of the 2009 13th IEEE/ACM International Symposium on Distributed +Simulation and Real Time Applications (DS-RT '09), Singapore, 2009. +[114] State-chart XML. http://www.w3.org/TR/scxml/ +[115] PNML. http://www.pnml.org/ +[116] Platform Independent Petri net Editor API. http://pipe2.sourceforge.net/ +[117] Julius Farkas, "Theory of simple inequalities," Journal of Pure and Applied +Mathematics , vol. 1902, no. 124, 1902. +[118] Mario D'Anna, "Concurrent system analysis using Petri nets: an optimized +algorithm for finding net invariants," Computer Communications, vol. 11, no. 4, +August 1988. +[119] Imran Mahmood, Rassul Ayani, Vladimir Vlassov, and Farshad Moradi, +"Verifying Dynamic Semantic Composability of BOM-based composed +models using Colored Petri Nets," in To appear in: 26th Workshop on Principles of +Advanced and Distributed Simulation, Zhangjiajie, China, 2012. +[120] V S Alagar and K Periyasamy, "Extended Finite State Machine," in +Specification of Software Systems, 2nd edition.: Springer, 2011, ch. 7. +[121] Shao Jie Zhang and Yang Liu, "An Automatic Approach to Model Checking +UML State Machines," in Secure Software Integration and Reliability Improvement +Companion 2010, Singapore, June 2010. +[122] Marta Kwiatkowska, "Survey of fairness notions," Information and Software +Technology, vol. 31, no. 7, September 1989. +[123] Tadao Murata and Zhehui Wu, "Fair relation and modified synchronic +distances in a petri net," Journal of the Franklin Institute, vol. 320, no. 2, August +1985. +[124] Imran Mahmood, Rassul Ayani, Vladimir Vlassov, and Farshad Moradi, +"Fairness Verification of BOM-Based Composed Models Using Petri Nets," +in IEEE Workshop on Principles of Advanced and Distributed Simulation (PADS), +Nice, France, June 2011. +[125] Andreas Tolk, "Challenges of Combat Modeling and Distributed +Simulation," in Engineering Principles of Combat Modeling and Distributed +Simulation.: John Wiley & Sons, Inc., Publication, 2012, ch. 1. + + +Page 195 + +[126] U.S. Army, Tactics, Techniques, And Procedures For The Field Artillery Cannon +Battery (U.S. Army Field Manual, FM 6-50). Washington: Marine Corps +Warfighting Publication, 1996. +[127] Indirect Fire. http://www.fas.org/man/dod-101/sys/land/indirect.htm +[128] The GraphML File Format. http://graphml.graphdrawing.org/ +[129] Time-On-Target. +http://www.answers.com/topic/artillery#Time_on_Target +[130] Michael Westergaard and Fabrizio Maggi, "Modeling and Verification of a +Protocol for Operational Support using Coloured Petri Nets," in Applications +and Theory of Petri Nets, Lars Kristensen and Laure Petrucci, Eds.: Springer +Berlin / Heidelberg, 2011. +[131] Military grid reference system +http://en.wikipedia.org/wiki/Military_grid_reference_system +[132] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford +Stein, Introduction to Algorithms, 3rd ed.: MIT Press, 2009. + + + diff --git a/9dE1T4oBgHgl3EQfUQOY/content/tmp_files/load_file.txt b/9dE1T4oBgHgl3EQfUQOY/content/tmp_files/load_file.txt new file mode 100644 index 0000000000000000000000000000000000000000..bf23c313188c3f0ae641d764d855a95762a46a16 --- /dev/null +++ b/9dE1T4oBgHgl3EQfUQOY/content/tmp_files/load_file.txt @@ -0,0 +1,22445 @@ +filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf,len=22444 +page_content='A Verification Framework for Component Based Modeling and Simulation “Putting the pieces together” Imran Mahmood Doctoral thesis in Electronics and Computer Systems Stockholm,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Sweden 2013 KTH VETENSKAP OCHKONST 6 KTH Informations och kommunikationsteknik Page 2 ISBN 978 91 7501 628 3 TRITA ICT/ECS AVH 13:01 ISSN 1653 6363 ISRN KTH/ICT/ECS/AVH 13/01 SE KTH School of Information and Communication Technology SE-164 40 Kista Sweden Akademisk avhandling som med tillstand av Kungliga Tekniska högskolan framlägges till offentlig granskning för avläggande av teknologie doktorsexamen tisdagen den 26 feb 2013 kl 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='00 i Sal E, Forum, Isafjordsgatan 39, Kista.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' \uf8e9 Imran Mahmood, February 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Tryck: Universitetservice US AB Page 3 Acknowledgement I would like to dedicate this manuscript to my loved ones, including some dignitaries, my parents who recently passed away, my guardians Mr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' & Mrs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Sajid Latif who raised me well to make me see this day and most important of all: my beloved wife and my little daughter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Their sacrifice for being apart and for my long absence cannot be compensated for anything.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' I offer my deepest gratitude to my supervisor Professor Rassul Ayani for this devotion and support.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Instead of just giving me the directions he actually grabbed my hand and took me to the destination like a true guide.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' I am honored to work under his supervision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' I am thankful to Assoc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Professor Vladimir Vlassov who gave sound advice and provided valuable contributions in my research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' I offer my affectionate tribute to the esteemed palace of knowledge, the Royal Institute of Technology, and specially the school of Information and Communication Technology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' I am thankful for continuous support and encouragement from Dr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Farshad Moradi from Swedish Defense Research agency (FOI).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' I am grateful for the constructive critics I received from my opponent Dr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Gary Tan and the member of the evaluation committee Dr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Oliver Dale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' I am very grateful for the Higher Education Commission of Pakistan to provide entire financial support for my studies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' I thank Mrs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Mumtaz Begum for her support.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' I would like to offer special thanks to Mr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Awais Ali Sohrawardi and Dr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Muhammad for their moral support during my study period.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' I thank all my colleagues, friends and especially the cricket team for wonderful time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Finally I thank Sweden for its hospitality, care and warm memories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Imran Mahmood January 2013, Stockholm Page 4 Abstract The discipline of component-based modeling and simulation offers promising gains including reduction in development cost, time, and system complexity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' This paradigm is very profitable as it promotes the use and reuse of modular components and is auspicious for effective development of complex simulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' It however is confronted by a series of research challenges when it comes to actually practise this methodology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' One of such important issue is Composability verification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In modeling and simulation (M&S), composability is the capability to select and assemble components in various combinations to satisfy specific user requirements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Therefore to ensure the correctness of a composed model, it is verified with respect to its requirements specifications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' There are different approaches and existing component modeling frameworks that support composability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Though in our observation most of the component modeling frameworks possess none or weak built-in support for the composability verification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' One such framework is Base Object Model (BOM) which fundamentally poses a satisfactory potential for effective model composability and reuse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' However it falls short of required semantics, necessary modeling characteristics and built-in evaluation techniques, which are essential for modeling complex system behavior and reasoning about the validity of the composability at different levels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In this thesis a comprehensive verification framework is proposed to contend with some important issues in composability verification and a verification process is suggested to verify composability of different kinds of systems models, such as reactive, real-time and probabilistic systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' With an assumption that all these systems are concurrent in nature in which different composed components interact with each other simultaneously, the requirements for the extensive techniques for the structural and behavioral analysis becomes increasingly challenging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The proposed verification framework provides methods, techniques and tool support for verifying composability at its different levels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' These levels are defined as foundations of consistent model composability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Each level is discussed in detail and an approach is presented to verify composability at that level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In particular we focus on the Dynamic-Semantic Composability level due to its significance in the overall composability correctness and also due to the level of difficulty it poses in the process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In order to verify composability at this level we investigate the application of three different approaches namely (i) Petri Nets based Algebraic Analysis (ii) Colored Petri Nets (CPN) based State-space Analysis and (iii) Communicating Sequential Processes based Model Checking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' All the three approaches attack the problem of verifying dynamic-semantic composability in different ways however they all share the same aim i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=', to confirm the correctness of a composed model with respect to its requirement specifications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Beside the operative integration of these approaches in our framework, we also contributed in the improvement of each approach for effective applicability in the composability verification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Such as applying algorithms for automating Petri Net algebraic computations, introducing a state-space reduction technique in CPN based state-space analysis, and introducing function libraries to perform verification tasks and help the modeler with ease of use during the composability verification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' We also provide detailed examples of using each approach with different models to explain the verification process and their functionality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Lastly we provide a comparison of these approaches and suggest guidelines for Page 5 choosing the right one based on the nature of the model and the available information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' With a right choice of an approach and following the guidelines of our component-based M&S life-cycle a modeler can easily construct BOM based composed models and can verify them with respect to the requirement specifications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Keywords: Modeling and Simulation, Component-based development, Composability, Semantic Composability, Dynamic-Semantic Composability, Verification, Correctness, Petri Nets Analysis, Algebraic Techniques, Colored Petri Nets, State-space Analysis, Communicating Sequential Processes, Model Checking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Page 6 Table of Contents Acknowledgement .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 3 Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 4 Table of Contents .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 6 List of Figures .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 9 List of Tables .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 11 List of Acronyms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 13 Chapter 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 16 Introduction .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 16 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1 Background and the opening perspective .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 16 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1 Component based Software Engineering .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 17 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='2 Component based Modeling & Simulation .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 18 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='3 Modeling and Analysis using Petri Nets .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 19 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='4 Modeling and Analysis using Process Algebra .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 19 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='5 Model Verification .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 19 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='2 Summary of the opening perspective .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 20 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='3 Preliminaries .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 20 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1 Definition 1: Set of Components .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 20 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='2 Definition 2: Requirement Specification .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 20 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='3 Definition 3: Composition & Composability Pattern .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 21 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='4 Definition 4: Satisfiability Operator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 21 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='4 Problem Statement .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 21 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='5 Approach .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 22 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1 Problem Domain .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 22 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='2 Solution Domain .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 22 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='3 Solution Statement .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 24 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='6 Scope of the Thesis .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 24 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1 Correctness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 24 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='2 Validation .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 24 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='3 Emergence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 25 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='4 Generalization .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 25 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='7 Summary of the Contributions .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 25 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='8 Structure of the Thesis .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 26 Chapter 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 28 Component Based Modeling and Simulation .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 28 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1 Composability in M&S .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 28 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='2 A Brief History of Composability and related work .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 29 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1 Initiation .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 29 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='2 Theoretical evolution .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 29 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='3 Standards & Frameworks .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 29 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='4 Technological Advances .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 29 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='5 Composability verification and Validation .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 30 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='3 Theory of Composability .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 30 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='4 Concepts related to Composability .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 32 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1 Composability vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Reusability .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 32 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='2 Composability vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Interoperability .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 33 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='5 Composability Levels .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 34 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1 Syntactic level: .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 35 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='2 Static-Semantic level: .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 35 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='3 Dynamic-Semantic level: .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 35 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='4 Pragmatic level: .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 36 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='6 Composability frameworks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 36 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1 Discrete Event System Specification (DEVS) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 37 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='7 Base Object Model (BOM) framework .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 38 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1 Structure of BOM .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 39 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='2 BOM Assembly .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 41 Page 7 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='3 Model Mapping and Object Model Definition .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 42 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='4 Formal specification for the Compositon of BOM .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 42 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='5 Summary .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 45 Chapter 3 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 46 Executable Modeling Formalisms .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 46 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1 Petri Nets .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 46 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1 PN Definitions and Concept .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 47 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='2 Petri net graph .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 47 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='3 Properties of PN .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 49 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='4 PN Analysis .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 51 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='5 PN Classes .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 58 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='2 Communicating Sequential Processes .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 62 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1 Basic Concepts and Definitions .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 62 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='2 CSP Analysis Techniques .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 64 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='3 Temporal Logics .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 65 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='4 Time CSP .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 66 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='5 Probabilistic Systems .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 66 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='6 CSP Implementation Tools .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 67 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='7 Process Analysis Toolkit (PAT) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 67 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='3 Summary .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 68 Chapter 4 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 69 Verification and Analysis .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 69 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1 Some Basic Concepts in Modeling and Simulation .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 70 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1 Verification and Validation in a Modeling Process .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 71 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='2 The Principles of Top-Down Refinement .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 73 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='3 Verification techniques .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 74 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1 Informal Techniques .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 74 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='2 Static Analysis: .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 75 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='3 Dynamic Analysis:.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 76 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='4 Formal Analysis .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 76 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='4 Summary .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 77 Chapter 5 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 79 Proposed Methodology and the Verification Framework .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 79 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1 Component-based Modeling & Simulation life-cycle .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 79 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='2 Inception .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 80 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='3 Modeling .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 81 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='4 Execution .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 82 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='5 Analysis .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 82 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='6 Composability Verification Framework .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 83 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1 Discovery Matching and Composition (DMC) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 83 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='2 Structural and Behavioral Evaluation .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 84 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='3 Static Analysis .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 84 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='4 Dynamic Analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 90 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='7 PN Algebraic Technique.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 93 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1 BOM to PNML Transformation .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 93 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='2 PN Algebraic computations .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 93 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='3 Property Verification Method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 95 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='8 CPN based State-Space Analysis Technique .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 96 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1 BOM Extension .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 97 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='2 E-BOM to CPN Component Transformation .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 99 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='3 Verification of the composed CPN model .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 105 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='9 CSP based Model Checking Technique .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 110 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1 BOM Extension .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 110 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='2 E-BOM to CSP# Transformation .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 112 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='3 Verification of the composed CPN model .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 113 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='10 Summary .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 115 Chapter 6 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 116 Composability Verification Process .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 116 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1 Composability Verification Process .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 116 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1 Formulation of Simuland, Requirements and Conceptual Model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 126 Page 8 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='2 Syntactic Matching Process .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 127 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='3 Static-Semantic Matching Process .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 127 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='4 State-machine Matching Process .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 127 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='5 Approach Selection for Dynamic-Semantic Composability Verification .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 127 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='6 PN Algebraic Technique .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 128 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='7 State-Space Analysis Technique .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 128 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='8 Model Checking .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 128 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='2 Summary .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 129 Chapter 7 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 130 Fairness verification using PN Algebraic Techniques .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 130 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1 Fairness .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 130 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='2 Fairness Verification .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 131 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='3 Manufacturing system .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 132 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1 Scenario I .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 132 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='2 Scenario II .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 138 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='4 Summary .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 141 Chapter 8 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 142 Model Verification using State-space Analysis techniques .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 142 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1 Combat Modeling .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 142 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1 Situated Environment .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 142 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='2 Moving .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 142 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='3 Looking (or sensing) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 143 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='4 Shooting .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 143 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='5 Communication: .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 143 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='2 Field Artillery .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 144 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1 Simuland .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 145 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='2 Field Artillery Model .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 145 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='3 Requirement Specification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 148 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='3 Verification of the FA model using CPN State-Space Analysis .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 149 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1 Static and Dynamic Analysis .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 149 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='2 BOM to E-BOM extension .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 149 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='3 E-BOM to CPN Transformation .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 153 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='4 Composition of CPN Components .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 158 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='5 State space Analysis .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 159 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='4 State Space Reduction .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 162 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='5 Summary .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 164 Chapter 9 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 165 Model Verification using CSP based Model Checking Technique .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 165 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1 Field Artillery Scenario .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 165 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='2 Requirement Specification .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 168 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='3 Verification using Model Checking .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 169 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1 Static and Dynamic Analysis .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 169 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='2 BOM to E-BOM extension .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 169 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='3 E-BOM to CSP# Transformation .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 171 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='4 Model Checking of Field Artillery Model .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 174 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='4 Summary .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 176 Chapter 10 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 177 Summary and Conclusion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 177 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1 Guidelines for choosing an approach .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 181 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1 PN Algebraic Technique .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 181 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='2 CPN based State-Space analysis Technique .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 182 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='3 CSP based Model Checking Technique .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 182 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='2 Thesis Contributions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 183 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='3 Conclusions .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 185 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='4 Future Directions .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 186 References .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 187 Page 9 List of Figures Figure 1: A model as computable function (acquired from [34]) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 30 Figure 2: Sequence of executions (acquired from [50]) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 31 Figure 3: Composed Model (acquired from [50]) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 31 Figure 4: Generic vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Specific component design .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 32 Figure 5: Black Box, Glass Box, White Box .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 33 Figure 6 Syntactic vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Semantic Composability (acquired from [38]) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 34 Figure 7: Ping-Pong DEVS [Wikipedia] .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 38 Figure 8: BOM structure .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 39 Figure 9: BOM Assembly .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 41 Figure 10: (a) PingPong BOM in BOM Works .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 41 Figure 11: Composed BOM .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 44 Figure 12: Transition firing sequence (acquired from [68]) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 49 Figure 13: Petri Net Analysis Techniques .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 51 Figure 14: Producer Consumer Example .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 53 Figure 15: M0 to M3 throguh firing sequece σ = t2, t1, t2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 54 Figure 16: Seasons in a year (acquired from [68]) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 54 Figure 17: (a) PN Model (b) Reachability Graph (acquired from [68]) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 56 Figure 18: Producer Consumer PN Model and its Coverability Graph .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 56 Figure 19: A CPN Model .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 59 Figure 20: Hierarchical Colored Petri Net .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 60 Figure 21: Modeling Process (acquired from [108]) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 71 Figure 22: Modeling Process (acquired from [29]) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 72 Figure 23: Simulation study life-cycle (acquired from [28]) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 73 Figure 24: Verification Techniques .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 74 Figure 25: CBM&S life-cycle .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 79 Figure 26: Simuland using UML Diagrams .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 80 Figure 27: Implemenation and Simulation .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 83 Figure 28: Discovery, Matching, Composition (DMC) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 84 Figure 29: Syntactic Matching .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 85 Figure 30: Some of the sub-classes of Data Type ontololgy .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 88 Figure 31: Semantic Matching Technique .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 88 Figure 32: Static-Semantic Matching .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 90 Figure 33: SCXML format .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 91 Figure 34: State-machine Matching Process .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 92 Figure 35: BOM to PN transformation .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 93 Figure 36: PN Algebraic Technique .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 96 Figure 37: Buffer Extended finite state-machine [120] .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 97 Figure 38: BOM and E-BOM comparison .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 99 Figure 39: CPN-CM represention of Queue component .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 103 Figure 40: CPN State-space analysis .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 106 Figure 41: State-space Analysis Technique .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 108 Figure 42: CSP based Model Checking Technique .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 115 Figure 43: Formulation of Simuland .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 117 Figure 44: Syntactic Matching Process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 118 Figure 45: Static-Semantic Matching Process .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 119 Figure 46: State-machine Matching Process .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 120 Figure 47: Approach Selection | PN Algebraic Technique .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 121 Figure 48: PN Algebraic Technique (continued) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 122 Figure 49: Implementation .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 122 Figure 50: State-Space Analysis Technique .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 123 Figure 51: State-Space Analysis Technique (continued) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 124 Figure 52: Model Checking .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 125 Figure 53: Model Checking (continued) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 126 Figure 54: Manufacturing System (acquired from [124]) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 132 Figure 55: Manufacturing System BOM based Composed Model .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 134 Figure 56: State-machine matching of manufacturing system .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 136 Figure 57: PN model of the manufacturing System .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 136 Page 10 Figure 58: Modified manufacturing system composed BOM .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 139 Figure 59: Modified PN model of the manufacturing System .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 140 Figure 60: Activities of Combat Modeling .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 144 Figure 61: Elements of Field Artliiery & Indirect Fire .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 145 Figure 62: Field Artillery Composed BOM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 148 Figure 63: State-machine Matching of Field Artillery Model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 149 Figure 64: Observer CPN Component .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 154 Figure 65: Field CPN Component .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 155 Figure 66: BHQ CPN Component .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 156 Figure 67: Battery CPN Component.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 157 Figure 68: FDC CPN Component .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 158 Figure 69: Field Artillery CPN Composed Model .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 159 Figure 70: State space of Field Artillery CPN Model .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 160 Figure 71: Reduced State-Space graph of Field Artillery Model .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 163 Figure 72: Field Artillery Composed Model .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 168 Figure 73: State-machine Matching of Field Artillery Model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 169 Figure 74: Global code Block of Field Artillery Model .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 171 Figure 75: CSP representation of Observer Component .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 172 Figure 76: CSP representation of BHQ Component .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 172 Figure 77: CSP representation of Battery Component .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 173 Figure 78: CSP representation of Field Component .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 173 Figure 79: Field Artillery Composed Model .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 174 Figure 80: Field Artillery Verificataion Assertions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 174 Figure 81: Verification Result of assertion 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 175 Figure 82: Verification result of assertion 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 175 Figure 83: Field Artillery Verificataion Assertions with TOT .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 175 Figure 84: Verification result of assertion 3 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 176 Page 11 List of Tables Table 1: Entity A .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 43 Table 2: Entity B .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 44 Table 3: Composed BOM .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 44 Table 4: Incidence Martic A .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 53 Table 5: State equation .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 53 Table 6: Informal Verification Techniques .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 75 Table 7: Static Analysis Techniques .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 75 Table 8: Dynamic Analysis Techniques .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 76 Table 9: Formal Analysis Techniques .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 77 Table 10: Mandatory constraints in composability verification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 81 Table 11: Semantic Matching Algorithm .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 89 Table 12: State-machine Matching algorithm .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 91 Table 13: Incidence Matrix Calculation .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 94 Table 14: Place-Invariants .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 95 Table 15: Transformation Rules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 102 Table 16: Compositional State-space generation algorithm .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 109 Table 17: Time functions in E-BOM .