jackkuo commited on
Commit
76e5e9f
·
verified ·
1 Parent(s): 0254bf0

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. -9A0T4oBgHgl3EQfPP_v/content/2301.02174v1.pdf +3 -0
  2. -9A0T4oBgHgl3EQfPP_v/vector_store/index.pkl +3 -0
  3. -NAyT4oBgHgl3EQfRPZI/content/2301.00061v1.pdf +3 -0
  4. -NAyT4oBgHgl3EQfRPZI/vector_store/index.faiss +3 -0
  5. .gitattributes +59 -0
  6. 09FKT4oBgHgl3EQfOS13/vector_store/index.pkl +3 -0
  7. 0tAzT4oBgHgl3EQftv2j/content/2301.01681v1.pdf +3 -0
  8. 0tAzT4oBgHgl3EQftv2j/vector_store/index.pkl +3 -0
  9. 0tE1T4oBgHgl3EQfRgNg/content/tmp_files/2301.03053v1.pdf.txt +907 -0
  10. 0tE1T4oBgHgl3EQfRgNg/content/tmp_files/load_file.txt +0 -0
  11. 1dE4T4oBgHgl3EQfaAyc/content/tmp_files/2301.05061v1.pdf.txt +0 -0
  12. 1dE4T4oBgHgl3EQfaAyc/content/tmp_files/load_file.txt +0 -0
  13. 29E2T4oBgHgl3EQf5whX/vector_store/index.faiss +3 -0
  14. 29FKT4oBgHgl3EQfQS0h/vector_store/index.pkl +3 -0
  15. 3NE0T4oBgHgl3EQfuwHF/content/2301.02610v1.pdf +3 -0
  16. 3NE0T4oBgHgl3EQfuwHF/vector_store/index.pkl +3 -0
  17. 5NE3T4oBgHgl3EQfpArI/content/2301.04639v1.pdf +3 -0
  18. 5NE3T4oBgHgl3EQfpArI/vector_store/index.faiss +3 -0
  19. 5tAzT4oBgHgl3EQfu_3x/vector_store/index.pkl +3 -0
  20. 99E5T4oBgHgl3EQfRQ7z/vector_store/index.faiss +3 -0
  21. 99FRT4oBgHgl3EQfrDen/content/2301.13619v1.pdf +3 -0
  22. 99FRT4oBgHgl3EQfrDen/vector_store/index.faiss +3 -0
  23. 99FRT4oBgHgl3EQfrDen/vector_store/index.pkl +3 -0
  24. 9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf +3 -0
  25. 9dE5T4oBgHgl3EQfRA7S/vector_store/index.faiss +3 -0
  26. 9dE5T4oBgHgl3EQfRA7S/vector_store/index.pkl +3 -0
  27. AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf +3 -0
  28. AtE4T4oBgHgl3EQfEwyK/vector_store/index.pkl +3 -0
  29. BdE1T4oBgHgl3EQfDgNt/content/tmp_files/2301.02878v1.pdf.txt +538 -0
  30. BdE1T4oBgHgl3EQfDgNt/content/tmp_files/load_file.txt +311 -0
  31. CtE0T4oBgHgl3EQfyQKJ/vector_store/index.faiss +3 -0
  32. DtE4T4oBgHgl3EQfGQwj/content/tmp_files/2301.04892v1.pdf.txt +1590 -0
  33. DtE4T4oBgHgl3EQfGQwj/content/tmp_files/load_file.txt +0 -0
  34. E9AzT4oBgHgl3EQfG_uu/vector_store/index.faiss +3 -0
  35. E9E1T4oBgHgl3EQfWwSL/content/tmp_files/2301.03118v1.pdf.txt +2118 -0
  36. E9E1T4oBgHgl3EQfWwSL/content/tmp_files/load_file.txt +0 -0
  37. ENAzT4oBgHgl3EQfwv6u/content/tmp_files/2301.01728v1.pdf.txt +1019 -0
  38. ENAzT4oBgHgl3EQfwv6u/content/tmp_files/load_file.txt +0 -0
  39. FdE2T4oBgHgl3EQf-QlB/content/2301.04236v1.pdf +3 -0
  40. FdE2T4oBgHgl3EQf-QlB/vector_store/index.faiss +3 -0
  41. GNFIT4oBgHgl3EQfWStC/vector_store/index.pkl +3 -0
  42. HdAzT4oBgHgl3EQfjP3_/content/tmp_files/2301.01515v1.pdf.txt +239 -0
  43. HdAzT4oBgHgl3EQfjP3_/content/tmp_files/load_file.txt +186 -0
  44. INE1T4oBgHgl3EQfFwM8/content/tmp_files/2301.02905v1.pdf.txt +0 -0
  45. INE1T4oBgHgl3EQfFwM8/content/tmp_files/load_file.txt +0 -0