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 111 Table 18: Probability Distribution Functions .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 111 Table 19: E-BOM to CSP# transformation rules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 113 Table 20: Some examples of PAT Assertions .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 114 Table 21: Formal definition of Machine1 Base-BOM .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 133 Table 22: Formal definition of Machine2 Base-BOM .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 133 Table 23: Formal definition of Robot Base-BOM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 134 Table 24: Formal definition of Manufacturing System composed BOM .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 134 Table 25: Syntactic Matching .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 135 Table 26: Static-Semantic Matching .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 135 Table 27: Initial Marking and Incidence Matrix (Scenaro I) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 137 Table 28: P-Invariants and T-Invariants (Scenaro I) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 137 Table 29: B-Fairness Verification .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 138 Table 30: Formal definition of Controller Base-BOM .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 139 Table 31: Manufacturing System composed BOM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 139 Table 32: Initial Marking and Incidence Matrix (Scenaro II).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 140 Table 33: P-Invariants and T-Invariants (Scenaro II) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 140 Table 34: Observer Basic-BOM .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 146 Table 35: Field Basic-BOM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 146 Table 36: BHQ Basic-BOM .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 147 Table 37: FDC Basic-BOM .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 147 Table 38: Battery (1,2,3) Basic-BOM .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 147 Table 39: Field Artillery Composed BOM .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 147 Table 40: Observer E-BOM .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 150 Table 41: Field E-BOM .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 151 Table 42: BHQ E-BOM .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 152 Table 43: FDC E-BOM .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 152 Table 44: Battery E-BOM .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 153 Table 45: Reduction Statisitics .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 163 Table 46: Observer Basic-BOM .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 166 Table 47: Field Basic-BOM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 166 Table 48: BHQ Basic-BOM .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 167 Table 49: Battery (1,2,3) Basic-BOM .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 167 Table 50: Field Artillery Composed BOM .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 167 Table 51: Observer E-BOM .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 169 Table 52: Field E-BOM .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 170 Table 53: BHQ E-BOM .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 170 Table 54: BHQ E-BOM .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 171 Table 55: Kinds of properties that can be verified .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 178 Table 56: Type of the models that can be verified .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 179 Table 57: Scalability .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 179 Page 12 Table 58: Infinite Model Verification .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 179 Table 59: Usability .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='. 180 Table 60: Automation .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 180 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Page ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='13 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='List of ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Acronyms ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='ABV ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Assertion-based ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Verification ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Ac ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Communicating ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Arcs ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='ACP ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Algebra ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='of ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Communicating ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Processes ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='ALSP ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Aggregate ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Level ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Simulation ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Protocol ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='AOI ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Area-of-Interest ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='AP ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Atomic ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='propositions ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='API ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Application ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='programming ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='interface ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='ARC ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Adelaide ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Refinement ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Checker ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='ASV ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='State-variable ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='arc ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='AT ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Transiting ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='arc ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='BB ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Basic ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='BOM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='BDD ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Binary ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Decision ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Diagram ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='BHQ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Battalion ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Headquarters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='BHQSM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Battalion ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Headquarters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='State-machine ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='BID ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Battery ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='ID ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='BL ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Behavioral ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Layer ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='BOM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Base ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Object ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Model ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='CB ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Composed ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='BOM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='CBM&S ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Component ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Based ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Modeling ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='and ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Simulation ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='CBSE ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Component ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Based ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Software ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Engineering ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='CBT ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Composable ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Behavioral ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Technologies ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='CCA ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Common ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Component ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Architecture ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='CCP ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Color ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='set ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='of ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='communicating ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='port ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='CCS ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content="Milner's " metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Calculus ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='of ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Communicating ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Systems ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='CL ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Communication ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Layer ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='CM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Conceptual ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Model ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='CODES ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Composable ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Discrete-Event ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='scalable ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Simulation ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content="COST Component Oriented Simulation Toolkit CP Communicating Port CPN Colored Petri Nets CPN-CM Colored Petri Nets Component Model CPN-ML ML scripting language for Colored Petri Nets CSP Hoare's Communicating Sequential Processes CSV Color set of State variable CTL Computation Tree Logic DEDS Discrete Event Dynamic Systems DES Discrete Event Systems DEVS Discrete Event System Specification DIS Distributed Interactive Simulation DMC Discovery," metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Matching & Composition DOT DOT file format EC Event Controller EFSM Extended Finite State-machine EIC DEVS input port couplings EOC DEVS output port couplings EXPR Expression FA Field Artillery FD Field Data FDC Fire Direction Center FSM Finite State-Machine HLA High Level Architecture HPC High Performance Computing IC DEVS Internal Coupling IDE Integrated Development Environment ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Page ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='14 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='INT Integer ISV Initialization function of State-variable JCSP Java based Communicating Sequential Process JSIMS Joint Simulation System JUNG Java Universal Network Graph library LCIM Levels of Conceptual Interoperability LTL Linear Temporal Logic LVC Live,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' virtual,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='or ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='constructive ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Simulation ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='MBSC ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Model ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='based ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='simulation ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='composition ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='MCT ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Model ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Coupling ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Toolkit ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='MDF ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Matrix ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Definitional ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Form ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='MDP ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Markov ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Decision ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Processes ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='MOCCA ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Component ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='based ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Grid ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Environment ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='MPD ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Markov ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='decision ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='processes ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='MUSCLE ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='A ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Multi-scale ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Coupling ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Library ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='and ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Environment ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='NET ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Network ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='OMT ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='High ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Level ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Architecture ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Object ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Model ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Template ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='OSA ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Open ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Simulation ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Architecture ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='OWL ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Web ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Ontology ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Language ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='PAT ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Process ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Analysis ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Toolkit ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='PIPE ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Platform ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Independent ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Petri ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Net ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Editor ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='PLTL ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Probabilistic ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Linear ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Temporal ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Logic ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='PN ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Petri ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Net ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='PNML ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Petri ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Net ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Markup ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Language ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='POI ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='BOM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Pattern ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Of ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Interplay ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='RS ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Requirement ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Specifications ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='SAT ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Boolean ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Satisfiability ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='SCT ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Semantic ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Composability ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Theory ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='SCXML ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='State ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Chart ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='extensible ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='markup ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='language ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='SE ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Software ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Engineering ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='SIMNET ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Simulation ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Networking ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='SISO ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Simulation ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Interoperability ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Standards ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Organization ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='SL ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Structural ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Layer ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='SM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Syntactic ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Matching ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='SML ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Scripting ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='language ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='SMM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='State-Machine ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Matching ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='SSM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Static-Semantic ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Matching ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='SV ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='State ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Variable ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='SVIN ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Input ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='State ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Variable ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='SVOUT ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Output ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='State ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Variable ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='TCSP ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Timed ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Communicating ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Sequential ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Processes ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='TENA ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Test ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='and ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Training ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Enabling ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Architecture ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='TOT ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Time ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='On ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Target ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='UML ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Unified ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Modeling ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Language ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='VCP ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Communication ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Port ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Variable ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='V&V ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Verification ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='and ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Validation ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='VVA ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Verification,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Validation and Accreditation VVT Verification,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Validation and Testing XML Extensible Marking Language XMSF Extensible Modeling and Simulation Framework XT Firing Vector Page 15 Part I Episteme Epistêmê in Greek means “to know”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' It is the theoretical knowledge;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' a principled system of understanding;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' fundamental body of ideas and collective presuppositions that determine the knowledge which is intellectually certain at any particular period of time;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Pure-Science;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' episteme deals with “what” and “why” of the subject.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Part-I covers the epistemology of the research under discussion where the theory, concepts, principles, paradigms, philosophy and rationale of the problem domain and the solution domain are sketched.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In essence Part-I contains theoretical knowledge and the background information required to understand the problem and proposed solution discussed in the second part.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=" “If you can't explain it simply, you don't understand it well enough”." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' - Albert Einstein Page 16 Chapter 1 Introduction This chapter provides the opening statement and general information about the research presented in this thesis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' It outlines background, history, the formal definition and the basic philosophy of the problem under question and covers the motivation, goals and scope of the research and the contributions of the thesis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In the end, a section on the thesis organization is rendered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1 Background and the opening perspective Over the last fifty years, there has been a revolutionary development influencing almost all of the sciences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' This progress is mainly instigated by the astonishing growth of the use of the digital computers and the subsequent rise of the age of computer simulations [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' It is the emergence and widespread availability of computing power and resources that have made possible the new dimension of experimentation with complex models and their simulations [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Computer simulations are now widely used in various scientific disciplines and application domains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' They are used for studying complex systems and gaining insight into the operation of an existing system without disturbing the actual system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Furthermore they are used for testing new concepts of the systems before implementation, visualizing and predicting behavior of a future system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Besides, they are used for analyzing and solving problems, drawing conclusions and aiding the process of crucial decision making [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Therefore computer simulation is regarded as third branch of science [4] and stands alongside of the first two branches namely theory and experimentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Modeling and Simulation (M&S) is a discipline with its own body of knowledge, theory, and research methodology [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The goals of M&S are aligned with the systems theory, and include modeling & analysis, design & synthesis, control, performance evaluation and optimization of a real system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The M&S community has demonstrated a longstanding focus on providing support for these goals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' With the advent of the net-centric era of methods and technologies in designing complex simulation systems, the focus of M&S industry has been driven by the most recognized potential benefits of reduced development cost, time and system complexity [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' This is because M&S development process is costly, time consuming, resource intensive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Models can be large, complex and require a great deal of time, resource and domain specific expertise to develop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Beside this, an enormous effort is required to evaluate that the model is correct and meets its requirements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Therefore M&S community has taken a deep interest in the quality design principles and their underlying supportive theories to alleviate these challenges.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' It has been realized that constructing a model from scratch each time it is needed is inefficient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Instead, the practice of model reuse has been increasingly appreciated and is inspired from the vision of software reuse, which was originally introduced in 1968 [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Apparently this approach looks very appealing however it poses many obstacles in implementing, such as lack of flexibility and adaptability in design, difficulty of integration, mismatched interface, incomplete specification etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' These obstacles are Chapter 1 Introduction Page 17 considered elusive research challenges and are now the primary research interests of the software engineering and M&S communities [8] 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1 Component based Software Engineering Component-based software engineering (CBSE) has been identified as a key enabler in the construction of complex systems by combining software components that are already developed and prepared for integration [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Software Component A software component is defined as a unit of composition which is independently developed and can be combined with other components to build larger units.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' It must have clearly specified interfaces to communicate with its environment while the implementation must be encapsulated in the component and is not directly reachable from the environment [9], and therefore can be easily used by the third party without having to know implementation details [8], [10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Building software from components contributes to a major paradigm shift in software engineering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The basic philosophy behind the idea of component-based development is to carry out the software development process by (quickly) producing software applications through assembling prefabricated software components and to archive these interoperable software components in form of an increasingly large repository for further reuse [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' CBSE promotes the principle of modularity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' That essentially helps to master the complexity of the reality by decomposing it into parts [12] and enables the designer to use and reuse appropriate parts for different purposes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' These parts are the sub-systems built in a component- based fashion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' These subsystem components may have been separately developed by different teams.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' They may also have been developed for different purposes unrelated to the current context of the usage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' CBSE has many advantages, such as effective management of complexity, logical separation, reduced time and cost, increased productivity, improved quality, a greater degree of consistency, increased dependability, and a wider range of usability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In addition, the growing connectivity of real world problems is reflected in the requirement to compose cross domain solutions [13], and therefore support knowledge sharing to a wider user community.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' CBSE is therefore a discipline of software engineering that deals with the composition of components to construct software systems which are capable of performing functions according to the user’s requirements [14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In CBSE, component integration and component composition are two distinguished terms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Component integration is merely the task of connecting components together whereas composition also includes reasoning about the semantic behavior of the resulting assembly [14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' With the advent of component technology the integration problems are becoming a difficulty of the past.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Instead more crucial problems of predicting the emergent behavior of assemblies and the problem of reasoning about how well components will play together are now in debate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Component composition supports this type of reasoning and provides a foundation for fundamental reasoning to justifying validity of the resulting assemblies, their run-time compatibility and emergent behavior.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The main reason for the difference between integration and composition is due to the fact that component interfaces do not provide enough information to determine how well the composed components will play together [14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' An interface can only help to determine if the component can be connected to Chapter 1 Introduction Page 18 some other component but cannot supports reasoning about emergent properties of the assemblies [14], [15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Component composition promises such rationale;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' however is still a subject of open research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='2 Component based Modeling & Simulation Inspired by the discipline of component based software engineering, M&S community has also started to develop simulation models by reusing previously developed and validated “simulation components”, and composing them in a new simulation model according to the desired user objectives [16], [17], [18], [19], [20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The basic and effective strategy for tackling any large and complex simulation problem is “divide and conquer.” One major idea in component-based simulation development is to create models that are themselves self-contained and independently deployable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Thus different simulationist will be able to work on different components independently, without needing much communication among each other, (and particularly without the need to share the classified domain knowledge) and yet the components will work together seamlessly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In addition, during the maintenance phase, it is possible to modify some of the components without affecting all of the others [21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In simulation community the research on component based development falls under the rubric of composability [22], where simulation models are considered to be the building blocks and are referred as “model-components”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Model Component1 A model component is an independent element of a simulation model that conforms to certain component standard, has well-defined functionalities (inputs/outputs) and behaviors, presented through its interface describing its communication with other components and a formalized description of its internal behavior.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' A model component is not a stand-alone component, but can be independently deployed, and it is subject to third-party composition with or without modification [19].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In component based development, some basic reusable model components are composed together to create complex and sophisticated simulations, without building them from scratch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The model components can be composed if their inputs and outputs physically match each other however it is difficult to say whether this combination is meaningful.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Besides it cannot be said for sure if it will perform according to the desired requirements unless the correctness of the composability is checked.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Composability is the property of the models, as it essentially contends with the alignment of issues on the modeling level [13], where it is viewed as creation of complex models by selection and integration of basic reusable model-components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' A set of components can be integrated if their inputs and outputs are compatible, but in order to guarantee that their combination is valid in the required executable scenarios, we study the degree of composability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' With a slightly greater number of components, which are somewhat complex in nature, the composability becomes an increasingly challenging problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In the 1The term Model component should be differentiated from the term Component Model, which in text refers to the underlying technology being used by the component based software engineering platforms such as CORBA, EJB etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Chapter 1 Introduction Page 19 presence of functional and non-functional application requirements it poses severe implications on the effort involved in verifying the requirements, and increasing dynamism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Even though, the individual components are pre-verified;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' their verification is usually done in a limited context, with assumptions that may not hold after composition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' As a result, the complexity of system verification grows exponentially with the number of applications [23]2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='3 Modeling and Analysis using Petri Nets Petri nets (PN) is a mechanism of modeling complex systems, in which states and events can be manipulated according to certain rules and explicit conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' PN formalism was introduced by Carl Adam Petri in 1962.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' It provides an elegant and useful graphical and mathematical formalism for modeling concurrent systems and their behaviors [24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' PN graphs are quite suitable for representing Discrete Event Systems (DES) in which operations depend on potentially complex control schemes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' PN graphs are intuitive and capture a lot of structural and behavioral information about the system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Another motivation for considering PN for the modeling of DES is the body of analysis techniques that have been developed for over three decades and are used for reasoning about structural and behavioral properties of PN models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' These techniques include reachability analysis, state-space analysis, and model-checking as well as linear-algebraic techniques [25].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The PN research has been developed in two directions for the past three decades: (i) PN theory that focused on the development of basic tools, techniques and concepts needed for the PN application;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' (ii) Applied PN theory which is mainly concerned with the PN application for the modeling of systems and their analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Successful work in this direction requires good knowledge of the application area in which PN are applied and PN theories and techniques [26].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='4 Modeling and Analysis using Process Algebra Process Algebra is an algebraic approach for the modeling and analytical study of concurrent processes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' It has a diverse family of algebraic formalisms for modeling concurrent systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' These formalisms comprise of algebraic language for the specification of processes and provide calculi in form of algebraic laws that allow process descriptions to be manipulated and analyzed, and permit formal reasoning about their correctness and equivalence [27].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=" The main Process algebraic formalisms are: \uf0a7 CCS, Milner's Calculus of Communicating Systems \uf0a7 CSP, Hoare's Communicating Sequential Processes \uf0a7 ACP, Algebra of Communicating Processes \uf0a7 LOTOS, Language Of Temporal Ordering Specification 1." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='5 Model Verification In M&S, verification is concerned with building the model right.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' It is typically defined as a process of determining whether the model has been implemented correctly [28] and whether it is consistent with its specifications [29].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In principle, 2 Even though the referred text corresponds to the electronic components which are physically composable, however the problem of composability complexity is the same and is mutually understood by different communities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Chapter 1 Introduction Page 20 verification is concerned with the accuracy of transforming the model’s requirements into a conceptual model and the conceptual model into an executable model [29].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The distinction of a conceptual model and executable model is of great importance and is a fundamental principle in M&S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' A conceptual model is abstract description of a real system [30], captured based on given requirements and modeling objectives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' This is later refined and implemented into a more concrete executable model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In these terms, conceptual modeling is a subset of model design [31].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Conceptual modeling is about moving from a problem situation, through model requirements to a definition of what is going to be modeled, and is independent of its implementation details [30], which are later addressed in form of an executable model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='2 Summary of the opening perspective In essence, component-based approach is highly favored in M&S community for building large and complex models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' But to ensure that the model is correct and meets its requirement specifications, a substantial effort is required to evaluate its degree of composability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In M&S community, the discipline of Model Verification provides basic concepts and fundamental principles for the compressive study of the degree of composability and reasoning its correctness with respect to the given specifications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' However the existing component-based simulation frameworks offer limited built-in extensive verification techniques or none at all.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Therefore third party approaches such as PN analysis techniques and process algebra are considered for the thorough examination of composed models at various levels of depth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The sub-topics: (i) Component-Based Modeling & Simulation, (ii) PN /CSP Analysis and (iii) Model-Verification are the elementary pillars and theoretical foundations of this thesis and are expanded in details in chapter 2, 3 & 4 respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='3 Preliminaries Based on the previous discussion, the formal definition of the problem of this thesis is furnished in this section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In order to define the problem statement, following definitions are used: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1 Definition 1: Set of Components Let C = {c1, c2, c3 …, cn} be a given set of components discovered and selected from a component repository R, as per the abstraction of the real-system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='2 Definition 2: Requirement Specification The Requirement specification of the system model is defined as a tuple: RS = 〈O, S〉 where: O = {o1, o2, o3 …, on} is a set of objectives (or goals) and S = {s1, s2, s3 …, sn} is a set of system constraints (or system properties).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Objective: An objective oi ∈ O can be defined as a reachable “final-state” of the composed model or an aggregated desirable output (a data value or event) produced by the composed model which cannot be produced by individual components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Chapter 1 Introduction Page 21 System Constraint: In modeling terms, a system constraint si ∈ S is defined as a system property that must be satisfied;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' for instance a good state;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' which must be reached or a bad state;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' which must be avoided (never be reached) during the execution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The notions of constraints are different from Objectives, because they can be necessary requirements but not the ultimate goals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=', a manufacturing system should not only produce the desired products (objective) but also fulfill safety requirements (constraints).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='3 Definition 3: Composition & Composability Pattern Let CM〈c1, c2, c3 …, cn〉 be a composition of a set of given components C, composed using a particular composability pattern P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' A pattern describes how the components are attached to each other, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=', the topology of the components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' And provide important information for composability verification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' A pattern of composability can be sequential, parallel, fork, join, iterative, or composite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='4 Definition 4: Satisfiability Operator For each element in the requirement specification RS, a Satisfiability operator╞ maps a given composed model CM to a Boolean (True or False) formally described as follows: • CM〈c1, c2, c3 …, cn〉 ╞ i oi∈O → true | false • CM〈c1, c2, c3 …, cn〉 ╞ j sj∈S → true | false For each relation ╞ i we define a verification function (algorithm or theorem) based on which the satisfiability operator maps the resultant value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' This verification function determines whether a given composed model satisfies a required property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='4 Problem Statement Based on the above definitions the problem statement is defined as follows: “Given a composed model CM, composed from a set of components C using a pattern P, and the requirement specification RS, can we verify that CM fulfills all the objectives and satisfy all the constraints given in the requirement specification”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Formally: This problem statement is considered as an initial point and basis of the research presented in this thesis proposal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In this work it will be shown how a modeler can correctly compose component models and verify the composition at different levels through utilization of our proposed verification framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' CM=Compose ([c1, c2, c3 …, cn], P) ∧ RS=〈O, S〉 → {CM ╞𝒊 ∀oi ∈ O ∧ CM ╞𝒋 ∀sj ∈ S} (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1) Chapter 1 Introduction Page 22 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='5 Approach In this section an overview of the approach and methodology is presented.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Based on the software engineering principle, this section is divided into two main parts (i) Problem Domain and (ii) Solution Domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1 Problem Domain Problem domain (or problem space) is an engineering term referring to all information that defines the problem and its constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' It includes the goals that the problem-owner 3 wishes to achieve, the context within which the problem exists, and all rules that define required essential functions or other aspects of any solution product.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' It represents the environment in which a solution will have to operate [Wikipedia].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' All the information provided in this thesis related to modeling & Simulation, component-based model development, conceptual modeling, model components, composability, model-verification and the problem of composability correctness correspond to the problem-domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In particular, Chapter 2 covers the main aspect of the problem domain where the component based modeling and simulation is discussed in detail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Following sub-sections briefly describe the selected method of specification of the problem domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Base Object Model (BOM) as Composability Framework BOM is selected in this thesis as a component specification standard which can be used as a foundation for developing model components at conceptual level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' They are composed and are subjected to the composability verification process to evaluate that they satisfy given requirements, hence represent component framework of the problem domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Requirement Specification Template A “Requirement Specification Template” is defined which is used to formulate requirement specifications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' It essentially contains a set of objectives and constraints (of standard or scenario-specific properties), which are required to be satisfied for the proof of correctness of the composed model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='2 Solution Domain Solution domain (or solution space) is a term referring to all information that defines the proposed solution of the problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' It includes the concepts, principles, methods, techniques, algorithms, programs, software architects, frameworks, processes and recommended practices, which help in solving the problem under study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Following sub-section gives a brief overview of the approach used in this thesis: 3 A problem owner can be the customer, solution buyer, organization or a prospective target community.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' A problem owner sees the problem as an opportunity, whereas the solution engineer sees the problem for which he/she has to provide a solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Chapter 1 Introduction Page 23 Multi-tier Composability Verification The composed model undergoes multiple iterations for composability verification at different levels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Each level corresponds to a tier in the verification process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' When the composability at a particular level is successfully verified, next level is iterated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' When all the levels are completed, the components are said to be fully composable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' These levels are discussed in detail in chapter 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The verification of these levels is discussed in chapter 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' PN Formalism PN formalism (and specially the Colored Petri Nets extension) is chosen for creating executable models of the BOM based conceptual models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The proposed framework automatically transforms BOM components in form of an executable PNML 4 or CPN-based component which can be executed or undergo a verification process using the corresponding PN execution environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' CSP Formalism CSP5 formalism with an extension of Timed-CSP is picked as another executable modeling language for BOM based conceptual models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The proposed framework transforms BOM components into executable CSP process components and composed for execution and verification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Automatic Transformation Tools An automatic transformation tool is proposed, which transforms a BOM component model into the selected executable modeling formalism such as PNML, CPN based or CSP based executable model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' It may also be required to provide additional details, which cannot be modeled or represented by BOM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Dynamic Analysis Approach Three main dynamic analysis approaches are selected for composability verification of BOM base composed models at dynamic-semantic composability level: Algebraic analysis approach This approach is used to transform a BOM composition into a classical PN model using PNML format and verifies the properties using PN algebra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' State-space analysis approach This approach is based on using Colored Petri Nets and State-Space analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' CPN tool is a strong simulation and verification tool.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' State-space analysis is a very accurate correctness reasoning technique;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' however it is costly in terms of computational power and memory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Therefore a reduction technique is also proposed to reduce a state-space graph of a composed model, in order to avoid state-space explosion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Model Checking approach CSP based model checking is used for the formal verification of BOM based composed model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In formal logic, model checking designates the problem of determining whether a formula or a correctness property ϕ defined using LTL, CTL6 or similar property specification formalism, evaluates to true or false in an 4 Petri Net Markup Language 5 Communicating Sequential Process 6 Linear Temporal Logic, Computational Tree Logic Chapter 1 Introduction Page 24 interpretation of a system K, written as K ╞ ϕ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Efficient algorithms are selected to determine whether K ╞ ϕ holds [32].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In summary, these three approaches are extensively being used in formal verification for over a couple of decades and therefore equipped with rich theoretical foundations and practical tools and techniques.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' We however believe that they are being considered in this thesis for the composability verification of BOM based models (or for that matter any M&S composition framework) for the first time and will prove to be very promising and effective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' A basic foundation is built using these approaches in this thesis, and their usage are shown though appropriate examples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Also necessary guidelines are provided for developing new verification methods using these approaches and tools, in order to address various verification issues.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' This research aims to propose a multi-tier verification life cycle for defining, development, archiving, discovering, matching, selection and composing, transforming, executing, verifying and finally reasoning about the correctness of the composed models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' This life-cycle extensively relies on the integrated component development, composition and verification framework that is being proposed in this research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' This life-cycle follows our proposed process to perform verification of a composed model at different levels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' This life-cycle can be adapted by M&S practitioners for rapid model construction, analysis, refinements and reuse and thus it will boost the process of modeling and simulation of complex dynamic systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='3 Solution Statement Based on the proposed approach the solution statement is described as follows: “A verified composed model guarantees that the selected components are composable at all composability levels, and they meet the requirement specification by satisfying given objectives and fulfilling the required constraints”.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' A correctly composed model, promotes reuse of base components thus support rapid model development and can be reused as yet another component later on.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='6 Scope of the Thesis In this section, the scope and the boundaries of the thesis are outlined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1 Correctness In this thesis, “Correctness” is the main focus of the research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The approach, methods, process and framework mainly deal with the correctness issue of the composability verification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The other issues such as performance, efficiency and cost estimation of the solution are currently beyond the scope of this thesis and considered as future work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='2 Validation Validation is a vital part of model evaluation and always goes hand in hand with verification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' However it is beyond the scope of this thesis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Although we believe that, our framework is flexible and open-ended.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Therefore it can accommodate necessary extensions to support validation with a minor effort.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Chapter 1 Introduction Page 25 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='3 Emergence Emergent behavior due to composition of sub-systems is an important and open research topic in the composability domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' We however do not address this issue in this thesis and consider it a future work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='4 Generalization Currently, the proposed approach is based on Base Object Model, only as a demonstration of how our approach can be applied on an existing component standard.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' However the framework presented in this thesis is open-ended and can be generalized to accommodate any other component standard.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Furthermore, heterogenic composability can also be supported.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' We however do not address generalization issues in this thesis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='7 Summary of the Contributions The existing work in the area of component based modeling and simulation is fragmentary in nature, especially when the verification of component composability of model at a conceptual level is concerned.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Furthermore, even though different composability verification approaches exist, but they have not been studied in depth at different granular levels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In this research, composability of BOM based model is studied in depth, focusing mainly on the different levels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' A multi-tier component based verification life-cycle is proposed that tackles key issues of such as model development, discovery, selection, matching, composition, requirement specification, transformation, implementation, execution, analysis and most importantly verification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In terms of verification, the major contributions of this thesis include development of a composability verification framework, which integrates different methods, and techniques to support different tasks in the composability verification process of a composed model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' These different tasks are categorized in different phase of a proposed component based modeling and simulation (CBM&S) life-cycle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' We propose methods for evaluating structural and behavioral consistency of the composed BOMs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' For structural evaluation we propose a set of static analysis techniques to verify that the components can be correctly connected and their communication is semantically consistent, meaningful and is understood as intended.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' For behavioral consistency of the composition we suggest a state-machine matching technique.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' It verifies that the components can correctly interact with each other in a right causal order to reach final states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' For the further evaluation of the behavioral composability our framework incorporates three main approaches: (a) PN Algebraic technique (b) CPN-based State-space analysis technique and (c) CSP based model checking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' For each approach we develop automatic transformation tool that transforms a BOM based composed model into the executable model of the corresponding approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' We present three different case studies for the proof of concept and for the evaluation of our verification framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' We also suggest various extensions in each approach to suit the needs of composability verification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' For instance we propose algorithms for automation of the PN algebraic approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Also a CPN based component model is proposed for the State-space algebraic approach in order to describe a BOM component (or any other simulation component) in form of an executable model that can be executed using Chapter 1 Introduction Page 26 CPN execution environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' We also introduce a State-space reduction technique for the CPN based state-space analysis approach to avoid the risk of state-space explosion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' For the CSP based model checking approach we propose an external function library for methods to support various modeling tasks such as definition of probability distribution functions for probabilistic system models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='8 Structure of the Thesis This thesis is divided into two main parts: Part I Episteme: This part mainly covers the theoretical concepts, principles and discussions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' It comprises of chapters 1, 2, 3 & 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Chapter 1: Introduction: Chapter 1 gives a bird’s eye view of the research presented in this thesis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' It addresses the concept, historical background and the basic philosophy of composability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The problem is defined and the approach is briefly introduced.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' A section on the scope of the thesis and main contributions are also presented.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Chapter 2: Component Based Modeling and Simulation: Chapter 2 introduces and discusses component based modeling and simulation in details, as it is the foundation of the problem domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' This chapter mainly covers the theory, issues, different levels, framework and the formalism of model composition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' It also introduces Base Object Model (BOM) in details as a choice of Model composition standard of this thesis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Chapter 3: Executable Modeling Formalism This chapter provides introduction, theory, basic definition and classification of PN and CSP as executable modeling formalisms and regarded as solution domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' It also describes basic concepts of the analysis techniques that are used later in this thesis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Chapter 4: Verification and Analysis Chapter 4 discusses theory and principles of verification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' It also categorizes some of the important verification techniques that are used in this thesis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Part II Techne: This part contains practical aspects including approaches, methods, tools, development frameworks and lifecycle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' It also contains examples related to our proposed solutions for the proof of concept.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' It comprises of chapters 5, 6, 7, 8 & 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Chapter 5: Proposed Approach and Framework Chapter 5 is the center of the thesis as it provides the most important details of our contributions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' It describes the proposed verification framework and verification life- cycle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' It covers our proposed methods, techniques, algorithms, procedures as our Chapter 1 Introduction Page 27 contributions at different phases of composability verification process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' These phases and their concerning activities are outlined as composability verification life-cycle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Chapter 6: Composability Verification Process This chapter presents the proposed composability verification process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' It provides essential guidelines of how to use our proposed composability verification framework (discussed in chapter 5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' It uses work flow diagrams to describe the overall process and gives necessary guidelines to the modeler at each step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Chapter 7: Fairness verification using PN Algebraic Technique Chapter 7 describes a case study of a manufacturing system as an example to explain how the proposed framework helps to verify fairness property in a composed system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The purpose of this chapter is to practically demonstrate algebraic verification method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Chapter 8: Model verification using State-space analysis technique Chapter 8 covers an example of the verification of a Field Artillery Model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' It practically demonstrates how state-space analysis is used to verify a composed system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The field artillery model is introduced in detail along with requirement specifications and it is shown how the proposed approach can help to verify its composability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Chapter 9: Model Checking This chapter demonstrates an example of verification using CSP based Model Checking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The field artillery model discussed in chapter 8 is modified into a real-time probabilistic system and is verified using CSP based model checking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Chapter 10: Conclusion and Future work This chapter provides summary and conclusion, discussion and future work of the thesis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Page 28 Chapter 2 Component Based Modeling and Simulation Composability is an important quality characteristic and an effective means to achieve several benefits in M&S discipline, but in reality, it is a challenging and daunting problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The community has conducted active research on its theoretical and practical intricacies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In theory, composability is studied under various facets and views primarily distinguished, by its different “layers” or “levels” as identified by different research groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Whereas in practice, various practical challenges associated with it are investigated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Most important of these issues are component specification, development, integration, composability verification and validation, collectively referred to as phases of a Component based life-cycle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In this chapter both theoretical and practical aspects of composability are discussed in detail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1 Composability in M&S In M&S applications, composability has been defined in different ways.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Much of these definitions have been collected by A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Tolk in his article [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Harkrider and Lunceford defined composability as: The ability to create, configure, initialize, test, and validate an exercise by logically assembling a unique simulation execution from a pool of reusable system components in order to meet a specific set of objectives [33].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Kasputis and Ng defined composability as: The ability to compose models across a variety of application domains, levels of resolution, and time scales [16] Petty and Weisel recommended the following definition in their article on theory of composability, which later was appended by P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Davis: Composability is the capability to select and assemble simulation components in various combinations into valid simulation systems to satisfy specific user requirements, meaningfully [17] [34].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' It has been realized that composing models is more difficult than composing general software components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' This argument is predicated on the assumptions that models are more complex;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' they are developed for particular purposes, and they depend on context-sensitive assumptions [8] [17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Model development is a hard design task, mainly due to the complexity involved in the process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Nowadays this complexity is increasing to levels in which the utilization of pre-defined models is considered very useful to cut short the development time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Thus model composition is a paradigm, where existing components are the building blocks for the construction of new larger and more sophisticated models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' When a model is composed, it must be evaluated in Chapter 2 Component Based Modeling and Simulation Page 29 terms of correctness with respect to its requirements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In short the predictability of guaranteeing the correctness of model composition is called Composability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='2 A Brief History of Composability and related work 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1 Initiation Composability in M&S has primarily been investigated by the defense research sector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The earliest uses of the term composability within the context of defense simulation dates back to the Composable Behavioral Technologies (CBT) project during the mid-1990s [35].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Later on the Joint Simulation System (JSIMS) project investigated composability as a system objective [36].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In 1998, a project on model based simulation composition (MBSC) was started in which a prototype composition environment for JSIMS was developed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In 1999 Page and Opper investigated the composability problem from a computability and complexity theoretic perspective [35].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Composability became a key system objective for OneSAF project in 1999 [22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='2 Theoretical evolution Later on a series of numerous articles were published which addressed various issues of and methodologies of composability and became the theoretical foundations for further research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Important works in this series include: Kasputis and Ng [16];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Davis et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' [37];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Petty & Weisel [38].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Petty and Weisel extended the work of Page and Opper, provided a broad survey of the uses of the term composability, and examined the composite validation problem within the context of automata theory and computable functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Later a comprehensive report was published by Davis and Anderson in 2003 [17] that provides a broad survey of the composability and suggests its applications for the DoD7 in this area.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='3 Standards & Frameworks Later on, the research on composability remained focused on the development of standard composition frameworks and its practical application in various domains of modeling and Simulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In 2005 the Extensible Modeling and Simulation Framework (XMSF) was initiated by the Naval Postgraduate School to develop a web-based simulation environment [39].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Advances in M&S technologies, gave rise to different distributed simulation standards and protocols such as Simulation Networking (SIMNET), Distributed Interactive Simulation (DIS), Aggregate Level Simulation Protocol (ALSP) and the High Level Architecture (HLA).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The details of these standards are well documented by Moradi [19].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Due to the complex nature of the standards, and distributed simulation itself, different composability frameworks were introduced to co-op with these requirements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' More general-purpose frameworks such as the Discrete Event System Specification (DEVS) [40], the Open Simulation Architecture (OSA) [41], the Base Object Model (BOM) [42], and the Component Oriented Simulation Toolkit (COST) emerged and contributed to various issues of composability in different ways.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='4 Technological Advances Due to the technological advances in computer engineering, many approaches emerged with the aim to address issues and high end requirements of modeling and 7 United State Department of Defense Chapter 2 Component Based Modeling and Simulation Page 30 simulation such as representation of Complex, Dynamic and Adaptive Systems;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' integration of large interdependent Systems;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' multi-resolution and multi-scale modeling [43], and much more.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In this period, many tools and techniques were developed using composability paradigm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Model Coupling Toolkit (MCT) was developed to support and simplify the construction of parallel coupled models [44].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' MUSE is another composable simulation environment for astrophysical applications in which different simulation models of star systems are incorporated into a single framework [45].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Some frameworks such as Common Component Architecture (CCA) [46] and Component based Grid Environment (MOCCA) [47], were proposed to be used in high-performance computing, where scientific components are directly connected by their Users and Providers ports.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' A Multi-scale Coupling Library and Environment (MUSCLE) provided a software framework for building composable simulations according to the complex automata theory [48].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Compo- HLA is an environment proposed for supporting HLA component [49].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='5 Composability verification and Validation Most of these frameworks lack strong built-in composability evaluation support.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Therefore some third-party composition, verification and validation frameworks were developed by individual research teams such as Composable Discrete-Event scalable Simulation (CODES) [20] and Semantic Web-based BOM composition framework [19], where verification and validation of composability are strongly focused.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='3 Theory of Composability The formal theory of composability was pioneered by Petty and Weisel [34], [38], [50] in an initiative developed at the Virginia Modeling, Analysis & Simulation Center (VMASC).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' It was also called “semantic composability theory” (SCT).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The aim of the SCT is to check and prove the semantic composability of components using formal descriptions and reasoning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' A model is defined as a computable function: y = ƒ(x), where function is calculable by a finite procedure and relates each input to a unique output, as shown in Figure 1 Figure 1: A model as computable function (acquired from [34]) A simulation is a sequence of executions of a model ƒ(x), where the output from each execution step is the input to the next step of the execution: Where i = input value;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' m=memory value;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' o=output value and n=current iteration, as shown in Figure 2 (mn, on) = ƒ(mn-1, in-1) (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1) xeX J(x)e Y Domain Codomain X YChapter 2 Component Based Modeling and Simulation Page 31 Figure 2: Sequence of executions (acquired from [50]) The composition is defined as output of one function to be the input of another: Figure 3 shows the representation of a composed model, which is developed through composing other models (f1, f2 & f3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' A composed model as a whole has also a set of inputs, outputs, current states and next-states as shown in Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Figure 3: Composed Model (acquired from [50]) The composition of models in SCT is in fact the composition of functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Since a set of computable functions is closed under composition any set of models can be composed if the composition exists, but there is no guarantee that the resultant will be a useful model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Thus focus of SCT is semantic composability, the question of whether the model composition is meaningfully valid or not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Validity A model is defined as valid, if it is an accurate representation of the real-world with respect to the intended use.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' For formal validation, the simulation of a composition is represented as Labeled Transition System where nodes are model states, edges are function executions, and labels are model inputs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' A composition is valid if and only if its simulation is close to the simulation of a perfect model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Perfect Model A model is perfect with respect to a natural system N 8 if and only if it represents a system of perfect observations of the natural system [50].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 8 A natural system N is a real or imagined system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' h(x) = ƒ(g(x)) (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='2) io i, is i3 mo 111 1112 1113 m4 01 02 03 04 2 3 4i1 i2 i X3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='2Xg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1 m X3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='3 Y3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1 → mner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' X1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1 mz X1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='2 Ji,1 X3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='4 Y3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='2 →> Mno2 Ji X22X2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' m3 X1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='3 J1,2 X2,3 J2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1 X3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='s Js Y33 → mer3 Ji.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='4Ji.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='3 fn y2?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' tu X3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='6 J3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='4 J2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='+Y23 m, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='7 Y3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content="s > mnoxt's J3." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='8 J3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='7 J3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='6 个个 03 So to % l %Chapter 2 Component Based Modeling and Simulation Page 32 For details of different classes of models, their equivalence relations, formal theorems and proofs of equivalence, interested readers should refer to [50].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The basic concepts of a formal theory of semantic composability include formal definitions for model, simulation, validity, and composition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' A theory of composability can facilitate the convenient reuse of simulation components, which holds the potential to the time and cost of simulation development [34] [38] [50].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='4 Concepts related to Composability In this sub-section, some of the concepts and idea related to composability are discussed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1 Composability vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Reusability Composability is differentiated from reusability in many aspects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Balci et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' define Reusability as the degree to which an artifact, method, or strategy is capable of being used again or repeatedly [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Robinson et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' on the other hand suggest that the term simulation model reuse can be taken to mean various things from the reuse of small portions of code, through component reuse, to the reuse of complete models [51].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Composability offers means to achieve reusability, but reusability might not always be the ultimate objective of model composition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' For instance, in a particular situation, a set of modular components are purpose-fully built and composed to construct a large model, but they cannot be reused in a different project, due to their highly specific design.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' To be widely reusable, a component must be sufficiently general, scalable, and adaptable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' A requirement for reusability may lead to another development approach, for example, a design on a more abstract level [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The comparison between usability and reusability of composable components poses a tradeoff between them being very specific in function and behavior so that they can be used in a particular case to satisfy specific user’s requirements or them being very generic and abstract so that they can be reused in different situations again and again.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Figure 4: Generic vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Specific component design Figure 4 illustrates a component is often more reusable if it has a generic design and less reusable if it has functionally specific design.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Both use and reuse of composable components share three levels of transparency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' A component can be seen as a box, which contains the interfaces and internal implementation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Three levels of composability transparency are defined: Generic Functionally specific design More reusable Less reusableChapter 2 Component Based Modeling and Simulation Page 33 Black Box Composition In black box composition, the user sees the interface, but not the implementation of the component.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The user documentation is provided that contains the details of the inputs and outputs, requirements and restrictions of the component.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' All the implementation details are hidden.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The clients will get what the contract promises.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The changes are not feasible at the deployment end.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The advantage of black-box composition is that the testing done at the development side is persevered and there is no need of further testing at the deployment side.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Glass Box Composition In glass box composition the inside structure of a component can be viewed, but it is not possible to modify.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' This solution has an advantage when compared to black box reuse, as the modeler can understand the box and its use better.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' However it is not possible to make any changes in the implementation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The advantage of this level remains the same as that of black-box composition however an additional benefit is that the user can gain knowledge of the internal implementation and can understand the mechanics of the component.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' White Box Composition In white box composition it is possible to see and change the inside of the box as well as its interface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' A white box can share its internal structure and implementation with another box through inheritance or delegation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The advantage of this level is greater flexibility due to the provision of modifications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' However this level incurs an extra burden of testing at the deployment end.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Figure 5: Black Box, Glass Box, White Box Figure 5 illustrates difference between black box, glass box and white box composition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='2 Composability vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Interoperability Bearing in mind the definition of composability mentioned previously, the IEEE definition of interoperability is: The ability of two or more systems or components to exchange information and to use the information that has been exchanged The concept of interoperability is mainly about inter-connecting systems of various types developed for different purposes;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' for different platforms, and about their syntactically and semantically agreed upon communication [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In the context of Internals not known Internals known Internals known No modification No modification Modifiable Chapter 2 Component Based Modeling and Simulation Page 34 modeling and simulation, interoperability is the ability of different simulations connected in a distributed system to collaboratively simulate a common scenario [19].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Page et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' [52] distinguishes composability and Interoperability as follows: Composability contends with the alignment of issues on the modeling level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The underlying models are purposeful abstractions of reality used for the conceptualization being implemented by the resulting systems;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' whereas Interoperability contends with the software and implementation details of interoperations;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' this includes exchange of data elements via interfaces, the use of middleware, mapping to common information exchange models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='5 Composability Levels Petty and Weisel emphasized on two basic types of composability: syntactic and semantic in their theory of composability [38] [50].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' According to which the syntactic composability requires that the composable components should be constructed with compatible implementation details such as parameter passing mechanisms, external data accesses, and timing assumptions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The question of syntactic composability is whether the components can be connected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In contrast, semantic composability is a question of whether the models can be meaningfully composed to form a composed simulation system and whether the combined computation is semantically valid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' It is possible that two components may be syntactically linked, so that one can pass data to the other, but they can be semantically invalid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Figure 6 represents the difference between syntactic and semantic composability metaphorically.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Figure 6 Syntactic vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Semantic Composability (acquired from [38]) Composability is studied in more depth under different levels, as identified by different research groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Several levels of understanding and agreement are required between the models in order for them to be meaningfully composed—that is, for their composition to produce meaningful results [17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Davis recommended five distinctions of levels namely: syntax, semantics, pragmatics, assumptions, and validity to study composability [43].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' He describes these levels as different consistencies of composability, which all together are examined for the correctness of model composability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Petty & Weisel have suggested nine levels of composability in terms of composition units.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' These levels are: Application, Federate, Package, Parameter, Module, Model, Data, Entity and Behavior [38].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Tolk described a six layered model called Levels of Conceptual Interoperability (LCIM) to study composability and interoperability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' This model includes: technical layer, syntactic layer, semantic layer, pragmatic layer, dynamic layer, and the conceptual layer [13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Similarly Medjahed & Bouguettaya introduced a composability stack in which the composability of semantic web services is checked at four levels: Syntactic, Static Semantic, Dynamic Semantic and Qualitative level [53].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' First three levels of AF Syntacticcomposability Semantic composabilityChapter 2 Component Based Modeling and Simulation Page 35 Medjahed & Bouguettaya’s composability stack were adopted by Moradi, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' to study the degree of composability of Base object Model (BOM) components [54].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In this thesis, these levels are considered as fundamental benchmarks for the evaluation of model composability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The notion of model composability and its correctness strongly depend on the consistency of these levels as explained in the following subsections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1 Syntactic level: At this level, the structure of the components is studied to know if they can fit together i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=', the output of one can be read as an input to the other and that the syntactic information of the connected components, such as message name, mode of action and number of parameters match each other e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=', A “passenger airplane” component will be a syntactic misfit in a military training simulation, where a “fighter jet” component is required whose input will be a signal from “ground station” component to engage a target and output will be an airstrike on the “target” component.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' A passenger plane can neither take a target designation as input, not it can fire on a ground target.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' So this component is not composable at syntactic level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='2 Static-Semantic level: It is concerned with the meaningful interaction of the composed components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Static- Semantic level of composability involves in having a concise and mutual understanding of the data exchanged by the components participating in the composition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' At this level, it is ensured that all the components possess the same understanding of the terms, parameters, data types and units, so basically this level deals with the interpretation of same meaning of concepts for the information exchanged between the composed components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' For instance, if two components being composed interpret units of quantities in a different way, they will incorrectly process data values during the information exchange and thus result in a situation not intended by the user e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=', if a integer data value is intended to be the bearing of a target (in degrees) but interpreted as target distance (in Km) by the other component then it is a semantic mismatch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The term “static” is prefixed, because all the information that is required to evaluate this level is static and does not change during the entire component interaction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='3 Dynamic-Semantic level: Dynamic Semantic Composability implies that the components are dynamically consistent, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=', they have suitable state-full behavior, necessary to reach the desired goals and subsequently satisfy user requirements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The dynamic level of composability ensures in having a behavioral consistency and coherency among the participating components in achieving the common goals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The dynamic semantic composability can only be achieved if the components are at the right states during their interaction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Also they should possess required behavior to make a collective progress.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=', in a composed model of a restaurant, a waiter component may have two different behaviors (i) Classical restaurant where a waiter takes order from customer, serves food and then collects payment or (ii) Fast food restaurant where waiter takes order, collects payment and then serves food.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The selection of the correct behavior and the correct customer component (the one who can correctly interact with the classical restaurant waiter or fast food waiter) will affect the overall composability of the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' This example presents how the components should be at right states to make Chapter 2 Component Based Modeling and Simulation Page 36 progress.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' A customer (expecting classical treatment) will wait forever for the (fast food waiter) to serve food and vice versa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Even if the components are at the right states, but their behavior is not correct, the composition may not reach its goals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=', in a manufacturing system two machine components produce two different parts that are later combined to make a finished good, and they share a single robot component for input of raw material, it is required that the robot component should be fair so that both machines get more or less equal chance to proceed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' If the robot is not fair the proportion of good produced will be unbalanced and therefore the system will fail to meet its objectives even though the components are at right states and continue to progress.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The term dynamic is prefixed, because the information such as current state of components changes dynamically during component interaction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='4 Pragmatic level: Consistency of meaning is not always straightforward because the same word means very different things depending on context [43].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Pragmatic consistency refers to a context based meaningful composition of the components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In linguistics the study of the relations between linguistic phenomena and aspects of the context of language use is called pragmatics whereas Context is defined as something that consists of the ideas, situations, events, or information that relates to it and makes it possible to fully understand it [55].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The pragmatic level of composability evaluates the difference of actual effect of the messages with the intended effect of messages during communication [43].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The research of pragmatic level of composability involves in-depth study of computational linguistics, cognitive technologies and contextual computing [55].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' An important issue at this level is pragmatic ambiguity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Pragmatic ambiguity arises when the message is not specific, and the context does not provide the information needed to clarify the statement, and due to which the components do not interact according to the desired objectives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' An example of pragmatic ambiguity is the story of King Croesus and the Oracle of Delphi (derived from [56]): "King Croesus consulted the Oracle of Delphi before warring with Cyrus of Persia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The Oracle replied that, "If Croesus went to war with Cyrus;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' he would destroy a mighty kingdom".' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Delighted, Croesus attacked Persia, and Croesus’ army and kingdom were crushed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Croesus complained bitterly to the Oracle’s priests, who replied that the Oracle had been entirely right.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' By going to war with Persia, Croesus had destroyed a mighty kingdom – his own.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='" In essence, a set of components can possibly fit together (syntactically), and their communication is meaningful and understood (semantically), but unless all components preserve essential behavior (dynamically) in order to reach the desired composition goals, and they share the correct contextual knowledge (pragmatically), the composability cannot be qualified as correct with respect to given requirement specifications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='6 Composability frameworks Composability essentially relies on a suitable composition framework that can provide accurate reasoning of its correctness and support means to be able to leverage certain component standard.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Various component standards and their respective frameworks have been developed for M&S to support composability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Some of these frameworks contribute to conceptual modeling by providing the needed formalism and influence the ability to develop and compose model Chapter 2 Component Based Modeling and Simulation Page 37 components at conceptual level, while others support model composition at executable level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' These frameworks practically support composability, as they usually offer features such as model specification, development, and execution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' A brief description of some of the composability frameworks is provided below: 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1 Discrete Event System Specification (DEVS) DEVS [57] is a component based formalism based on dynamic systems theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' It was developed for the purpose of describing the structure and behavior of systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' It supports the concept of hierarchical and modular model construction through coupling of components [19].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' DEVS is basically a model specification formalism however it incorporates different implementation frameworks such as DEVS-Java, DEVS-C++ and DEVS-Sharp which are used to implement DEVS models into executable form.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Two types of DEVS models exist, namely, atomic and coupled [20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' An atomic DEVS is a tuple M = 〈X,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' S,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Y,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' δint,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' δext,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' λ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' τ〉 where: X = {(p,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' v) | p ∈ InPorts,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' v∈Xp} is the set of input ports and values Y = {(p,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' v) | p ∈ OutPorts,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' v∈Yp} is the set of output ports and values S is the set of states δint : S →S is the internal transition function δext: Q × X→S is the external transition function,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' where Q = {(s,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' e) | s ∈S,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 0 ≤ e ≤ τ(s)} is the total state set e is the time elapsed since last transition λ : S →Y is the output function τ : S →R0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='∞ + 0,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' ∞ is the time advance function A DEVS atomic component has inputs X,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' outputs Y,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' and a set of S states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' At a given moment, a DEVS model is in a state s∈S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In the absence of external events, it remains in that state for a lifetime defined by τ(s).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' When τ(s) expires, the model outputs the valueλ(s) through a port y ∈ Y, and it then changes to a new state given by δint(s).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' A transition that occurs due to the consumption of time indicated by τ(s) is called an internal transition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' On the other hand, an external transition occurs due to the occurrence of an external event.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In this case, the external transition function determines the new state, given by δext (s, e, x), where s is the current state, e is the time elapsed since the last transition, and x∈X is the external event that has been received.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The time advance function can take any real value between 0 and ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' A state for which τ(s)=0 is called a transient state (which will trigger an instantaneous internal transition).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In contrast, if τ(s)=∞, then s is said to be a passive state, in which the system will remain perpetually unless an external event is received.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Chapter 2 Component Based Modeling and Simulation Page 38 A coupled DEVS is a tuple: M = (X,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Y,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' D,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' {Md | d ∈ D},' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' EIC,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' EOC,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' IC,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Select) where: X = {(p,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' v) | p ∈ InPorts,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' v∈Xp} is the set of input ports and values Y = {(p,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' v) | p ∈ OutPorts,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' v∈Yp} is the set of output ports and values D is the set of component names Md is a DEVS model with Xd = {(p,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' v) | p ∈ InPortsd,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' v ∈ Xp} Yd = {(p,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' v) | p ∈OutPortsd,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' v ∈ Yp} EIC is the set of input port couplings EIC ⊆ {((N,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' ipN),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' (d,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' ipd)) | ipN ∈ InPorts,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' d ∈ D,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' ipd ∈ InPortsd} EOC is the set of output port couplings EOC ⊆ {((d,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' opd),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' (N,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' opN)) | opN ∈ OutPorts,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' d ∈ D,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' opd ∈ OutPortsd} IC is the set of internal couplings IC ⊆ {((a,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' opa),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' (b,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' ipb)) | a,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' b ∈ D,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' opa ∈ OutPortsa,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' ipb ∈ InPortsb} Select is the tie-break function A system modeled using DEVS can be described as a composition of atomic and coupled components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' A coupled model comprises a set of input and output ports, a set of component names D, a set of DEVS components Md, input port EIC and output port EOC couplings, and, a set of internal couplings IC connecting internal components with each other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The tie-break function decides which component to proceed when two or more components have internal transitions scheduled at the same time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Figure 7 describes a DEVS example.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In this example two atomic component A & B are coupled together.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Both components have two states Send τ(s)=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1 and Wait τ(s)=∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Input port: ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='receive and Output port: !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='send are defined and connected to each other in coupled DEVS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Figure 7: Ping-Pong DEVS [Wikipedia] 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='7 Base Object Model (BOM) framework The SISO 9 standard BOM is defined as, “a piece part of a conceptual model composed of a group of interrelated elements, which can be used as a building block in the development and extension of simulations and simulation environments” [58].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' BOM provides a simulation standard that allows model developers and simulation engineers to create modular conceptual models in form of composable objects, 9 Simulation Interoperability Standards Organization Ping Pong AY B Send,0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1 Send,0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1 Ised ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='receive Isend !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='send ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='leceive ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='feceive Wait, inf Wait, inf ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='receive IsendChapter 2 Component Based Modeling and Simulation Page 39 which can be used as the basis for a simulation or simulation environment [59], [60].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The concept of BOM is based on the assumption that components of models, simulations, and federations can be reused as building blocks in the development of a new simulation or a federation [54].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' BOMs are unique because they provide a means to represent aspects of a conceptual model that captures structural and behavioral descriptions of items abstracted from the real system (simuland).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Then they allow these conceptual models to be mapped to one or more class definitions, which may be used by a software design, variety of programming languages, or distributed simulation architectures such as HLA or TENA10 [61], [62].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' BOM standard also offers a general purpose modeling architecture for defining components to be represented within a live, virtual, or constructive (LVC) simulation environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' It is well suited for characterizing models including the structural and anticipated behavior of interacting systems, individuals, and other entities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Primarily BOMs framework poses a satisfactory potential for effective composability of conceptual models at syntactic and semantic levels, resulting in a framework for the assembly of a system (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' simulation) or system of systems (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' distributed simulation environment) [62].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In spite of these reasonable qualities, BOM framework still falls short of required behavioral semantics and necessary built-in evaluation techniques, which are essential for modeling complex system behavior and reasoning about the correctness of the composability at each of its different level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Therefore it becomes a most suitable candidate and a preferred choice of a composition framework (in this thesis) for studying model composability in depth and applying proposed methods on BOM based compositions to explain the approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1 Structure of BOM A BOM is constituted of elements specifying metadata information, conceptual model and the class structure information defined using HLA OMT constructs [59].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Figure 8 presents different parts of BOM, explained as follows: Model Identification Model Identification associates the metadata information with the BOM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Its purpose is to document certain key identifying information within the BOM description.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' It provides a minimum but sufficient degree of descriptive information about a BOM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='10 Test and Training Enabling Architecture Figure 8: BOM structure (acquired from [59]) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Model Identification (Metadata) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Conceptual Model Definition ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Pattern of Interplay ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='State Machine ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Entity Type ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Event Type ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Model Mapping ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Entity Type Mapping ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Event Type Mapping ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Object Model Definition ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='HLA Object Classes ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='HLA Object Classes ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='HLA Object Class Attributes ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='HLA Interaction Classes ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='HLA Interaction Classes ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='HLA Interaction Class Parameters ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='HLA Data Types ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Notes ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Lexicon (definitions)Chapter 2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Component Based Modeling and Simulation ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Page ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='40 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Conceptual Model Definition From the composability point of view,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' this is the most important part of BOM and therefore the main focus of this thesis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' To understand this part, the definition of a conceptual model should first be considered: Conceptual Model A Conceptual model is an abstract description or an appropriate simplification of a real (or proposed) system, which is later, refined and implemented in to a more concrete executable model (or simulation model).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In these terms, conceptual modeling is a subset of model design which is formed through an iterative process according to the objectives of system modeling [63], [64].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The term conceptual model is used in different ways in the literature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' A conceptual model could be a specific diagram like UML class diagram or it could be documentation of a particular aspect of the simuland11 [29].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' To better understand the concept of BOMs, consider the home construction analogy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' When a new house is to be built the conceptual understanding of features of the building is captured in architectural drawings, which is analogous to a conceptual model (BOM) [60].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' BOM Conceptual Model definition consists of following parts: Pattern of Interplay (POI) POI models a specific purpose or capability and is represented by one or more pattern actions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' For each pattern action, one or more senders and receivers are specified to provide a means for understanding and the behavioral relationship among conceptual entities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' POI is represented by UML sequence diagram [60].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' State Machine The state machine is used to model the behavior of a BOM’s conceptual entity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The state machine is specified by a set of states where each state may transit to a subsequent state called next state, upon an exit action, which is identified in a pattern of interplay.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' UML state-machine diagram is used to represent BOM’s state-machine [60].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Entity Type A conceptual entity is an abstraction of a real world entity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' It defines a relationship with other entities within a pattern of interplay and acts as a sender or receiver of the events [60].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Event Type Conceptual events include information about the source, target, and content (parameters) of a message or trigger.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The difference between a trigger and a message is that a trigger is used to broadcast information whereas the messages are directed exchanges of information where the sender knows about the intended receiver of the message [60].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Entities and Events represent data about the real world objects and their interaction (physical description), whereas the pattern of interplay and state-machine collectively represents the dynamic behavior of the component.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 11 A simuland is the real world system of interest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' It is the object, process, or phenomenon to be simulated [29].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Chapter 2 Component Based Modeling and Simulation Page 41 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='2 BOM Assembly The BOM concept provides a mechanism for combining BOMs and creating High- Level BOMs, called BOM Assemblies, as shown in Figure 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' A BOM Assembly representing a composition of BOMs, is built in a hierarchical manner and includes information about composed BOMs, which in turn is used to identify a composite interface, and represent a federate, federation within the simulation space12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Typically a developer of a simulation would search a BOM repository for suitable BOM candidates for use in a simulation and combine those into a BOM Assembly (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' a simulation model), which is then used to create the actual simulation [19].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' A BOM assembly contains Model Identification, and pattern of the interplay among conceptual entities being represented, which is provided through the association of BOMs to the various Pattern Description actions that the BOM Assembly identifies, within the Conceptual Model view [60].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Figure 9: BOM Assembly BOM models can be created using XML script.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' But for constructing BOM models graphically, a free IDE tool called BOM Works [65] is available.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Figure 10 represents an example developed using BOM Works.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' It is similar to the DEVS example shown in Figure 7, to compare the difference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Figure 10: (a) PingPong BOM in BOM Works (b) POI (c) State-machineA (d) State-machineB (e) EntityA (f) EntityB (g) EventA (h) EventB 12 Although use of HLA is not a mandatory subsequent step, it is likely that BOM assemblies are intended to support an HLA based federation [59].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='BOM1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='BOM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='BOM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='BOM2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Assembly ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Repository ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Discovery ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Composition ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='BOM3PingPong ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='OModelIdentification ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='旦 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Sending ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='ActionA ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Waiting ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='ActionA ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='eAuthor ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Conceptual Model ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='@PatiternsofInterplay ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='ActionA ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='百@PingPong ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='V ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='@ActionA ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='ActlonB ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='ActionB ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='@ActionB ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Waiting ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='ActionB ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Sending ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='State Machines ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='BOA ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Sending ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='(b) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='(c) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='(d) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Waiting ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Entity Type ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='日 Entity Type ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='B ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Waiting ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='name ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='A ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='name ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='B ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Sending ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='semantics ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='semantics ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='idtag ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='id2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='idtag ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Entity Types ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='id3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='OA ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='characteristic ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='name ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='characteristic ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='name ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='OB ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Message ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Message ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='白?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Event Types ID ID ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='EventA (e) (f) ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='EventB Model Mapping Event Type Event Type Entity Type Mappings name EventA name EventB EventType Mappings triggerCondition triggerCondition Object Model Definition semantics idtag semantics @ objects id1 idtag tp!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Interactions 日 sourceCharacteristic name sourceCharacteristic name 由DataTypes A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='ID B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='ID @ Notes ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='targetCharacteristic name ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' targetCharacteristic name B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='ID A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='ID 日contentCharacteristic name contentCharacteristic name A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Message B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Message (a) (g) (h)Chapter 2 Component Based Modeling and Simulation Page 42 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='3 Model Mapping and Object Model Definition The model mapping provides a mechanism for mapping between the elements of the conceptual model and the class structure elements of the Object Model Definition that are described using HLA OMT 13 specification constructs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The object model definition defines the structure of an object and interaction class, and their associated attributes and parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' HLA Object classes include HLA attributes and HLA interaction classes include HLA parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' These parts of BOM are not used in this thesis, however interested readers can find more details in [58], [59], [60], [61], [62].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='4 Formal specification for the Compositon of BOM Unlike DEVS, BOM does not have a graphical and mathematical formalism for specifying how components are composed (even though parts of BOM such as state- machine and POI can be represented in UML and BOM documents can be described using XML).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' This initiates a need for a graphical and formal representation of BOM composition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In this section, we introduce a formal and graphical specification of BOM14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' We define two types of BOM: (i) Basic BOM and (ii) Composed BOM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' A basic BOM is an undividable atomic BOM component, with an assumption that it represents only one conceptual entity at the most.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' A composed BOM is a hierarchical combination of basic and other composed BOM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Basic BOM We propose that a basic BOM (BB) can formally be defined as: Where: \uf0a7 EnT is an entity type.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' We assume that a basic BOM has only one entity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' EnT is defined as: EnT = Name {Characteristic: Type} Where Name is the name of an entity uniquely defined by an identifier15 and characteristic is a set of attributes of an entity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Each characteristic is uniquely defined by an identifier and has a type16 \uf0a7 EvT is a set of event types,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' each with sender,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' receiver and content Evt = {(Name,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Sender,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Receiver,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' {Content: Type}) | Name ∈ Identifier,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Sender & Receiver ∈ EnT,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Content∈ Identifier: Type ∈ type} \uf0a7 S is a set of states,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' each has an exit-condition and a next state: S = {(Name,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' ExitCondition{Action,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' NextState})} | Name ∈ Identifier,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Action ∈ Act,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' NextState ∈ S 13 High Level Architecture Object Model Template 14 These concepts are not new and exist in literature for other component-based approaches [21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In this thesis, their application in BOM is intended for facilitating specification and ease of understanding 15 An identifier is a unique sequence of letters & digits, starting with a letter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 16 Type := Integer | String | Double | Complex BB = 〈 EnT, EvT, AcT, S 〉 (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='3) Chapter 2 Component Based Modeling and Simulation Page 43 \uf0a7 AcT is a set of actions, each has name, sender, receiver and an associated event: AcT= {(Name, Sender, Receiver, Event) | Name ∈ Identifier, Sender & Receiver ∈ EnT, Event ∈ EvT} Composed BOM A composed BOM (CB) can formally be defined as: Where: \uf0a7 AcTIN is a set of input actions that are received from other BOM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' This set can be empty if the Composed BOM is closed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' AcTIN = {(Name, Sender, Receiver, BOM) | Name ∈ Identifier, Sender & Receiver ∈ EnT, BOM ∈ File} \uf0a7 AcTOUT is a set of input actions that are sent to other BOM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' This set can also be empty if the Composed BOM is closed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' AcTOUT = {(Name, Sender, Receiver, BOM) | Name ∈ Identifier, Sender & Receiver ∈ EnT, BOM ∈ File} \uf0a7 POI is the pattern of interplay that defines how basic or composed BOMs are connected to each other (through actions).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' It maps a list of send actions to a list of receive actions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' ‘ !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' ’ symbol means send and ‘ ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' ’ symbol means receive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' POI = {({!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='AcTSEND} , {?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='AcTRECV})} | AcTSEND & AcTRECV ∈AcT Example As an example, BOMs from Figure 10 can formally be represented as: BB0 = 〈 EnT, EvT, AcT, S 〉 where: EnT = EntityA {C0(Message:String)} EvT = {E0(EventA, BB0, BB1, BB0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='C0), { E1(EventB, BB1, BB0, BB1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='C0)} Act = { A0(ActionA, BB0, BB1, E0), A1(ActionB, BB1, BB0, E1)} S = { S0(Sending, A0, S1), S1(Waiting, A1, S0)} Table 1: Entity A CB = 〈 AcTIN, AcTOUT , POI 〉 (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='3) Chapter 2 Component Based Modeling and Simulation Page 44 BB1 = 〈 EnT, EvT, S, AcT 〉 where: EnT = EntityB {C1(Message:String)} EvT = {E2(EventA, BB0, BB1, BB0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='C0), { E3(EventB, BB1, BB0, BB1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='C1)} Act = { A2(ActionA, BB0, BB1, E2), A3(ActionB, BB1, BB0, E3)} S = { S2(Waiting, A2, S3), S3(Sending, A3, S2)} Table 2: Entity B Similarly a composed BOM CB0 can be formally described as: CB0 = 〈 AcTIN, AcTOUT , POI 〉where: AcTIN = ∅ (since there is no incoming actions from any other BOM) AcTOUT = ∅ POI = {I/O0(!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='A0 , ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='A2), I/O1(!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='A3, ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='A1)} Table 3: Composed BOM We propose a graphical notation for representing basic BOM and their composition shown in Figure 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In this figure two basic BOM EntityA and EntityB are composed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Figure 11: Composed BOM The general information of a component such as entity name, characteristics, actions and states are defined in the main block.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In the lower block the states and their transitions (with blue arrow) are shown.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Each transition is mapped with actions (in red arrow) with parameter labels (the IDs of characteristics).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The direction of the arrow shows the type of the associated action (send or receive).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The composition of BOMs is shown through connectors (in green color).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' A Action Connector EntityA EntityB S State Connector Characteristics: Characteristics: C0 Message1 String C1 Message2 : String Initial State Actions: Actions: Exit condition A ActionA A2 ActionA A1 ActionB A3 ActionB State Transistion States: States.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' SO=Sending S2= Waiting Input/Output S1 Waiting S3 Sending connection A0 1 Waiting Sending Sending WaitingChapter 2 Component Based Modeling and Simulation Page 45 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='5 Summary In this thesis, we harness the capability of BOM as a conceptual modeling framework, because it provides a component standard using an XML specification;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' gives guidelines for the further development of the executable model and helps determine the appropriateness of the model or its parts for model reuse;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' and most importantly due to its strong support for syntactic and semantic composability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' It will be shown, how BOM with its existing potential can be facilitated by composability evaluation for accurate and rapid construction and modification of its corresponding federates in HLA based simulations and hence brings forth an improvement in the distributed simulation community.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Page 46 Chapter 3 Executable Modeling Formalisms In this chapter two popular model description formalisms are discussed namely Petri Nets and Communicating Sequential Processes (CSP)17, which are normally used for modeling, execution (or simulation) and verification of concurrent systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' This chapter provides an introduction, theory, properties, classification, modeling methods and analysis techniques of PN and CSP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' PN and CSP are both considered as a part of solution domain in this thesis, because of their impressive accumulation of knowledge in concurrency modeling and analysis techniques.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' These aspects are imported in this thesis and used for composability verification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' PN and CSP formalisms are relatives since they are used to model same class of systems called concurrent systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Unlike other systems such as transitions systems or automata, the formalisms of concurrent systems are strongly based on concurrency theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' One of the major contributors of concurrency theory are: Carl Adam Petri who initiated concept of interacting sequential processes and introduced Petri Nets;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Hoare who focused on developing programming language (CSP) for concurrent systems;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' and Robin Milner who introduced Calculus of Communicating System (CCS) and π-Calculus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' These are variants of approaches for formally modeling concurrent systems and are the member of the family of mathematical theories of concurrency known as process algebras, or process calculi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' CSP is also a member of process algebra.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The main difference between PN and CSP is that the former are based on graphs, while the latter are based on a textual description.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' However both offer strong formal semantics for modeling executable systems and share a broad pool of knowledge of theoretical principles and practical techniques for the analysis and verification of models of complex behavior.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In this thesis, we propose using these two formalisms to model executable form of components and study their composability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1 Petri Nets PN were introduced by Carl Adam Petri (and named after him) in 1962.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' They provide an elegant and useful graphical and mathematical formalism [24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' With PN the main idea is to represent states of subsystems separately.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In this way, the distributed activities of a system can be represented very effectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' PN are widely used for modeling and control in a variety of the sorts of systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Particularly, in Discrete Event Dynamic Systems (DEDS) 18 in which many properties such as synchronization, sequentiality (producer-consumer problem), concurrency and 17 The "Sequential" word of the CSP name is now something of a misnomer, since modern CSP allows component processes to be defined both as sequential processes, and parallel [Wikipedia].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 18 Examples of DEDS are air traffic control systems;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' automated manufacturing systems;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' computer and communication networks;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' embedded and networked systems;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' and software systems etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The activity in these systems is governed by operational rules designed by humans and their dynamics is often driven by asynchronous occurrences of discrete events [67].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Chapter 3 Executable Modeling Formalisms Page 47 conflict (mutual exclusion) concurrency, and choices can be well presented and analyzed using PN [66].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Their structural and behavioral properties have been successfully exploited for solving various problems of complex and dynamic systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Significant progress in these directions was made over three decades.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Most essential features of PN are the principles of locality, concurrency, graphical and algebraic representation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' They can be used not only for the specification and analysis of the structural system design but also for design of the system behavior.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' [66], [67].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' PN present two interesting characteristics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Firstly, they make it possible to model and visualize systems with complex behaviors including parallelism, concurrency, synchronization and resource sharing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Secondly the properties of these nets, their analysis and theorems have been extensively studied [68].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1 PN Definitions and Concept In PN, two basic elements of modeling are places and transitions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Events are associated with transitions which occur when some conditions are satisfied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Information related to these conditions is contained in places.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' There are two types of places namely: Input places and Output places.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Input places are associated with the conditions required for this transition to occur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Output places are associated with conditions that are affected by the occurrence of this transition [25].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Transitions, places, and certain relationships between them define the basic components of a Petri net graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' A PN graph has two types of nodes, places and transitions, and arcs connecting these.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' It is a bipartite graph in the sense that arcs cannot directly connect nodes of the same type;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' rather, arcs connect place nodes to transition nodes and transition nodes to place nodes [25].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='2 Petri net graph Mathematically a PN is a 5 tuple: PN = 〈P, T, F, W, M0〉 where: \uf0a7 P is a finite set of places P = {p1, p2… pm} represented as oval shaped node in the PN graph \uf0a7 T is a finite set of transitions T = {t1, t2… tn} represented as a line or a rectangular shaped node in the graph \uf0a7 F is a flow function such that F ⊆ (P ×T)∪(T×P) →N 19 \uf0a7 W: F →N + where N∈{1, 2, 3…} is arc weight function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' \uf0a7 M0: P→N is a function called the initial marking, where each element M0(p) has N number of tokens20 initially in place p where N is a set of non-negative integers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' \uf0a7 For each transition t∈T a set of input places denoted as •t are those places which are connected to t through incoming arcs: \uf0a7 Similarly, for each transition t∈T a set of output places denoted as t• are those places to which t is connected through outgoing arcs: 19Such that P∩T= ∅ (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' P&T are disjunctive sets) and P ∪ T≠∅ (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' neither P nor T are isolated).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Also an arc can be connected from place to transition (input arc) or from transition to place (output arc) but not to the node of same type.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 20 In classical PN, tokens are represented as black dots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' They are assigned to, and can be thought to reside in, the places of a Petri net.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' •t = {pi | (pi, t) ∈F} (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1) t• = {pi | (t, pi)∈F} (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='2) Chapter 3 Executable Modeling Formalisms Page 48 Definition: Marking A marking is an assignment of tokens to the places of a PN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The number and position of tokens defines a system state, and it may change when the tokens move.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' This movement of tokens due to the firing of transitions causes the execution of a PN [26].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The marking M can be defined as an n-vector, M = (m0, m1, m2 … mn), where n = |P| (no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' of places), and each mn ∈ N, i = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The vector M gives for each place pi in a PN the number of tokens in that place.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Definition: PN State-space The state of a PN model is defined by its marking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The firing of a transition represents a change in the marking of the net.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The state space of a PN with n places is the set of all markings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' State-space will be discussed in detail later in this chapter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Definition: Enabling of a Transition A transition t in a given PN is called enabled or fire-able by a marking Mi iff for each input place p∈•t its marking is equal or greater than the weight of the arc from it to t, (or t has no input place).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Mathematically, a transition t is fire-able iff Definition: Firing of a Transition If a transition t is enabled, it may fire by removing W(p, t) number of tokens from each input place p and putting W(t, p’) tokens in each output place p’, due to which a new marking Mn+1 is generated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Mn+1 is immediately reachable from Mn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Mn is reachable from M0 if firing a sequence σ = t1, t2 … tk of enabled transitions leads M0 to Mn, written as M0 σ→ Mn Example21 Consider the PN model PN = 〈P, T, F, W, M0〉 as shown in Figure 12 where: P = {p1, p2, p3, p4, p5} and T = {t1, t2, t3, t4}, Let W = 1 for all arcs Initial marking M0 = [1 0 0 0 0] 21 This example is inspired from [68] ∀p ∈ •t | M(p)≥W(p, t) ∨ •t=∅ (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='3) Mn+1 𝑡→ Mn | M(p’) = M(p) - W(p, t) + W(t, p’) ∀p∈P (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='4) Chapter 3 Executable Modeling Formalisms Page 49 Figure 12: Transition firing sequence (acquired from [68]) σ1: M0 = [1 0 0 0 0] 𝑇1 �� M1 = [0 1 0 1 0] 𝑇2 �� M2 [0 0 1 1 0] 𝑇3 �� M4 [0 0 1 0 1] 𝑇4 �� M4 [1 0 0 0 0] σ2: M0 = [1 0 0 0 0] 𝑇1 �� M1 = [0 1 0 1 0] 𝑇3 �� M3 [0 1 0 0 0] 𝑇2 �� M4 [0 0 1 0 1] 𝑇4 �� M4 [1 0 0 0 0] In this example there are two possible transition firing sequences σ1= T1, T2, T3, T4 and σ2 = T1, T3, T2, T4 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='3 Properties of PN Just like other models, PN are constructed from informal requirement specifications, which is not a trivial task, and requires a great deal of modeling experience.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' If a system being modeled is very complex, a PN model may differ considerably from its original specification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' A model can only be useful if it is logically correct with respect to its specifications [69].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Different concepts of correctness exist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' A system is said to be correct when two aspects, namely the specification and the implementation, are equivalent, or when the system satisfies a set of desirable properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' These desirable properties allow the system designer to identify the correctness of the system [69].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In PN literature a “basic kit of PN properties” is referred to a set of properties that are related to frequently occurring problems or the key issues related to the logical structure and behavior of complex systems, therefore they are classified into two main categories namely (i) Structural Properties and (ii) Behavioral Properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' It is important to note that fulfillment of these properties answer many questions of m1m2mChapter 3 Executable Modeling Formalisms Page 50 system correctness, therefore they contribute in the analysis of PN models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Some of the selected behavioral PN properties are listed and briefly discussed informally22 below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Reachability Reachability is a fundamental property for studying the dynamic behavior of a system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In PN, reachability property is studied to analyze if a particular system state (in terms of markings) can be reached or not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' A marking Mn is said to be reachable from an initial marking M0 if there exists a sequence of firings that transforms M0 to Mn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In reachability analysis, a set of all possible firing sequences from M0 are populated in a reachability graph R(N, M0) and the reachability problem for PN is the problem of finding if a given marking Mn ∈ R(N, M0) [70].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Boundedness In classical systems theory, a state variable that is allowed to grow to infinity is generally an indicator of instability in the system [25].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Therefore it is desirable that a system holds boundedness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' A PN is said to be bounded (or k-bounded) if the number of tokens in each place does not exceed a finite number k for any marking reachable from initial marking, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=', M(p) ≤ k for every place p and every marking Mn ∈ R(N, M0) [70].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Deadlock-free and Liveness A PN is said to be deadlock-free if from any reachable marking at least one transition can always occur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' A stronger condition than deadlock-freeness is liveness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' A transition is live if it is potentially fire-able in all reachable markings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In other words, a transition is live if it never loses the possibility of firing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' A net is live if all transitions are live [69].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Reversibility A PN is said to be reversible if, from each marking Mn, the initial marking M0 is reachable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Thus, in a reversible net one can always get back to the initial marking or state [70].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Fairness Fairness has different meanings and understanding in literature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In specific terms, fairness means to give some contenders an equal number of chances, such that no one proceeds for more than “k-times” without letting the others to take their turn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In PN s, two transitions tl and t2 are said to be in a bounded-fair (or B-fair) relation if the maximum number of times that either one can fire while the other is not firing is bounded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' A PN is said to be a B-fair net if every pair of transitions in the net are in a B-fair relation [70].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Mutual Exclusion This property captures constraints such as the impossibility of a simultaneous access of a critical section (resource) by two or more processes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In PN, mutual exclusion can be defined in terms of places or transitions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Two places p and q are mutually 22 In literature these properties are discussed in detail with mathematical definitions and proofs [70].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In this chapter they are only discussed for background concept.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Some of these properties are used later in this thesis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Chapter 3 Executable Modeling Formalisms Page 51 exclusive in a PN if their token counts cannot be both positive in the same marking, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=', ∀m ∈ RS m(p)·m(q) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Similarly, two transitions in a PN are mutually exclusive if they cannot be both enabled in any marking [71].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Some of the important structural properties of PN are defined below: Controllability: A PN is said to be completely controllable if any marking is reachable from any other marking [70].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Conservativeness: A PN N is said to be (partially) conservative if there exists a positive integer y(p) for every place p such that the weighted sum of tokens, is a constant, for every marking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Given a PN model, we are often required to ensure conservation with respect to certain weights representing the fact that resources are not lost or gained.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Persistence A PN is said to be persistent if, for any two enabled transitions, the firing of one transition will not disable the other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' A transition in a persistent net, once it is enabled, will stay enabled until it fires [25].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='4 PN Analysis The major strength of PN is the modeling of systems that exhibit concurrency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' However modeling by itself is of little use.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' It is necessary to be able to analyze the modeled system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The analysis leads to important insights into the structure and behavior of the modeled system [26].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' There are many techniques available for the analysis of PN models and can be employed for verification depending upon the nature of the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Each technique may also have different variants.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In this section two of the most commonly used techniques for the analysis of a PN model are discussed: Figure 13: Petri Net Analysis Techniques These techniques provide solutions and mechanism for verifying the properties mentioned in the previous section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In this thesis, these techniques are selected for composability verification and their application is shown in Part II with suitable examples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In this chapter, they are briefly explained and discussed, with their advantages and limitations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Petri Net Analysis Techniques Algebraic Method State-Space Analysis Chapter 3 Executable Modeling Formalisms Page 52 Algebraic Method This technique is also called Linear-Algebraic Technique (or Linear Invariant due to its abundant use of invariants).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In the framework of using algebraic techniques for reasoning about PN, solving a PN problem is reduced to finding a solution for an algebraic equation associated with the PN [24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Due to the nature of this technique, the method is in general efficient (and in most cases, polynomial in the size of the PN).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The dynamic behavior of PN models can be described by algebraic equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In order to work with Algebraic method, the following basic concepts are applied: Matrix Definitional Form (MDF) A PN model has a Matrix Definitional Form (MDF) that consists of three n×m2F23 matrices: (i) Output matrix A+ i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=', if pj is connected to the output of ti then 𝒂𝒊𝒋 + is equal to the weight of output arc;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 0 otherwise [70].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' (ii) Input matrix A- i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=', if pj is connected to the input of ti then 𝒂𝒊𝒋 − is equal to the weight of output arc;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 0 otherwise [70].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' (iii) Incidence matrix A In the incidence matrix A, each entry aij represents the change of tokens in place j when transition i fires once [70].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Firing Count Vector A marking Mk is an m × 1 column vector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The jth entry of Mk denotes the number of tokens in place j after the kth firing in some firing sequence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' An n×1 column vector X of nonnegative integers is called firing count vector, where the ith entry of X denotes the number of times transition t must be fired to transform Mk-1 to Mk [70].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' State Equation State equation for a PN is written as: Where: Mk-1 is the current marking 23 n×m refers n transitions and m places.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' A+ = [𝒂𝒊𝒋 +] n×m, where 𝒂𝒊𝒋 + = w(ti, pj);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' if pj ∈ ti•, and i ∈ n;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' j ∈ m (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='5) A- = [𝒂𝒊𝒋 −] n×m, where 𝒂𝒊𝒋 − = w( pj , ti);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' if pj ∈•ti (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='6) A = A+ - A- , where [𝒂𝒊𝒋] = [𝒂𝒊𝒋 + − 𝒂𝒊𝒋 −] (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='7) Mk = Mk-1 + A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='X (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='7) Chapter 3 Executable Modeling Formalisms Page 53 Mk is the new marking A is incidence matrix X is the firing count vector Example An example of a Producer-Consumer PN model is shown in Figure 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Figure 14: Producer Consumer Example Using equation 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='7 the incidence matrix A of this model is calculated as follows: A+ T1 T2 T3 T4 P1 1 0 0 0 P2 0 1 0 0 P3 0 1 0 0 P4 0 0 0 1 P5 0 0 1 0 A T1 T2 T3 T4 P1 0 1 0 0 P2 1 0 0 0 P3 0 0 1 0 P4 0 0 1 0 P5 0 0 0 1 = A T1 T2 T3 T4 P1 1 1 0 0 P2 1 1 0 0 P3 0 1 1 0 P4 0 0 1 1 P5 0 0 1 1 Table 4: Incidence Martic A In this model, the initial marking is [1 0 0 1 0].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' With a firing sequence σ = t2, t1, t2 the firing count vector will be [1 2 0 0].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Using the state equation, the marking Mx can be generated as follows: M0 P1 1 P2 0 P3 0 P4 1 P5 0 + A T1 T2 T3 T4 P1 1 1 0 0 P2 1 1 0 0 P3 0 1 1 0 P4 0 0 1 1 P5 0 0 1 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' X T1 1 T2 2 T3 0 T4 0 = Mx P1 0 P2 1 P3 2 P4 1 P5 0 Table 5: State equation Figure 15 graphically illustrates, how a firing sequence of σ = t2, t1, t2 can lead M0 to M3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Green color highlights the firing of a transition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' It can be noted that the marking M3 in the lower right corner matches the marking generated by matrix state-equation in Table 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' P4 P3 T 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' T4 P2 P5Chapter 3 Executable Modeling Formalisms Page 54 Figure 15: M0 to M3 throguh firing sequece σ = t2, t1, t2 State equation alone can only help to algebraically compute a future marking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In order to analyze the model algebraically, some more concepts are used, such as PN Invariants.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' PN Invariants Occurrences of transitions transform the token distribution of a net, but they often respect some global properties of markings, regarded as Linear Invariant Laws.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Invariants are very useful for analyzing structural and behavioral properties of PN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' From an initial marking, the marking of a PN can evolve by the firing of transitions (and if there is no deadlock) the number of firings is unlimited.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' However, not just any marking can be reached, all the reachable markings have some properties in common;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' a property which does not vary when the transitions are fired is said to be invariant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Similarly, not just any transition sequence can be fired;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' some invariant properties are common to the possible firing sequences.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Hence, invariants enable certain properties of the reachable markings and firable transitions to be characterized, irrespective of the evolution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Figure 16 illustrates a PN model of different seasons in a year.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' It can be seen that, regardless of the change of seasons, there will always be one and only one token for all 4 places.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Thus at all times, M(p1) + M(p2) + M(p3) + M(p4) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' This invariant property has an obvious meaning that at all time there is one and only one season [68].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' It also means that the net is structurally bounded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Figure 16: Seasons in a year (acquired from [68]) Spring T1 Summer P J T4 T3 Winter AutumnTChapter 3 Executable Modeling Formalisms Page 55 There are two important types of invariants of PN: P-Invariant Place Invariants formalize invariant properties regarding places in PN, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=', if in a set of places the sum of tokens remains unchanged independently of any firing, then this set can define a place invariant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' They are useful to evaluate structural properties of PN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In simple words, a place belonging to a P-invariant is bounded [24], [70].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' A P-invariant exists in a PN if Where y is an m × 1 column vector of integers such that ∃ y = (y1, y2 … yn) > 0 i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=', has at least one positive non-zero entry [71].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' It means the firing of any transition does not change the weighted sum of tokens in the PN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' More generally, a vector y is called P-Invariant if A .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' y = 0 It is easy to see that if there is a P-invariant, for all p ∈ P, then the PN is guaranteed to be structurally bounded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Hence, place invariants can be used for reasoning about structural boundedness [24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' P-invariant is a P-semi-flow if every element of it is non-negative [67].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' T-Invariants Transition Invariants on the other hand formalize properties regarding transition firing sequences applicable to a PN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' They are useful to evaluate behavioral properties such as liveliness and fairness [24], [70].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' A n × 1 firing count vector X, is called a T-Invariant if A .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' X = 0 i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=', firing each transition the number of times specified in X, brings the PN back to its initial marking M0 [24].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' T-invariant is a T-semi-flow if every element of J is non- negative [67].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' A T-Invariant X is a minimal T-invariant, if there is no other T-invariant X′ such that x′i ≤ xi for all i∈T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' There can be multiple T-invariants for a PN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' A minimal T- Invariant is called the Reproduction vector of the net.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The intrinsic difference between P- and T-invariants are the facts that all places in a PN if covered by P-invariants is a sufficient condition for boundedness, whereas the existence of T- invariants is only a necessary condition for a PN model to be able to return to a starting state, because there is no guarantee that a transition sequence with transition count vector equal to the T- invariants can actually be fired [71].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Advantages and Disadvantages The advantage of algebraic analysis is that the net structure is much less than the number of reachable markings and therefore there is no risk of state-space explosion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Various properties of PN consequently can be proven using linear algebraic techniques.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' However the weakness of this method is that it only entertains limited set of properties and provides only sufficient or necessary conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Also this method � 𝑚 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 𝑦𝑝 = � 𝑚0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 𝑦𝑝 𝑛 𝑝=1 𝑛 𝑝=1 ∀m ∈ R(N, m0) (3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='8) Chapter 3 Executable Modeling Formalisms Page 56 involves complex underlying mathematical theorems, each one different for different property verification and thus cannot be generalized for automated reasoning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' State-Space Analysis State space analysis is one of the most prominent approaches for conducting formal analysis and verification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In contrast to algebraic techniques, it is relatively simpler approach for analyzing the behavior of a model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The basic idea in this approach is to calculate all possible system states and the events which cause the change of states and represent them in a directed graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' When the graph is completely constructed, different search techniques can be applied to analyze the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In PN terms, this method is also commonly known as Reachability graph analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The state-space analysis of a PN model is performed by exhaustively generating all the reachable markings from a given initial marking, and then reasoning about the PN properties of the model by examining the structure of the reachability graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The reachability graph consists of vertices which correspond to reachable markings and of arcs corresponding to firing of transitions resulting in the passing from one marking to another.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' A simple example of reachability graph is shown in Figure 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Figure 17: (a) PN Model (b) Reachability Graph (acquired from [68]) In some cases, the construction of reachability graphs becomes infinite if the PN or some of its parts are repetitive and the net is unbounded, or in other words the PN has infinite number of reachable markings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Therefore instead of keep on constructing nodes of the graph infinitely, an alternative technique is used, in which a finite graph is constructed by abstracting out certain details and inserting the symbol ω (the symbol of “infinity”) to representing the marking of an unbounded place.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' This is called cover-ability graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The coverability graph of the Producer-Consumer PN model is shown in Figure 18 Figure 18: Producer Consumer PN Model and its Coverability Graph It can be seen that the markings in which place P3 is unbounded contain ω symbols.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' P 0 2 []}[] m2 mo m1 0 1 m3 (a) (b)P4 P3 T 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' T4 P2 P5(1,0,0,1,0) t1 (0,1,0,1,0) t3 t4 ti (0,1,1,1,0) (0,1,0,0,1) (1,0,0,0,1) t1 t3 t2 (1,0,0,1,0) (1,0,0,0,1) (0,1,0,0,1) t4 t, t2 ti (0,1,0,1,0)Chapter 3 Executable Modeling Formalisms Page 57 A constructed state space can help in answering a large set of analytical questions concerning the structure and behavior of the model such as verifying deadlock- freedom, absence of live-locks;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' presence of liveness, the possibility of being able to reach good states, and impossibility of reaching bad states and the guarantee of fulfilling the objectives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Following are some examples of how state space analysis help in model verification: Boundedness The problem of boundedness is easily solved using a coverability tree with an assumption that a PN is bounded if the symbol ω never appears in its coverability tree.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Since ω represents an infinite number of tokens in some place, therefore its absence can guarantee that the PN is structurally bounded [25].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Deadlock freedom A deadlock freedom problem is solved, if there is no node in the graph (which is not a final node), and yet it does not have an outgoing arc meaning there is no further enabled transition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Existence or one or more such nodes shows that the model has possibility of deadlock and can also help to find out the exact cause of it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Live lock freedom Similarly, a live-lock can be detected using state space analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' For concurrent systems, a process is tasked to perform some particular actions [72].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' These actions are normally intended to make progress and are called progress actions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' A live lock is detected, if there exists a cycle within the reachability graph, in which no progress action is being executed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' State Reachability Reachability of good states (or bad states) can be guaranteed using state space analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' A state is reachable if there is a valid firing sequence that leads to that state from the initial marking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' (In graph, there exists a path from the initial node to the corresponding node of the desired state).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' There could be multiple paths in a graph that reach the desired state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' A shortest path analysis can be useful to analyze the minimum number of steps required to reach that state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' For details on how state space analysis are conduced, interested readers are recommended to refer to a very informative step by step tutorial on PN state space analysis [73].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Advantages and Disadvantages The main advantage of state space method is that it is a way to explore all the possible states of the system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Also it provides counter examples as to why an expected property does not hold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Furthermore, the automatic calculation and generation of state-space provides an ease of use, due to the fact that the computer tool hides a large portion of the underlying complex mathematics from the user, who is only required to formulate the property which is to be investigated and a suitable query function to evaluate it [74].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Chapter 3 Executable Modeling Formalisms Page 58 The main disadvantage of using state spaces is the state explosion problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The construction of the reachability graph is very expensive and intensive from a computational point of view.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' This is because the size of the state space may grow exponentially with respect to the size of the PN model (measured, for example, by the number of places).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Even relatively small systems may have an astronomical or infinite number of reachable states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' This problem escalates severely, when the models includes time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' A lot of effort has been invested in the development of reduction methods to alleviate this problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Reduction methods represent the state space in a compact form.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The reduction should not affect the properties of the system and they should be preserved and can still be derived from the reduced state space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' However, due to the complexity and diversity in verification, there is no single reduction method which works well in all situations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Therefore the choice of a reduction method completely depends on the nature of the system being verified [74].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Some of the important reduction methods are Sweep line method [75], Hash Compaction Method [76], Symmetry Method [77] and Equivalence Method [78].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In this thesis, we propose another reduction method which suits our need (Composability verification) and can help to alleviate the state explosion problem, if the model under consideration becomes large and resource intensive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='5 PN Classes The computational power of basic or classical PN is weak as it has been shown that PN are not as expressive as Turing machines, making them inadequate for modeling certain real-world systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' To overcome this shortcoming, a number of extended PN have been introduced to enhance the expressive capabilities of PN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' There are different ways to classify PN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=" In structural sense, they can be classified into three main categories [79]: Level-1 PN: are characterized by 'Boolean tokens', i." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' places are marked with at most one unstructured token.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=" Level-2 PN: are characterized by 'Integer tokens', i." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' places are marked with several unstructured tokens - they represent counters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Level-3 PN: are characterized by high-level tokens, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' places are marked with structured tokens where information is attached to them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' There are many extensions of PN formalism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In this section we only discuss some of the extensions of PN, which are used in this thesis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Colored Petri Nets (CPN) CPN is a level-3 extension of PN, in which places are marked with structures token representing data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' CPN is a graphical language for constructing models of concurrent systems and analyzing their properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' CPN is a general purpose discrete event language which combines the capabilities of PN, as a foundation of the graphical notation and a programming language (CPN ML), which is based on Standard ML [80] functional programming language, that provides the primitives for the definition of data types and for specifying data manipulation routines [78].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Chapter 3 Executable Modeling Formalisms Page 59 CPN is formally defined by the tuple [81]: CPN = (P, T, A, Σ, V, C, G, E, I) where: P is a finite set of places T is a finite set of transitions such that: P ∩ T = ∅ A ⊆ P×T ∪T ×P is a set of directed arcs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Σ is a finite set of non-empty color sets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' V is a finite set of typed variables such that: Type[v] ∈ Σ for all variables v ∈ V C: P→Σ is a color set function that assigns a color set to each place.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' G: T → Expression is a guard function that assigns a guard to each transition t E: A→ Expression is an arc expression function that assigns an arc expression to each arc a I: P → Expression is an initialization function that assigns an initialization expression to each place p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Tokens of an ordinary PN have no types.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' With CPN it is possible to define token using data types and complex data manipulation i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=', each token has attached a data value called the token color.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The token colors can be investigated and modified by the occurring transitions [81].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' “CPN Tools” is a software package for the editing, simulation, state space analysis, and performance analysis of CPN models [82].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The tool acts as an integrated development environment (IDE) for the construction of CPN models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' It provides a canvas for creating PN graphs, offers features for writing CPN ML code with a facility of incremental syntax checking.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' It also comes along with a bundled simulator that efficiently handles the execution of untimed and timed nets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The most important feature of CPN tool from our point of view is the generation and analysis of state spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The analysis of state space includes various built-in state-space querying functions, and support for creating analysis report which altogether greatly contributes to the verification process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' For further details of CPN formalism and its application [78], [81] are referred.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Figure 19: A CPN Model Figure 19 shows a basic example of a CPN model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The nodes A and B in oval shape represent places.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The place is initialized with three tokens of String type.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The rectangular shaped node represents transition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' An input arc connects Place A with the transition with an arc variable v of type String (to carry tokens of the same type).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 1\'"Token1"++ 1\'"Token2"++ 1\'"Token3" [v="Token2"] V Trans A B STRING STRING1\'"Token1"++ "Token3" [v="Token2"] 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 1\'"Token2"++ V Trans V A B STRING STRINGChapter 3 Executable Modeling Formalisms Page 60 Similarly an output arc connects transition to place B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The transition has a guard expression that checks the token value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' If the expression is true only then the transition can be fired.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The second part of the Figure 19 shows the result of the firing of transition, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=', the token “Token2” being deposited to place B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Hierarchical CPN CPN model can be organized as a set of modules;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' where modules can be seen as black boxes which make it possible to work at different abstraction levels, concentrating on one at a time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Substitute Transitions CPN tools offer facility to construct hierarchical CPN models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In hierarchical nets a transition can represent an entire piece of net structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Such a transition is called substitution transition [82].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Sub-page /Super-page A page that contains a substitution transition is called a super-page.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' When a CP-net uses a substitution transition the logic that the transition represents is kept on a page called a subpage [82].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Ports and sockets Super-pages and sub-pages are connected by ports and sockets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' A socket is a place in the super-page that has at least one arc between a substitution transition and a socket.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' A port on the other hand is a place in a subpage, marked with one of the port-type tags: (i) In-Port (ii) Out-Port or (iii) In/Out-Port.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' It is bound with a socket in the main page using Port & socket assignment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' This relationship is used to define how a subpage should be connected with the surroundings of its super-page.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Some of the assignment rules are as follows: • A port with an In-tag must be assigned to a socket which is an input arc of the substitution transition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' • An Out-tag indicates that the port must be related to a socket which is an output arc, • I/O-tag indicates that the socket must be both an input and output arc [82].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Figure 20: Hierarchical Colored Petri Net Figure 20 presents an example of hierarchical CP-net.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In the super-page (above), a substitute transition Process is shown which represents a sub-module (below).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' A 1""Token1"++ 1\'"Token2"++ 1""Token3" Process B STRING Process STRING Stage1 Stage2 Stage3 In Out STRING STRING Q R STRING STRINGChapter 3 Executable Modeling Formalisms Page 61 process has three stages, and input and an output marked with In and Out ports which are connected with A and B socket places in the super-page.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Timed Petri Nets PN with timing dependencies can be classified according to the way of specifying timing constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' These constraints can be timing intervals or single numbers, or elements of the net these constraints are associated with i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=', places, transitions or arcs [83].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The next criterion is an interpretation of the timing constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' When associated with a transition, the constraint can be viewed as (i) Firing time A transition consumes the input tokens when it becomes enabled, but does not create the output tokens until the delay time associated with it has elapsed [83].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' (ii) Holding time When the transition fires, the actions of removing and creating tokens are performed instantaneously, but the tokens created are not available to enable new transitions until they have been in their output places for the time specified as the duration time of the transition which created them [83].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' (iii) Enabling time A transition is forced to be enabled for a specified period of time before it can fire, and tokens are removed and created in the same interval [83].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Timed extensions are known also for high-level PN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' One of them is timed Colored Petri nets [78], in which the time concept is based on introducing a global clock used to represent the model time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Tokens are equipped with time stamps, which describe the earliest model times at which they can be used to fire a transition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Stamps are modified according to expressions associated either with transitions, or with their output arcs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Timing intervals can be interpreted as periods of non-activity of tokens, and the transitions are fired according to the strong earliest firing rule [78].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Formally a time PN is a tuple: N = (P, T, F,m0,Eft, Lft) Where: (P, T, F, m0) is a PN, Eft = Earliest firing time for each t∈T Lft = Latest firing time for each t∈T Chapter 3 Executable Modeling Formalisms Page 62 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='2 Communicating Sequential Processes CSP is the second formalism that is selected in this thesis for the modeling of executable components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' CSP is a language developed by Sir Charles Antony Richard Hoare [84].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' It aimed to be used for specification and reason about the concurrent interaction of the system processes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The idea of CSP was conceived for the study of concurrent processes using formal notation with required expressive power and algebraic laws.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The formal notation and the associated algebraic laws allow the process models to be controlled and analyzed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' They also enable formal reasoning about their correctness and prove equivalences between the processes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' They also provide sufficient theoretical foundations for the development of the necessary tools for these purposes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1 Basic Concepts and Definitions The main primitives of CSP formalism are (i) Processes (ii) Events and (iii) Algebraic Operators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Process In CSP terms, a process is an independent, self-contained, modular description of an entity and a basic unit to capture behavior.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' A process has particular interface, captured by events that are used to interact with the environment which itself is a process, called the universe of the system (Σ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The environment can be viewed as a system of concurrently evolving processes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In any run a process performs a sequence of events.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' A process has a name, list of parameters and expression which determines its computational logic: Process (parameters) = Expression Expression is behavior of a process which can be described as an occurrence of an event or the sequence of some events, known as a trace.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' A process can only perform a finite number of events in any finite time, and thus all traces have finite length [85].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Events The ultimate unit in the behavior of a process is an event [85].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Events characterize communications or interactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Events are abstraction of observations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Each event forms an interaction between the process and its environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' If the interaction does not occur then the process is blocked.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Event can be defined with no data or data with typed values.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' A set of all events of a Process P are called Alphabet of P (αP).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The following line describes a simple vending machine which takes in a coin and dispatches a coffee every time [84].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' VM() = insert-coin → coffee → VM();' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Where VM() is a process (with no parameters) and its expression contains a sequence of atomic events: insert-coin and coffee and then the process is self-referenced (recursion).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Events can be written in compound form, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=', with parameters as shown in the following line: VM() = insert-coin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='10 → coffee.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1 → VM();' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Also there could be data operations using statement blocks inside the event body: VM() = insert-coin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='10{Balance= Balance +10} → coffee.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1{coffee--} → VM();' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Chapter 3 Executable Modeling Formalisms Page 63 A statement block could be a complete sequential program contains assignment statements, if-then-else clauses, for or while loops and math functions etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Input/output Channels Processes may also communicate through channels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Channels are special type of events, called communication events.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Usually a communication on a channel results from an input and output occurring in parallel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The input channel is represented by ‘?’' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' symbol whereas the output channel is represented by ‘!’' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' symbol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The channel parameters can be send or received using the form: c !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' x or c ?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' y Algebraic operators There are many different useful operators that are used to represent different notions of process behavior and their compositions [85].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Some are described as follows: \uf0a7 Prefix a → P The prefix operator combines an event and a process to produce a new process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' \uf0a7 Sequential composition P ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Q It composes two processes P and Q in a sequential order i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' the latter only starts when the former terminates \uf0a7 Deterministic Choice P � Q The deterministic (or external) choice operator allows choosing between two component processes, and allows the environment to resolve the choice externally.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' \uf0a7 Non-deterministic Choice P ⊓ Q The nondeterministic (or internal) choice operator allows a choice between two component processes, but does not allow the environment any control over which one of the component processes will be selected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' \uf0a7 Conditional Choice if cond P else Q The choice depends on the evaluation of a condition to choose between P or Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' \uf0a7 Interleaving P ||| Q The interleaving operator represents completely independent concurrent activity between the processes P and Q i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=', without barrier synchronization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' \uf0a7 Parallel Composition P || Q The parallel composition operator represents concurrent activity between P and Q that requires barrier synchronization between the component processes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' If an event is in the alphabet of both P and Q, then it can only occur when both processes are able to engage in that event.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Chapter 3 Executable Modeling Formalisms Page 64 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='2 CSP Analysis Techniques Many techniques have been developed for the analysis of CSP models however Model Checking has surpassed them all in many aspects and is commonly favored by most of the CSP based modeling environments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In this section Model Checking technique is briefly described.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Model Checking “Model checking is an automated technique that,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' given a finite-state model of a system and a formal property,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' systematically checks whether this property holds for that model [86]” The instigation and rapid advancements of model checking methods is one of the towering achievements in the area of model based software verification,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' especially with the advent of difficulties faced by the computing communities when the struggle of sequential program verification was followed by even more daunting exertion of verifying concurrent programs [87].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The growing difficulty in error tracing of such programs is due to the increase of complexity of the system behavior and the arbitrariness of large portion caused by emergent system states which cannot be easily tacked by ordinary testing and debugging methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Starting from late 70’s Model checking and other similar algorithmic and automata theoretic approaches are the result of efforts of notable researchers who pioneered different standards that can be marked as a collective foundation of principles that shaped the modern model checking techniques [87].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Model checking became successful in different communities due to following reasons: \uf0a7 Unlike traditional testing methods it is an exhaustive approach that provides an in-depth analysis of a system model to certify absence of bugs (instead of just finding few of them through debugging).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' \uf0a7 Model checking returns answers — either successful outcomes or counterexamples showing the exact trace of errors and their causes \uf0a7 Improvements in model checking techniques have effectively alleviated the risk of state-space explosion problem [87].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' \uf0a7 Model Checking has a sound and mathematical underpinning and is based on theory of graph algorithms, data-structures, and logic [86].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' \uf0a7 Model checking support formalism both for the specification of the input models (such as FSM, PN, CSP or others) and the specification of system properties being verified (which are mostly in the form of LTL or CTL or their extensions).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Therefore any 3rd party community can use a model checker as a black box without knowing the insights and complexity of the process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Beside its various strengths some of the weaknesses include: \uf0a7 Most model checkers require the models to have reduced details using compact and less expressive states and without specifying enumerations due to the risk of state-explosion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Therefore the reduction in the system expressiveness may cost extra effort and possibly lead to overlooking important features and getting inadequate verification results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' \uf0a7 Despite the development of several very effective methods and improved data- structures to combat the state-explosion problem, models of realistic systems may still be too large to verify.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Chapter 3 Executable Modeling Formalisms Page 65 Types of Model Checking Model checking approaches are classified into two types: (i) Explicit and (ii) Symbolic based on how they enumerate states [88].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Explicit model checking techniques store the explored states in a hash table, where each entry corresponds to a single system state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' For just a few hundred states the nodes in the state space graph becomes as large as ~1011 [88].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' On the other hand explicit model checkers support state-enumeration that gives detailed expressiveness of the system states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Symbolic model checking techniques store sets of explored states symbolically by using efficient data structures represented by canonical structures such as Binary Decision Diagrams (BDDs) [89], and traverse the state-space symbolically by exploring a set of states in a single step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The use of these BDD-based methods has greatly improved scalability in comparison to explicit state enumeration techniques, yet they have performance degradation because BDDs constructed in the course of symbolic traversal grow extremely large, and BDD size is critically dependent on variable ordering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' This causes a newer trend of research towards separating Boolean reasoning and representation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Hence Boolean Satisfiability (SAT) [90] has been studied and explored for Boolean reasoning and efficient semi-canonical representations which results in the development of SAT-solvers which are efficient and have compact representation compared to BDDs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' SAT, together with efficient representation, have become a viable alternative to BDDs for model checking applications [88].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Bounded model Checking is a model checking approach where the number of steps in forward traversal of the state space are bounded and checks whether a property violation can occur in k or fewer steps [88].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The approach reports either “violation found” or “no violation possible within the bounded depth (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=', k steps), which can be incremented to look ahead for possible violation of the property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' This method is promising because it does not cause state-space explosion or at least let the user control its possibility.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In this thesis all three model checking approaches are accompanied by the tools selected for composability verification of CSP based models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='3 Temporal Logics Logic provides formal languages containing formulas for the representation of the statements and their logical reasoning within some area of application [91].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Generally, a logical language is given by an alphabet of different symbols and the definition of the set of formulas which are strings over the alphabet [91].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In logic, the term temporal logic is used for representing and reasoning about propositions qualified in terms of time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Temporal logic has found an important application in formal verification, where it is used to specify system requirements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Linear Temporal Logic (LTL) and Computational Tree Logic (CTL) are its two main variants.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' LTL formulas are interpreted on computation paths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Let A and B be atomic predicates and ¬ , ∧ , ∨ , ↔ and True be the operators of classical logic, whereas , , and U are the operators of linear temporal logic called Next, Always and Eventually and Until.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Chapter 3 Executable Modeling Formalisms Page 66 The intuitive meanings of some LTL statements are: • ¬ A : A does not hold • A ∧ B : Both A & B hold • A: A holds at the next state • A: A holds in all states • A: A will eventually hold • A U B: A will hold until B holds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In CTL there are additional path quantifiers ‘∃’ and ‘∀’ denoting ‘there exists a path’ and ‘for all paths’, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' CTL formulas are interpreted on computation trees.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' With respect to a tree the intuitive meanings of the formulas mentioned above are: • ∃ A: There exists a path in which A holds at the next state • ∀ A: For all paths A always holds in all states 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='4 Time CSP CSP has been in evolution for decades.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' One of the major extensions of CSP is devised with timing primitives, denoted as TCSP, to support time sensitive process modeling [92].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In TCSP, each of the untimed CSP operators is interpreted in a timed context, and two primitive timing operators are added: (i) timeout and (ii) interrupt, with a Newtonian Time assumption (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=', that all the processes have a single global clock with same progress rate).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' \uf0a7 Timeout P ⊳d Q Timeout operator can be used to introduce delay in the processes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' \uf0a7 Timed Interrupt P △e Q Interrupt is used if the process is permitted to run for no more than a particular length of time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The concept of TCSP is used later in this thesis to model and perform verification of real-time systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='5 Probabilistic Systems Systems that exhibit probabilistic aspects essential for designing randomized algorithms, modeling unreliable or unpredictable behavior or specifying model-based performance evaluation are called probabilistic systems [86].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In order to model random phenomena in such systems, transition systems are enriched with probabilities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Probabilistic systems can be specified in different ways.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Two very popular ways are: (i) Markov chains (MC) and (ii) Markov decision processes (MPD).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In this thesis, we considered MPDs as specification formalism for probabilistic systems because they support both nondeterministic and probabilistic choices and unlike MC they can model the interleaving behavior of the concurrent processes in an adequate manner [86].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Chapter 3 Executable Modeling Formalisms Page 67 A Markov Decision Process is a tuple 〈S, Act, P, linit, AP, L 〉 [86].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Where: S = Set of states Act = set of actions P: S × Act × S → [0, 1] is the transition probability function such that for all states s∈S and actions α∈ Act: � P(s, α, s′)∈{0,1} s′∈S linit: S → [0, 1] is the initial distribution such that: � 𝑙𝑖𝑛𝑖𝑡(s) = 1 s′∈S AP is a set of atomic propositions L: S → 2AP is a labeling function The concept of MDP is used later in this thesis to model and perform verification of probabilistic systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='6 CSP Implementation Tools There are a variety of implementation support tools and languages for developing CSP models such as CTJ (Java), CSP++ (C++), CSP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='NET, PyCSP (Python), JCSP (Java) and CSP# (C-Sharp) [93].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Similarly various techniques exist for CSP analysis such as: • FDR2 model checker is developed by Formal Systems Europe Ltd [94].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' • ARC, the Adelaide Refinement Checker, is a CSP verification tool [95].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' • ProB is an animator and model-checker and support refinement checking and LTL model-checking of CSP [96].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' • PAT is a model checker, simulator and refinement checker for CSP [97].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In this thesis we selected PAT model checker because of its user friendly environment for modeling CSP models, fast simulator and model checker and above all its support for CSP extensions such as Real-Time CSP, Probabilistic CSP and Real-time Probabilistic CSP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='7 Process Analysis Toolkit (PAT) PAT is an established tool developed by National University of Singapore in concurrent system verification and has been used in real-world industrial projects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' PAT is designed to develop, compose, simulate and analyze event-based system models using an extension of CSP formalism called CSP-Sharp (or CSP#24).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' This extension comprises of some additions such as shared variables and asynchronous message passing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Moreover it supports using complex data types (such as Set, Queue, and Stacks) and functions from external libraries written in C# therefore allow to 24It uses C# like syntax for the specification of CSP processes Chapter 3 Executable Modeling Formalisms Page 68 model complex process behaviors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' PAT also supports automated refinement checking and model checking of LTL extended with events [98].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' PAT is an appropriate modeling, composition, simulation, verification and reasoning framework of CSP based process models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' These models can be of different nature such as concurrent, real-time and probabilistic systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The main strength of this framework is that it implements various model checking techniques and provide verification support for different properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' That includes general system properties such as deadlock-freeness, divergence-freeness or reachability and user specific properties defined in terms of LTL assertions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' It also includes refinement checking, model checking of real-time and probabilistic systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' To achieve good performance, advanced optimization techniques are also implemented in PAT, such as partial order reduction using BDD, symmetry reduction and parallel model checking [97].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='3 Summary In this chapter we have discussed two executable modeling formalisms namely: (i) Petri Nets and (ii) Communicating Sequential Processes and their associated concepts, tools and techniques.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Both formalisms are used in this thesis for describing executable models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The conceptual background of both PN and CSP is required to understand the approach presented later in this thesis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Page 69 Chapter 4 Verification and Analysis Verification and Validation are important aspects of any software engineering expedition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' They are independent procedures with different characteristics that are used to check that a program, service, model or a system is correct, meets requirements specifications and that it fulfills its intended purpose.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' They are critical constituents for achieving the necessary levels of quality assurance, and are essential prerequisites for a credible and reliable use of the delivered product.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The main focus of this chapter is on Verification and its different analysis techniques.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The aim of this chapter is to outline basic concepts, principles, issues and different approaches of software verification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' This chapter can be viewed as a manual to understand the verification process being proposed later in this thesis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The correctness of a program is a relative concept, meaning that the program is doing no less than prescribed by its specification [99].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Verification, Validation and Testing (VVT) in combination is a broader and more complex discipline of system engineering.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In M&S the combination of Verification, Validation and Accreditation (VVA) is generally referred where “Accreditation” is the formal certification that a model or simulation is acceptable to be used for a specific purpose [100].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Nevertheless the goal is to assure the quality of the product and the impetus behind this assurance is intensified when the systems are highly critical, either because they are very expensive to produce, such as land rovers investigating outer planets, or because human lives depend on them, such as computers controlling airplanes and cars, and life assisting real-time systems in hospitals [101].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' These systems need to be correct, because their failure can lead to loss of human lives or enormous economic losses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Moreover correct systems can be used in a wrong manner which can also results in a failure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' This is a general problem when systems are designed in a modular fashion, and are implemented with assumptions on a new environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' A similar case caused a drastic failure at the launch of Ariane-5 expendable rocket launch system, because a software module was reused from Ariane-3 with certain assumptions that did not hold for Ariane-5 which self-destructed just because one single variable of 64 bit floating point value was erroneously converted to a 16 bit integer causing the system to crash [102].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' So for critical systems it is worth the effort to have a guarantee that they are correct and have no errors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Verification and validation aim to increase the credibility of models and simulation results by providing evidence and indication of correctness and suitability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Verification in particular deals with the correctness of the model perceived from a real-system, whereas validation deals with the suitability or fitness of the model with respect to its real-system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Testing on the other hand aims to uncover incorrectness in the system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In the following section, definitions and concepts of these inter-related terms are discussed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Chapter 4 Verification and Analysis Page 70 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1 Some Basic Concepts in Modeling and Simulation The first applied technical discipline that began to struggle with the methodology and terminology of V&V was the operations research (OR) community, also referred to as systems analysis or modeling and simulation (M&S) community [103].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Verification According to the Department of Defense (DoD) Defense Modeling and Simulation Office verification is defined: as a process of determining that a model implementation accurately represents the developer’s conceptual description and specification [104].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In general verification refers to an evaluation process that determines whether a product is consistent with its specifications or compliant with applicable regulations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In M&S, verification is typically defined as the process of determining if a model is consistent with its specification [29].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Verification deals with the model correctness and is concerned with building the model right [28], i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=', a model which works correctly and has no bugs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In principle, verification is concerned with the accuracy of transforming the model’s requirements into a conceptual model and the conceptual model into an executable model [29].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' For the sake of clarity the notions of correctness are defined as follows: Correct: Free from error;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' accurate;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' in accordance with the fact, truth, or reason;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Conforming to the acknowledged standards of a method, routine or behavior [Oxford Dictionary] Correctness The degree to which a program, model or a system as a whole is free from defects in its specification, design, and implementation [105] The ability of a software product (or a simulation model) to perform the exact task, as defined by its specification [106].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' We define a composed model to be correct if its structure and behavior matches its specification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Correctness of a composed model is therefore relative to its specifications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' A software entity can exist in three apparent states of correctness namely: (i) correct when it has been established correct against its specification;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' (ii) defective when it has been established incorrect against its specification and (iii) unknown when its correctness has not been established against a specification [107].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=" In SE a software entity's specification is the sum of all its passing unit-tests [107]." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' We define specification to be a set of goals (or objectives) and property constraints (see 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='2) that must be fulfilled by the composed model to be established as correct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Validation According to the Department of Defense (DoD) Defense Modeling and Simulation Office validation is defined: as a process of determining the degree to which a model is an accurate representation of the real world from the perspective of intended uses of the model [104].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Model validation on the contrary, deals with building the right model, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=', the model which is an accurate representation of the real system [28].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Model validation is usually defined to mean “substantiation that a computerized model within its domain of Chapter 4 Verification and Analysis Page 71 applicability possesses a satisfactory range of accuracy consistent with the intended application of the model [108].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Testing Model Testing on the other hand, ascertains whether inaccuracies or errors exist in the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The objective of testing is to show that the model (or system) is incorrect (rather than proving that it is correct).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Testing can only find errors but cannot guarantee the absence of errors;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' therefore it is more of an ad-hoc and inexpensive method of necessity, where the correctness is established merely on the fact that all tests have passed, which is insufficient and unreliable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' When the test fails, it succeeds in revealing an error.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' When a test is passed, it fails to detect an error.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' If a number of tests fail to detect a bug, they increase a confidence level in the system even if the correctness cannot be guaranteed [99].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1 Verification and Validation in a Modeling Process A Modeling Process has been defined by Sargent [108] as shown in Figure 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In this process Verification is referred to as an activity which ensures that the computer programming and implementation of the conceptual model is correct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Figure 21: Modeling Process (acquired from [108]) Whereas validation is defined in three perspectives: Conceptual model validity is defined as determining that the assumptions underlying the conceptual model are correct and that the model representation of the problem entity (simuland) is “reasonable” for its intended purpose.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Operational validity is defined as determining that the model’s output behavior has sufficient accuracy for the model’s intended purpose.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Data validity is defined as ensuring that the data necessary for the model execution and model experiments to solve the problem are adequate and correct [108].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Mike Petty in his article [29] also clarifies the difference between the two terms at different stages of model evaluation process as illustrated in Figure 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Problem Entity Conceptual Operational Validity Model Analysis Validity Experimentation and Modeling Data Validity Computerized Computer Programming Conceptual Model Model and Implementation Computerized Model VerificationChapter 4 Verification and Analysis Page 72 Figure 22: Modeling Process (acquired from [29]) A simuland is the real system that is to be simulated whereas a model is a representation of the simuland,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' developed with its intended application in mind and therefore captures only the necessary abstractions of the simuland and omit others.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The requirements are driven by the intended application.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Conceptual models document those aspects of the simuland including the structural and behavioral aspects such as objects, entities, events, functions, environmental phenomena etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The executable model is the computer program that can be executed and is intended to simulate the simuland as detailed in the conceptual model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Therefore the conceptual model can be viewed as a design specification for the executable model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The results are the output produced by a model during a simulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Figure 22 presents Verification and Validation as activities that compare one thing to another.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Verification compares the requirements with the conceptual model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In this comparison, verification seeks to determine if the conceptual model satisfies the given requirements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The second comparison is between the conceptual model and the executable model, where the goal is to determine if the implemented executable model is consistent with respect to the conceptual model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Validation compares the simuland with the conceptual model to determine if the simuland has been accurately described in the conceptual model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The second comparison is between the simuland and the results which determine if the output of the simulation is sufficiently accurate with respect to the actual behavior of the simuland [29].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Another comprehensive VV&T model is presented by Balci [28] in the form of a simulation study life-cycle as shown in Figure 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The phases are shown by oval symbols.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The dashed arrows describe the processes which relate the phases to each other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The solid arrows refer to the credibility assessment stage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Every phase of the life-cycle has an associated VV&T activity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Problem Formulation (or problem definition) is the process of formulating a problem which is sufficiently well-defined to enable specific research action and the investigation of suitable solution techniques.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The output of system investigation results in the System and objective definition which further aids in model formulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Model formulation is the process of defining a conceptual model which abstracts or envisions the real system under study.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The conceptual model is further represented inform of a Communicative Model which is a model representation and can be communicated to other designers and can be compared against the system and the study objectives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' It is further Requirements analysis Requirements Simuland Accreditation Modeling Validation Talidation Verification Conceptual Results model Execution Implementation Verification Transformation Executable Comparison modelChapter 4 Verification and Analysis Page 73 transformed into an executable model through the process of programming.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' An Experimental Model is the programmed model incorporating an executable description of operations along with the design of experiments, for experimenting with the simulation model with a specific purpose.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The process of experimentation produces the Simulation Results, which are presented for decision makers for their acceptance and implementation or undergo refinements if required.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Figure 23: Simulation study life-cycle (acquired from [28]) The model-evaluation life-cycles shown in Figure 21, Figure 22 and Figure 23 have been considered as guidelines and they are used as inspiration for the verification life-cycle proposed and presented later in this thesis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='2 The Principles of Top-Down Refinement The principle of top-down refinement has been appreciated in the area of model verification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Constructing a highly detailed model that satisfies all levels of correctness in one attempt is very difficult.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Instead it is easy to construct a less detailed abstract model at first.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Let S1 be an initial model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' To get from S1 to the final shape of the model, the Top-Down Refinement paradigm advocates the derivation COMMUNICATED PROBLEM Problem Formulated Problem Formulation I VV&T FORMULATED PROBLEM Investigation of Feasibility Assessment Solution Techniques I of Simulation DECISION MAKERS PROPOSED SOLUTION Acceptability of TECHNIQUE Simulation Results (Simulation) INTEGRATED DECISION System System and Objectives SUPPORT Investigation !' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Definition VV&T ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='SYSTEMAND ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='OBJECTIVES ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='DEFINITION ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Model Formulation ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Simulation Results ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Presentation VV&T ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Presentation of ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Model ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Qualification ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='CONCEPTUAL ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='MODEL ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Communicative ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Model ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Model VV&T ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Representation ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='SIMULATION ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Experimental ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Data ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='COMMUNICATIVE ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='RESULTS ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Model VV&T ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='VV&T ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='MODEL(S) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Programmed ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='/ Programming ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Model VV&T ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='PROGRAMMED ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='MODEL ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Experiment ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Design VV&T ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='EXPERIMENTAL ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Design of Experiments ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='MODELChapter 4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Verification and Analysis ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Page ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='74 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='of an (ordered) sequence S1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' S2…Sf of models of S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' For i = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='f, model Si+1 is a refinement of its immediate predecessor model Si if the following conditions are met: (i) Si+1 is more expressive than Si (ii) Si+1 is less abstract than Si (iii) It is relatively easy to evaluate Si+1 on the basis of verified Si Consequently, the last model in the refinement sequence should be correct by construction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The following are some consequences of the top-down refinement paradigm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' First, Si+1 is harder to understand than Si and therefore harder to prove on its own;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' it is precisely the refinement step that allows the verification of Si+1 under the assumption that Si has already been proved correct [99].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In this thesis the proposed verification process is based on this fundamental principle where the verification is performed iteratively and on a relatively refined shape of the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='3 Verification techniques There exist a large variety of verification methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The diversity is due to the range of different simulation project types, different subjects (simuland), and different types of data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Most of the verification methods are inspired from software engineering domain, because the executable models in simulation projects are almost always realized as software [29].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In literature, Verification techniques are generally classified into four main categories as show in Figure 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Figure 24: Verification Techniques 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1 Informal Techniques These techniques are most commonly used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' They are called informal because the tools and methods used rely heavily on human reasoning and inspection without any underlying mathematical formalism [28].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' These techniques are well structured and are conducted with proper guidelines by following standard policies and procedures, however these techniques are tedious and not very much effective [109].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Verification Techniques Informal Techniques Static Analysis Dynamic Analysis Formal Analysis Chapter 4 Verification and Analysis Page 75 Some of the commonly used informal methods are shown in Table 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Audit An audit is undertaken to assess how adequately the system study is conducted with respect to established plans, policies, procedures, standards and guidelines [28].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Desk checking Desk checking or self-inspection is a thorough examination performed by an individual as a first step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In this method syntax checking, specification comparison, code, control flow graph analysis are performed [28].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Inspections Inspections are conducted by a team and performed at different phases of developments such as problem definition, conceptual modeling, executions etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Inspections are conducted to find and document faults [28].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Turing Tests Turing test is performed by domain experts (of the system under study).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' They are presented with two sets of output data obtained one from the model and one from the specification (without identifying which one is which) and are asked to differentiate both and based on their feedback model corrections are made [28].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Table 6: Informal Verification Techniques 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='2 Static Analysis: These techniques are applied to assess the static model design and the implementation (source code), without executing the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' They aim at checking the structure of the model, the dataflow and control flow, the syntactical accuracy, and the consistency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Some of the commonly used static analysis methods are shown in Table 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Structure Analysis Structure Analysis is used to examine the model structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' It is conducted by constructing a control flow graph of the model structure [28].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Data Analysis It involves data dependency tests and data flow analysis to ensure that data used by the model is properly defined and proper operations are applied to data objects [28].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Cause- Effect Graphing Cause-Effect graphing assists model correctness evaluation by answering “what causes what” questions in the model representation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' It is performed by identifying causes and effects in the model and checking if they are reflected accurately in the specification [28].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Syntactic Analysis Syntactic analysis is usually performed by the compiler of the simulation language being used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Syntactic analysis can also be performed using a set of rules applied on the model representation to verify if it satisfies given specification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Semantic Analysis This technique is used to determine the modeler’s intent and verify that the true intent is accurately reflected in the model representation [28].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Table 7: Static Analysis Techniques Chapter 4 Verification and Analysis Page 76 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='3 Dynamic Analysis: Dynamic analysis techniques are based on the execution of the model in order to evaluate its behavior.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' They do not simply examine the output of an execution but also observe the model as it is being executed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The insertion of additional code into the model called instrumentation is needed to collect or monitor the behavior during its execution [109].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Table 8 presents some of the important dynamic analysis verification techniques.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Assertion Checking An assertion is a statement that should be true during the execution of a model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Assertions are placed in various parts of the model and monitored during execution [28].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Bottom up Checking This technique is used in conjunction with the bottom up model development strategy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The sub models are checked individually.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Then the parents at the higher level are checked [28].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Fault/Failure insertion This approach is used to insert a fault or a failure in the model and observe whether the expected incorrect behavior is produced.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' This approach is effective to detect unexplained behavior and hence uncover errors [28].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Functional Testing This technique is used to assess the accuracy of model input- output transformation, to evaluate how accurately a model transforms a given input into a set of output data [28].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Sensitivity Analysis Sensitivity analysis is performed by changing the values of model input variables and parameters over some range of interest and observing the effect on model behavior.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Unexpected effects may reveal errors [28].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Table 8: Dynamic Analysis Techniques 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='4 Formal Analysis Formal analysis refers to mathematical analysis of proving or disproving the correctness of a system with respect to a certain unambiguous specification or property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The methods for analysis are known as formal verification methods, and unambiguous specifications are referred as formal specifications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Formal verification can provide complete coverage on an abstract model of the system, modeled using finite state machines, PN or any other specification formalism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' However it should be noted that formal verification can ensure the correctness of a design only with respect to certain properties that it is able to prove [88].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' There are many formal analysis techniques, which we classify in four main groups: Chapter 4 Verification and Analysis Page 77 Equivalence Checking It is also called Reference Model Checking, which is widely used verification technique that allows two behavioral models to be compared with each other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In general, one of the two is taken as the reference model and represents the so-called golden model (or perfect model).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' It verifies that the behavior of two models is the same for the exercised scenarios.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' This technique has limitation that it does not actually verify that the design is bug free, and provides proof of relative correctness [109].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Theorem Proving This method involves verifying the truth of mathematical theorems that are postulated or inferred throughout the design using a formal specification language.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The procedure involves two main components: (i) proof checker (which can be completely automated in most cases) and (ii) an inference engine (which may require occasional human guidance) [109].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Property Verification Formal properties specify the requirements of the correct system design.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The objective of this method is to check whether an implementation satisfies these requirements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Static Assertion-based Verification (ABV) and dynamic [110].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Model Checking Model checking establishes a solid confidence in a reliable V&V process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Model checking is an automated and comprehensive verification technique that can be used to verify whether the properties specified (usually using Temporal Logic) for a given design or its components are satisfied for all legal design inputs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Model checking also faces a limitation, since it suffers from the well-known state explosion problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In a worst-case scenario, the state space of the design may grow exponentially large with the number of state variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Model checking can be fully automated for design verification and can yields results much more quickly than theorem proving [109].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Table 9: Formal Analysis Techniques Some of these techniques have been adopted in our proposed verification framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='4 Summary In this chapter, different concepts of verification, validation and testing are discussed as they collectively contribute to proving the correctness and accuracy of a model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Some existing model development processes (devised mainly by M&S community) are also discussed, since they are the bases of the proposed verification life-cycle presented later in this thesis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The proposed framework essentially focuses on Verification (however its design is also open to adopt validation techniques).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Different verification techniques are classified into four main groups and some of the selected techniques are briefly explained, as they will be used later in this thesis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Chapter 4 Verification and Analysis Page 78 Part II Techne Technê in Greek is translated as craftsmanship or craft or art.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In science it is the practice of knowledge;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Techne resembles Epistēmē in the implication of knowledge of principles, although techne differs in that its intent is making or doing, as opposed to "in-depth understanding";' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Applied- Science;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' It deals with “How” of the subject.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Part-II covers the technology of the research under discussion, where the theoretical concepts provided in Part I are applied, and technically discussed under an integrated framework of methods, techniques, algorithms and processes and their practical implications are provided in the form of a proposed solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' “Without knowledge the practice is useless, and without practice the knowledge is useless” – Ali bin Usman Hajvery (Kashaf-Almahjoob) Page 79 Chapter 5 Proposed Methodology and the Verification Framework This chapter renders the core of the solution framework proposed in this thesis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In this chapter, a collection of methods, techniques, algorithms, sub-processes, activities and approaches are presented, as proposed solution to various issues in the composability verification of BOM based model components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' All these contributions are integrated into a unified framework which we refer to as: Composability Verification Framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The proposed verification Framework consists of different methods, techniques, algorithms, sub-processes, activities and approaches which all together encompass the component based modeling & simulation (CBM&S) life-cycle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1 Component-based Modeling & Simulation life-cycle CBM&S life-cycle is inspired by different modeling architectures proposed by Sargent, Petty and Balci and discussed in section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' It is extended with our proposed contributions at its different stages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The proposed CBM&S life-cycle is mainly divided into four main quadrants: (i) Inception (ii) Modeling (iii) Execution and (iv) Analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Each quadrant has different phases and in each phase there are multiple activities (or cycle of activities).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Each activity consists of methods and techniques pertinent to its respective phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' These phases are revisited iteratively during the life-cycle;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' where each iteration represents a tier;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' hence the entire CBM&S life-cycle is a multi-tier process;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' whilst each tier results into a refinement of the solution of the problem under investigation;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' as it follows the principle of top down refinement, discussed in section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' All the above mentioned features of the CBM&S life-cycle are shown in Figure 25 divided into four quadrants: ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Figure 25: CBM&S life cycle ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='ANALYSIS ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='INCEPTION ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Phase I ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Refinement ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Simuland ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Phase V ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Requirements Engineering ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Analysis Technique ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Phase II ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Analysis ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Requirements ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Modeling ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Abstract Level Execution ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Phase IV ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Phase III ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Executable Model ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Conceptual Model ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Fransformation ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Activity ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Formal Model ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='EXECUTION ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='MODELINGChapter 5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Proposed Methodology and the Verification Framework ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Page ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='80 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='The following sub-sections provide microscopic details of each quadrant along with their associated inside activities,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' methods and techniques.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='2 Inception The first quadrant of the CBM&S life-cycle called “Inception” initiates the process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' At first the abstraction of a real-system is accumulated as simuland.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' A simuland can be ingested in the form of UML diagrams (Figure 26) or using any other formal or informal representation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Figure 26: Simuland using UML Diagrams The basic idea is to gather the body of knowledge so that the modelers can envision the real system under a certain frame of reference i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=', the context under which the system is being studied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' When the simuland is ingested into the framework, it is used (i) to gather requirements, through the process of requirement engineering and (ii) to search and discover suitable components from a BOM repository for the construction of a composed model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' If a required component does not exist in the repository then it is built from scratch and added in the repository.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The outcome of the requirement engineering activity results in formulation of requirements specifications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The requirement specification formalism (as defined in section 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='2) is used to express formal requirements for this framework: RS = 〈O, S〉 Where O = {o1, o2, o3 …, on} is a set of objectives or goals that must ultimately be fulfilled.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' These goals are usually defined in the context of the scenario of the modeling domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Therefore the properties expressed as goals or objectives may be scenario- specific and not the standard system properties e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' in a restaurant model the objectives could be that the customers are served food and payments are collected, and not that the model should be deadlock free (which however might be a necessary condition).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' S = {s1, s2, s3 …, sn} is a set of system constraints (system properties or scenario- specific safety/liveness properties).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Deadlock freedom (or other similar system properties) could be the required constraints necessary to fulfill the above objectives and therefore must be satisfied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' We propose to define the following mandatory (or default) constraints in the requirements specification of the composability verification framework: ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Chapter 5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Proposed Methodology and the Verification Framework ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Page ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='81 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='S1 = All the interacting components25should be composable at Syntactic level S2 = All the interacting components should be composable at static-semantic level S3a = State-machines of the interacting components should match each other such that they can continue to progress until they reach the final or goal states26.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' S3b = If the conceptual model is transformed into an executable model, the latter should correctly represent the structure and behavior of the former.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Table 10: Mandatory constraints in composability verification We assert that [S1 ∧ S2 ∧ (S3a ∧ S3b)] is a necessary condition for the overall composability verification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' S1 and S2 ensure that the composed model is structurally consistent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Whereas S3a confirms that the behavior of the composed model is coherent for reaching given objectives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The satisfaction of S3b obeys the definition of Model verification (see section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1) in the sense that it confirms the second part of the definition that is: “the accuracy of transforming the conceptual model into an executable model” and therefore the overall success of the verification process depends on the satisfaction of S3b constraint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The conjunction of these default constraints impose the three C’s of requirements namely (i) Consistency, (ii) Completeness, and (iii) Correctness [111].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Consistency is required for the evenness in the input and output connections of the composed components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Completeness is required for the totality of the information of the components being composed to check that the composition does not lack required inputs for making progress.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Correctness is needed to confirm that the composed components interact in a correct way as they are supposed to.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' If all the objectives are fulfilled and all the constraints are satisfied and then we say that the model is composable at all levels and is verified with respect to its specifications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The overall objective of our proposed framework is to provide environment and tool support to assess this postulation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The outcome of discovery results in a set of candidate BOMs and their matching with the simuland and the requirements results in a selection of BOMs suitable for the composition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' This selection is composed to form a conceptual model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='3 Modeling In the Modeling quadrant, a BOM based composed model is taken as an input and the conceptual model is formed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Also a formal model and its graphical notation (as proposed in section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='4) are produced for the purpose of documentation of the conceptual model26F27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Considering that BOM itself is a conceptual framework and is used to model passive components which cannot undergo any form of execution therefore the conceptual model is subjected to a series of extensions and refinements 25 In a composed model it is not necessary that every component interacts with every other component for instance A, B and C are composed such that A interacts with B and B interacts with C but A does not interact with C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 26 If there are no final-states defined in a model and the model is non-terminating then we assume that certain important states called goal-states are present in the model, reachability of which confirms that the goals are fulfilled.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 27 This step is optional but beneficial if different teams are working on different phases of the development life-cycle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' This documentation makes it easy to understand the structure and behavior of basic components and their composition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Chapter 5 Proposed Methodology and the Verification Framework Page 82 using external input and our proposed model transformation algorithms so that it can be implemented into executable forms and sent to the “Execution” quadrant (Figure 25) for abstract level execution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Our proposed extensions and refinements are listed as follows: • BOM State-machines to State Chart XML (Transformation) • Composed-BOM to Petri Net –PNML (Transformation) • Basic-BOM to Extended-BOM (Extension) • Extended-BOM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='(E-BOM) component to Colored Petri Net (CPN) Component Model (Transformation) • Basic-BOM to Extended-BOM with Time (Extension) • Basic-BOM to Extended-BOM with probabilistic factors (Extension) • BOM to CSP based Process Model (Extension & Transformation) In the later section these extensions,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' refinements and transformations will be explained in detail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' It is important to note that each time the conceptual model is extended or refined the Modeling quadrant is revisited in iteration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='4 Execution As previously discussed this quadrant is mainly for the abstract-level execution activities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' It takes following implemented and executable forms of the conceptual model from the Modeling quadrant as input: • State Chart XML (SCXML) • Petri Net –PNML • Colored Petri Net (CPN) Composed Component Model • Communicating Sequential Process (CSP) based Component Processes In the later section these executable forms and their abstract level execution processes will be discussed in detail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='5 Analysis The outcome of an execution process yields some results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' These results are analyzed in the Analysis quadrant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Our verification framework supports different analysis techniques listed as follows: • State-machine matching Analysis • Petri Nets based Algebraic Analysis • Colored Petri Net based State-Space Analysis • Model Checking Analysis These analysis techniques will be discussed in later section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' When all the necessary steps in the composability verification are complete and the composed model under investigation is said to be verified with respect to the given requirement specification then the CBM&S life-cycle proceeds to the further steps for implementation and simulation as shown in Figure 27.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The details of these steps are out of the scope of this thesis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Chapter 5 Proposed Methodology and the Verification Framework Page 83 Figure 27: Implemenation and Simulation 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='6 Composability Verification Framework In this section different method, techniques, procedures, algorithms and modules of our proposed composability verification framework are discussed in detail and considered as building blocks in the CBM&S life-cycle and will be connected to its different phases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' These details are necessary to understand the composability verification process being presented in chapter 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1 Discovery Matching and Composition (DMC) In component based development, it is a normal practice to construct reusable components and store them in a library or repository so that they can be reused later as required.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' To reuse an existing component, a Discovery, Matching, Composition (DMC) paradigm [19] is used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' We assume that a library of BOM components is maintained in a repository.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Using the information given in the simuland a modeler attempts to search and discover BOM components from the repository.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' If a collection of candidate components is retrieved, they are filtered through matching process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' A matching process matches the candidate components from the simuland and requirement specifications and results in a selection of components suitable for the composition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The aspects of syntactic and semantic matching during the discovery and selection of BOM components are proposed and discussed in detail in [54].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In this article a set of discovery rules are presented which must be fulfilled while matching a candidate selection from the simuland.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' We apply these rules for the syntactic and semantic matching of the candidate selection with the simuland.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' We further suggest matching the candidate selection with given requirements, because a selection may match with its respective simuland but if it does not match with its requirements then the composability verification will fail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' We implement the concept of DMC process in our framework as shown in Figure 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' It is also assumed that if a required component does not exist in the repository, then it is constructed from scratch and is added in the repository for reuse.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The result of DMC process is a BOM-based composed model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' This composed model is taken as input in the Modeling quadrant and considered as a conceptual model of the system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' It is recommended that the modelers also use our proposed formal specification and graphical notation presented in section 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='4 to construct a formal model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' This formal model can be used for documentation and shows how the components are composed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' It is however an optional step and is not considered as a phase in our IMPLEMENTATION Composed Model Code Generation Simulation Model Successful Completion of the Composability Decision Support Design of Experiment Verification Process Experimental Model Simulation Simulation ResultsChapter 5 Proposed Methodology and the Verification Framework Page 84 CBM&S life-cycle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In chapter 7 & 8 the formal models of the examples are also described for reader’s understanding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Figure 28: Discovery, Matching, Composition (DMC) 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='2 Structural and Behavioral Evaluation The conceptual model ingested in the Modeling quadrant requires structural and behavioral evaluation so that we can confirm that the model is consistent, complete and correct.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' And it is suitable for thorough verification at different levels of composability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Checking the structure and behavior of the conceptual model before subjecting it to the deeper levels of composability verifications is useful.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' If the model is structurally and behaviorally consistent then the confidence level is increased based on which different useful assumptions can be made later during the in-depth verification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' If there are discrepancies in the structure or behavior of the model then we can skip further steps, save time and computational resources and perform necessary design refinements before the entire process is repeated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' This setup obeys the principle of top-down refinement as discussed in section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The structure of the model is analyzed using static analysis techniques (see section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='2), whereas the behavior of the model is evaluated using dynamic analysis techniques.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='3 Static Analysis We propose two types of Static analysis procedures (i) Syntactic Matching and (ii) Static-Semantic Matching.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' These procedures are used to evaluate the structure and verify composability at syntactic and static-semantic levels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' They are called static analysis because they are evaluated based on pre-defined rules and do not require any form of execution and the information on which these rules are applied is static.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Phase I Simuland Reguirements Component Search Engineering Phase II Reguirements BOM Repository Matching Discovery Candidate Matching BOMs Selection Modeling 12N Phase I1 Composition Conceptual Model Formal Model TransformationChapter 5 Proposed Methodology and the Verification Framework Page 85 Syntactic Matching (SM) This module is responsible for evaluating BOM composability at syntactic level based on the following rules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The outcome of this module verifies that the components can be correctly connected to each other syntactically.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' These rules were introduced in a BOM matching technique presented in [54].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' SM-Rule 1: The name of each event28 exchanged between the two components should be same i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=', the send-event should have the same name as the receive-event.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' A send-event is defined in the BOM’s event types where the sender is the BOM itself and the receiver is some other BOM (in the composition) whereas a receive-event is the definition of an event in the BOM event types, where the sender is some other BOM (in the composition) and the receiver is the BOM itself.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' SM-Rule 2: Each send-event should have at least one corresponding receive-event and vice-versa i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=', the send/receive pair should be complete.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' SM-Rule 3: The number of parameters (content characteristics of event types) of the send-events should be the same as the number of parameters of the receive-events.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The satisfaction of Syntactic Matching rule1, rule2 and rule3 fulfills the default constraint S1 (see Table 10) which is a necessary condition for the overall composability verification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Figure 29 shows different steps in the syntactic matching activity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Figure 29: Syntactic Matching 28 It is assumed that in the BOM construction the events and their corresponding actions are given the same name Phase I Refinement Simuland Reguirements Engineering Phase V Phase II Analysis Constraint Sl satisfied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Requirements Technique Static Analysis Technique Rule evaluation Analysis Satisfy Rule3 Rule2 Rulel Modeling Abstract Level /Violate BOM Execution Components Phase I1I Phase IV Conceptual Executable Model ModelChapter 5 Proposed Methodology and the Verification Framework Page 86 Static-Semantic Matching (SSM) This module is responsible for evaluating BOM composability at static-semantic level based on certain rules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The outcome of this module verifies that the composition of the components is meaningful and the communication between the components is understood as intended.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In order to certify these facts we propose static-semantic matching at two levels: (i) Operational Level matching and (ii) Message level [53]: (i) Operational Level matching In BOM-based composed models Operations are described by Pattern-of-Interplay (POI).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' POI is formed by a collection of actions from the basic BOMs being composed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In operational-level semantic matching, it is ensured that the composed components share the same “domain of interest” and they are composed for the same purpose (or aim) so that we can guarantee that the composition is (static) semantically meaningful and without any pragmatic ambiguity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Even with the same domain of interest, the component may serve for varied purposes e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=', in Military domain a Battalion Head Quarter (BHQ) component may have many purposes and can take part in many different operations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Therefore it is also important that the purpose of the selected components should be clear for a meaningful outcome.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In order to ensure semantic consistency at operational-level we propose to specify following semantic-attributes 29 in the definition of actions at the time of the construction of Basic BOMs and in the POI when the basic BOMs are being composed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In the static-semantic matching these attributes are used to compare that the correct actions are involved in the BOM composition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' o Area-of-Interest: It describes the area or the domain of interest of the system that is being modeled using the components and the operation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' We propose to define “Area-of-Interest” as a semantic-attribute in each action of Basic BOM and also in the POI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' This attribute will confirm that all the components share the same domain knowledge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' If of some general purpose components that may belong to multiple- domains (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=', Queues etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=') we propose to construct a specialization of the component and make it a member of the selected area-of-interest.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=', In a restaurant composed model a generic queue component can be specialized into a restaurant-queue with actions JoinRestaurantQueue() and ServeCustomer() instead of Put() and Get() actions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' o Purpose: Purpose describes the aim or goal of the entire operation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In BOM composition, POI represents a single operation being performed by the composed components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' However it is also possible that one or more composed components may be designed to serve multiple purposes;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' and in a given scenario only some part of the multi-purpose components is involved in the composition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=', a Customer component could be generic and can have multiple purposes whereas a Restaurant waiter component is specific to a restaurant scenario, so it is important that if a Customer component is selected in a Restaurant scenario then its purpose should be aligned with the other components in this scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Hence we define “purpose” as a semantic-attribute of actions in the basic BOM (with multiplicity ≥ 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 29 In BOM the conceptual modeling elements (Entities, Events States and Actions) support semantic fields [65] Chapter 5 Proposed Methodology and the Verification Framework Page 87 (ii) Message Level matching BOM represent event driven components and function by sending or receiving events (messages).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' At the message level it is required that the communication between composed components is meaningful and semantically understood by the receivers as intended by the senders.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' At this level we propose to match Data-Types and Units of measurements of the parameters of send-events and receive-events [53] [54].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' It is assumed that the BOM components have corresponding OWL attachments as proposed in [54].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The BOM-OWL attachments are used to define semantic classes of the domain ontology, their properties, data-types and the individuals and stored in the BOM repository.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In order to evaluate static-semantic matching at both Operational and Message levels, we apply following rules: SSM-Rule 1 The intersection of the “Area-of-Interest” attribute of all the actions (involved in an operation) should be exactly the same as that of POI or should belong to an equivalent class30 in the respective ontology: � Acti.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' AOI n i=1 ≅ POI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' AOI SSM-Rule 2 The intersection of the “Purpose” attribute of all the actions should be exactly the same as that of POI or should belong to an equivalent class in the respective ontology: � Acti.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' purpose n i=1 ≅ POI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' purpose SSM-Rule 3 Data types of each element in the event parameters of the send-event and receive-events should be of the same class, equivalent class or should be in direct hierarchical relationship i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=', the sender’s parameter data-type should belong to the direct child class of the receiver’s parameter data-type (but not the inverse).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=', a send-event contains a parameter of type ‘second’, whereas the receive-event expects a parameter of type ‘time’ which according to the rule it is a semantic match.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Figure 30 presents primitive data-types as an example.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In real situations BOM components will have more domain specific complex data-types.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 30In OWL two classes can be marked equivalent if they have same semantic meanings and both classes have the same individuals (instances) e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=', Healthcare and Medical are synonyms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' We denote it as ≅ Chapter 5 Proposed Methodology and the Verification Framework Page 88 Figure 30: Some of the sub-classes of Data Type ontololgy SSM-Rule 4 The units of the measurements expressed in the event parameters should be same or equivalent or should belong to a direct class hierarchy such that they are convertible without (or with acceptable) loss of information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' We assume that if two measurement units are in either of the direct relationship i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=', parent or child then their conversion loss will be acceptable e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=', a send-event has a parameter with unit m/s (meter per second) to express speed whereas the receive- event expects Km/hr (Kilometer per hour).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' This is a valid semantic match because the quantities are convertible without loss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Semantic Matching Technique In order to match two elements we propose a semantic matching technique as shown in Figure 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' This technique uses OWL-API [112], a semantic reasoning engine (FaCT++, Pellet, or HermiT) and an OWL ontology document to process a query of any two elements A & B and outputs their semantic relationship as one of the following: 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Exact (A = B) 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Equivalent (A ≅ B i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=', A and B belong to equivalent classes) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Direct-Parent (A is a direct parent of B) 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Direct-Child (A is a direct child of B) 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Indirect (A and B are not in direct contact but belong to same hierarchy) 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' No relationship (A and B are not related) Figure 31: Semantic Matching Technique This technique is used to evaluate Static-Semantic Matching Rules 1, 2, 3 & 4 using the algorithm31 given in Table 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 31 The Pseudo-code conventions and format of the algorithms provided in this thesis, for most parts, follows the guidelines set by [132].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' OWL Doc A Reasoner OWL-API B Query Relation Result ODay OYear Binary ODate OMonth OInteger Number ODataType ODouble Time Minute Text Language OHour Second OCharacter O StringChapter 5 Proposed Methodology and the Verification Framework Page 89 Algorithm: Semantic Matching Input: {Actions}, POI, BOM-OWL Output: TRUE, FALSE 1 Owl ← Load Ontology(BOM-OWL) 2 {CommonAOI} ← ⋂ 𝑎𝑖 𝑛 𝑖=0 ∈ Actions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='AOI ⊳ Gives a set of common area of interest of all actions 3 for caoi ∈ {CommonAOI} do 4 SR1 ← Get-Semantic-Relation(caoi, POI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='AOI, Owl) ⊳ It is assumed that Get-Semantic-Relation() 5 function is implemented using semantic matching technique shown in Figure 31 ⊲ 6 if SR1 = “Exact” or “Equivalent” then ⊳ Rule1 satisfy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='continue 7 next 8 else 9 Return FALSE 10 end if 11 end for 12 13 {CommonP} ← ⋂ 𝑎𝑖 𝑛 𝑖=0 ∈ Actions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='purpose ⊳ Gives a set of common purpose of all actions 14 for cp ∈ { CommonP } do 15 SR2 ← Get-Semantic-Relation(cp, POI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='purpose, Owl) 16 if SR2 = “Exact” or “Equivalent” then ⊳ Rule2 satisfy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='continue 17 next 18 else 19 Return FALSE 20 end if 21 end for 22 23 {Events} ← Get-Events(Actions) ⊳ gets corresponding Events of Actions 24 for e ∈ Events do 25 if e=Send-Event then 26 f ← Get-Receive-Event(e, Events) ⊳ gets corresponding Receive Event of e 27 {PE} ← e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Parameters ⊳ Set of parameters of send-event e 28 {PF} ← f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Parameters ⊳ Set of parameters of receive-event f 29 ⊳ No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' of parameters of e and f must be same because of SM-Rule3 30 for pe∈PE & pf ∈PF do 31 SR3 ← Get-Semantic-Relation(pe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Type, pf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Type, Owl) ⊳ Compare Parameter types 32 if SR3 = “Exact” or “Equivalent” or “Direct-Child” then 33 ⊳ Rule3 satisfy…continue to rule4 34 SR4 ← Get-Semantic-Relation(pe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Unit, pf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Unit,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Owl) ⊳ Compare Units 35 if SR3 = “Exact” or “Equivalent” or “Direct-Parent” or “Direct-Child” then 36 Return TRUE ⊳ Static-Semantic Matching Successful 37 else 38 Return FALSE 39 end if 40 else 41 Return FALSE 42 end if 43 end for 44 else 45 next 46 ⊳ Goes to the next send-event and need not to check receive-events (because SM-Rule2) 47 end if 48 end for Table 11: Semantic Matching Algorithm ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Chapter 5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Proposed Methodology and the Verification Framework ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Page ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='90 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='The semantic matching algorithm takes a set of actions (parsed from Basic BOMs which are being composed);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' the pattern of interplay (POI) which specifies how the actions are connected to each other and the corresponding OWL ontology document as input.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The output of this algorithm is TRUE if the static-semantic matching is successful otherwise FALSE if any of the rule is violated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Figure 32 shows steps in the verification of BOM composability at Static-Semantic level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Figure 32: Static-Semantic Matching If the semantic matching is successful, it will fulfill the default constraint (S2) of the requirement specification (see Table 10) which is a necessary condition for the overall composability verification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='4 Dynamic Analysis We use Dynamic Analysis technique (see section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='3) to evaluate the behavior of the conceptual model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' At first the components undergo a state-machine matching process for the evaluation of the behavior consistency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' When this evaluation is successful, we proceed with the in-depth verification at the dynamic-semantic composability level, choosing one of the different proposed set of dynamic analysis techniques.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' These analyses are called dynamic analysis because they require execution at different abstract levels as mentioned in section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='4 State-Machine Matching (SMM) State-machines represent behavior of the components and are the essential dynamic part of BOM components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In the verification of BOM composability at dynamic- semantic level, it is important that the behavior of the composed components should be coherent with each other i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=', their interactions are consistent in order to make progress towards composition goals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' To ensure this fact we assert (as a necessary condition) that the state-machines of the composed components should match each other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' BOM state-machines are event driven in nature and make progress by exchanging events.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In order to ensure that the state-machines of the composed BOM components match each other they are required to be executed at an abstract level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Therefore we proposed a technique in [113] which transforms each BOM state- machine to SC-XML (State-Chart XML) [114] format.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' A sample of SCXML is shown in Figure 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Phase I ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Simuland ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Refinement ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Reguirements ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Engineering ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Phase V ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Phase II ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Analysis ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Constraint S2 satisfied ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Requirements ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Technique ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Static Semantic Analysis ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Technigue ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Analysis ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='OWL ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='OWL API ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Doc ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Ouery ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Rulel ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Rule2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Reasoner ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Rule3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Modeling ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Abstract Level ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Rule4 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Execution ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='BOM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Phase III ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Phase IV ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Violate ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Satisfy ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Components ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Conceptual ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Executable ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Model ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Model ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='XChapter 5 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Proposed Methodology and the Verification Framework ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Page ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='91 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Figure 33: SCXML format We develop a runtime environment using SCXML API for the execution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' This environment parses SCXML files (transformed BOM state-machines) and creates instances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Then it initializes all the state-machines to their initial states and simulates sending and receiving of the events to observe state-machine transitions until they reach their final state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The state-machine matching process is based on the following algorithm: Algorithm: State-Machine Matching Input: {SM} ∈ BOM State-Machines,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' {Actions} Output: TRUE,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' FALSE 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='{SCXML} ← ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='TransformSMtoScXML(SM) 2 ⊳ Transform all BOM-Statemachines in SCxml format ⊲ 3 4 Create and Initialize EventController: EC 5 ⊳ Event Controller controls sending and receiving of events ⊲ 6 7 for scxml ∈ { SCXML } do 8 SC ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='← Parse(scxml) ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='⊳ Parse scxml document 9 Create and Initialize ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='SCXMLExecutor(SC) 10 ⊳Instantiate SCXMLExecutor thread for each state-machine ⊲ 11 12 Done ← FALSE 13 while ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='(Done =FALSE) do 14 CurrentState ← GetCurrentState() ⊳ SCXMLExecutor returns current state 15 if CurrentState.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='IsFinal = TRUE then 16 Done ← TRUE 17 end if 18 ⊳Get Next Action to send or receive ⊲ 19 {NextActions}← CurrentState.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='GetActions() 20 for next ∈ NextActions do 21 if next.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Type = “Send” then 22 EC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Put(next) ⊳ Simulate sending of next action 23 SCXMLExecutor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Trigger(next) ⊳Transit from the current state to next state 24 else 25 EC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Get(next) ⊳ Simulate recieving of next action 26 SCXMLExecutor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Trigger(next) ⊳Transit from the current state to next state 27 end if 28 end for 29 end while ⊳Due to either of the send or receive actions the state-machine will 30 transit to the next state and therefore the current state will be updated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 31 If the final state is reached then the state-machine matching will be 32 terminated successfully⊲ 33 end for Table 12: State-machine Matching algorithm Chapter 5 Proposed Methodology and the Verification Framework Page 92 Figure 34 shows the state-machine matching process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' It takes BOM state-machines as modeling objects, automatically transforms it into a SCXML executable format and perform state-machine matching using abstract level execution environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' A successful run of this routine implies that all the state-machines match each other, which satisfies a necessary (but not sufficient) condition of BOM composability i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' constraint S3a of the requirement specification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The fulfillment of S3a certifies consistency and completeness of the behavioral design of the composed components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Consistency is due to the fact that the components are in correct causal order and Completeness, because their inputs and outputs (send and receive-events) are complete to reach their final states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' However we still cannot guarantee correctness the 3rd C of requirements, unless the composition satisfies its requirement specification i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=', all the assigned objectives and required constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Also the state- machine matching approach may result in reaching final-states but it does not explore all possibilities of the behavioral interaction of the composed components.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' So it is required to analyze the model at a greater depth using an appropriate dynamic analysis approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Figure 34: State-machine Matching Process Therefore for deeper evaluation we propose to utilize the modeling and analytical strength of Petri Net and CSP formalism and incorporate three analysis approaches in our verification framework as introduced and discussed chapter 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The selection of a suitable approach for the composability verification at dynamic-semantic level depends on the nature of the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In the following subsections, each of these approaches is discussed in detail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Phase-I Refinement Simuland Reguirements Engineering Phase-V Phase-II Analysis X Necessary condition of Constraint S3 satisfied Reguirements Technique Fail Success 4 Put( Analvsis Is Final state 1 8 SM-1 SMIM reached?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 0155 BOM Components Event Putl!' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 2 BOM-SM to Contro ler SCXML SM-2 Get 04 Transformation Abstract Level Modeling Action Execution Lookup SM-N Table Puto Phase-I1I Phase-IV sc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='XvL Executors BOM Conceptual Executable Execution Model Model Transformation TransformationChapter 5 Proposed Methodology and the Verification Framework Page 93 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='7 PN Algebraic Technique The basic idea of this technique is to transform BOM into Petri Net format and verify the properties given in the requirement specifications using algebraic methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In the verification framework, following steps are proposed to conduct algebraic analysis: 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1 BOM to PNML Transformation In the first step, BOM components are transformed into Petri Net Markup Language PNML format [115] which is an XML based form to specify Place/Transition Nets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' At first BOM state-machines of all components are parsed and each state is transformed as a Place in the PN model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Similarly each event (send or receive event) is transformed into a Transition in PN with no duplication.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' An outgoing arc is connected from a place-P to a transition-t if the corresponding state-S (of the sender) has a corresponding event-t as its exit condition and next state S′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' An incoming arc is connected from transition-t to another place-P′ which represents the next state S′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Similarly state-R (of the receiver) is transformed into place-Q and the next state R′ into Q′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The incoming and outgoing arcs are connected to t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The sender and receiver entities (of BOM) are represented as tokens in the places.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Figure 35 shows how part of a sender and receiver state-machine is transformed into a PN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The place P and Q have tokens showing the current state (or marking) of the composed model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' When transition t is fired (meaning event t is sent by P and received by Q) the tokens are transported to P′ and Q′ showing the next marking of composed model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Figure 35: BOM to PN transformation The transformation process is complete, when all the states and events of every state- machine in BOM are plotted in the PN model such that no element is duplicated, and each place or transition is connected so that there are no broken links.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='2 PN Algebraic computations In this step the PN incidence matrix and Place/Transition invariants are calculated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' To perform this step we use Platform Independent Petri Net Editor (PIPE) API [116].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' PIPE is a java based open source API for performing different Petri Net related operations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' It offers API functions to automatically compute algebraic resources of a PN model such as Incidence matrix and Place/Transition invariants.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Incidence Matrix An incidence matrix of a PN model is calculated by subtracting A- from A+ incidence matrices: R PChapter 5 Proposed Methodology and the Verification Framework Page 94 Algorithm: Incidence Matrix Calculation Input: PN Model (P-places × T-transitions) Output: m × n Matrix A 1 Initialize a Matrix Aminus of size m × n such that m=|P| and n=|T| 2 for i=0 to m do 3 for j=0 to n do 4 if pi ∈ P is connected to tj ∈ T then ⊳ i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=', p is the input place of t 5 A[i][j] ← arc weight ⊳ arc weight is always ≥ 1 6 else 7 A[i][j] ← 0 8 end if 9 end for 10 end for 11 12 Initialize a Matrix Aplus of size m × n such that m=|P| and n=|T| 13 for i=0 to m do 14 for j=0 to n do 15 if tj ∈ T is connected to pi ∈ P then ⊳ i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=', p is the output place of t 16 A[i][j] ← arc weight ⊳ arc weight is always ≥ 1 17 Else 18 A[i][j] ← 0 19 end if 20 end for 21 end for 22 23 Initialize a Matrix A of size m × n 24 for i=0 to m do 25 for j=0 to n do 26 A[i][j] ← Aplus[i][j] - Aminus[i][j] 27 end for 28 end for 29 Return A Table 13: Incidence Matrix Calculation Lines 10 calculate the A- matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Lines 12-21 calculate A+ matrix and lines 23-28 calculate the final incidence matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Place and Transition Invariants The methods for calculating P-Invariants and T-Invariants of a PN model have been extensively studied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The basic principle to compute the fundamental set of P- invariants and T-Invariants is based on Farkas Method [117].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The algorithm for finding P-Invariant is presented as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The input of the procedure is the Incidence Matrix A and an Identity matrix B, both of size m × n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The output is a matrix C whose rows are the fundamental set of P-Invariants.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Chapter 5 Proposed Methodology and the Verification Framework Page 95 Algorithm: P-Invariant Calculation Input: Incidence Matrix A, Identity Matrix B Output: Matrix C (rows of C = P-Invariants) 1 C ← A | B ⊳ Augmentation of A with m × n identity matrix B 2 for i=1 to n do ⊳ n = |T| 3 for each pair of rows c1, c2 in C[i-1] where c1[i] and c2[i] have the opposite signs do 4 c ← |c2[i]|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' c1 + |c1[i]|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' c2 5 c´ ← c/g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='d of each element of row c ⊳ g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='d =Greatest common divisor 6 augment matrix C[i-1]with row c´ 7 end for 8 Delete all rows of C[i-1] whose ith component is non-zero, the result is C 9 end for 10 Return C Table 14: Place-Invariants The same procedure is used to find T-invariants by taking the transpose of the Incidence Matrix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Details and a discussion about the improvement of this algorithm are presented in [118].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' These algorithms are implemented in PIPE API and can be used in form of function calls.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='3 Property Verification Method The outcome of algebraic analysis technique is the satisfaction or violating of a property with respect to a PN model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' There are different methods to perform property verification however there is usually certain theorems behind the reasoning of necessary and sufficient conditions for the fulfillment of a property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In Petri Net literature many solutions (proofs) for the property proving theorems are contributed and can be applied to prove different properties when required.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Using these theorems and the available algebraic resources a property verification method (algorithm) is developed which evaluates the conditions given in the theorem on the PN model and results in satisfaction or violation of the required property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Figure 36 presents the mechanism of algebraic verification technique in the verification framework: Chapter 5 Proposed Methodology and the Verification Framework Page 96 Figure 36: PN Algebraic Technique To explain our approach we present the theorems and an example property verification method for the analysis of fairness property in a PN model in chapter 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' PNML Execution and State-space Graph It should be noted that PIPE library also offers an execution environment which can be used to run the transformed PNML model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' If the tokens (each representing a BOM entity) eventually reaches its final state (place) then the execution is successful.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' This asserts that the model is correctly transformed and it correctly represents the behavior of its source i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' the conceptual model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' PIPE library also offers a function to generate and visualize state-space graph of the PNML model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' This can be useful to find deadlocks and verify other system properties through graph reachability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='8 CPN based State-Space Analysis Technique The second approach proposed for the dynamic semantic composability verification is based on Colored Petri Nets and State-space analysis technique.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' This approach effectively utilizes the potential of Colored Petri Net formalism, CPN modeling and programming language, its execution environment and supporting tools in order to verify a composed model at dynamic-semantic level with respect to the requirement specifications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' The unique feature of this approach is its data-centric nature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' As discussed in section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='5 CPN supports level-3 PN modeling where tokens are structured and can represent data objects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Also the transitions cover greater details of the system behavior.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Therefore the structure and the behavior of the system can be modeled with greater details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' In order to exploit the data-centric nature of our approach we proposed the following stages: ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Phase I ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Refinement ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Simuland ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Reguirements ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Engineering ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Phase V ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='All constraints satisfied ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Phase II ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Analysis ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Reguirements ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Technique ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Fail ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Success ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Constraints as System Properties ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Property ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Analvsis ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Properties ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Proving ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='to prove ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='SM 1 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Algebraic ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Theorems ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Verification ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='BOM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Components ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Property ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='PN ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Verification Method ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Model ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='BOM to PNMIL ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='S1I 2 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Transformation ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Abstract Level ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='PIPE ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Modeling ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Execution ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Function ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='SM N ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='BOM ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Phase Ill ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='Phase IV ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='State machines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Execution of the Conceptual Executable Werification Model Model method Transformation TransformationChapter 5 Proposed Methodology and the Verification Framework Page 97 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='1 BOM Extension The current BOM standard lacks certain structural and behavioral semantics which are essential for modeling complex system behavior therefore we require specification of additional modalities that can help in capturing the structure and behavior of a system at a greater detail [119].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' We therefore propose to extend the BOM conceptual model specification by applying the concept of Extended Finite State- Machines (EFSM), which is introduced and discussed with detail in [120].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' An Extended Finite State Machine (EFSM) is defined by the tuple: M = (Q, I, Σ1, Σ2, V, Λ) where: Q (≠∅) is a finite set of states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' I ⊂ Q is the set of initial states Σ1 is a finite set of (send or receive) events.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Σ2 is a finite set of actions (Actions are the instructions to be executed and should not be confused with the BOM actions, which are used in pattern of interplay).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' V is the set of state variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Λ is a set of transitions;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' each transition λ ∈ Λ Where q and q′ ∈ Q e ∈ Σ1 is an event g is a condition (or guard) a ∈ Σ2 is an action.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' It means if the system is at a state q, an event e occurs, and the guard g is satisfied, then action a will be executed and the system will transit to the next state q′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' During the firing of transition λ ∈ Λ the variables {vin} are used as input and the variables {vout} are used as output.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Example: This example is a modified version of an extended finite state-machine of a queue discussed in [120] and is intended to explain the notions of EFSM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' A queue component is either empty or nonempty, and in which insertions are done at the rear of the queue and deletions are done at the front of the queue.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Also the queue has a maximum size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Two events put and get are used to update the states of the queue.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Figure 37: Buffer Extended finite state-machine [120] [g] / a λ = q q′ {vin} | {vout} 1 empty nonEmpty 4 3Chapter 5 Proposed Methodology and the Verification Framework Page 98 The EFSM model of the buffer is: M = (Q, I, Σ1, Σ2, V, Λ) where Q= {empty, nonempty} Σ = {put(string obj), get} q0: empty V = {front, rear, M, Data} Λ: Transition Specifications: Transition 1 allows Queue to transit from empty state to non-empty when put event is received.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' During this transition the variable rear is incremented.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Also the parameter “Obj” of Put event is stored in Data at the rear location.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Transition 2 lets Queue to revisit non-empty state when put event is received if rear is less than the maximum size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' During this transition the variable rear is incremented.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Also the parameter “Obj” of Put event is stored in Data at the rear location.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Transition 3 lets Queue to revisit non-empty state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' It is fired if rear variable is greater or equal to front+1 and less than the maximum size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' It will send Get event with data at the front location is sent as parameter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' During this transition the variable front is incremented.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Transition 4 allows Queue to return back to empty state when if front+1 reaches the maximum size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' It will send Get event with Data at front location.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' During this transition both front and rear variables are reset to zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' We apply the concept of EFSM to the BOM conceptual model, so that we can introduce state-variables and extended representation for transitions (events, guards, actions), to a form, which we name: Extended BOM or E-BOM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' There are several advantages in the BOM extension: The usage of variables (or state-variables) in BOM state-machines allows to model the attributes of a component (structure) and their effects caused due to the change of states and occurrence of transitions (behavior).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' And values of these attributes can Put(obj) [ ] / action{ rear++;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content=' Data[rear]=obj;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/9dE1T4oBgHgl3EQfUQOY/content/2301.03088v1.pdf'} +page_content='} 1: empty nonempty {rear} | {rear, Data} Put(obj) [rear