  46. KtFAT4oBgHgl3EQfwB6h/content/tmp_files/2301.08679v1.pdf.txt +2443 -0
  47. KtFAT4oBgHgl3EQfwB6h/content/tmp_files/load_file.txt +0 -0
  48. L9E0T4oBgHgl3EQfSwBA/content/tmp_files/2301.02226v1.pdf.txt +956 -0
  49. L9E0T4oBgHgl3EQfSwBA/content/tmp_files/load_file.txt +437 -0
  50. M9E2T4oBgHgl3EQfBgYX/content/2301.03602v1.pdf +3 -0
-9A0T4oBgHgl3EQfPP_v/content/2301.02174v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a2197bd3133bd0532a80ea84b64394798e6f86a92d0740e6bcbcd25ca1a30000
3
+ size 295590
-9A0T4oBgHgl3EQfPP_v/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:47e79129a59e51e72020757a1489e4dc541b523cd694354bb1105b36c5dbf512
3
+ size 135202
-NAyT4oBgHgl3EQfRPZI/content/2301.00061v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1519375be343e60b7865d89cb4a42274b6313df01c92b66b0e9821b3535e1b76
3
+ size 766852
-NAyT4oBgHgl3EQfRPZI/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f86ed495c75199e7aaec1591c60455bf0252e2da68677bd2165f1dde4499f3e5
3
+ size 6422573
.gitattributes CHANGED
@@ -6996,3 +6996,62 @@ XdA0T4oBgHgl3EQfFP_h/content/2301.02031v1.pdf filter=lfs diff=lfs merge=lfs -tex
6996
  BNAyT4oBgHgl3EQfRvex/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6997
  U9AyT4oBgHgl3EQfuvmH/content/2301.00619v1.pdf filter=lfs diff=lfs merge=lfs -text
6998
  E9AzT4oBgHgl3EQfG_uu/content/2301.01038v1.pdf filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6996
  BNAyT4oBgHgl3EQfRvex/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
6997
  U9AyT4oBgHgl3EQfuvmH/content/2301.00619v1.pdf filter=lfs diff=lfs merge=lfs -text
6998
  E9AzT4oBgHgl3EQfG_uu/content/2301.01038v1.pdf filter=lfs diff=lfs merge=lfs -text
6999
+ FdE2T4oBgHgl3EQf-QlB/content/2301.04236v1.pdf filter=lfs diff=lfs merge=lfs -text
7000
+ 5NE3T4oBgHgl3EQfpArI/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7001
+ ZtFAT4oBgHgl3EQf4B7d/content/2301.08724v1.pdf filter=lfs diff=lfs merge=lfs -text
7002
+ -NAyT4oBgHgl3EQfRPZI/content/2301.00061v1.pdf filter=lfs diff=lfs merge=lfs -text
7003
+ v9E0T4oBgHgl3EQfcAAR/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7004
+ FdE2T4oBgHgl3EQf-QlB/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7005
+ a9AyT4oBgHgl3EQfwPkL/content/2301.00643v1.pdf filter=lfs diff=lfs merge=lfs -text
7006
+ n9FPT4oBgHgl3EQfKTRi/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7007
+ jtE3T4oBgHgl3EQf5Qsz/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7008
+ U9AyT4oBgHgl3EQfuvmH/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7009
+ ZNAyT4oBgHgl3EQfvvli/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7010
+ ZNAyT4oBgHgl3EQfvvli/content/2301.00636v1.pdf filter=lfs diff=lfs merge=lfs -text
7011
+ CtE0T4oBgHgl3EQfyQKJ/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7012
+ E9AzT4oBgHgl3EQfG_uu/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7013
+ UdE1T4oBgHgl3EQfawRv/content/2301.03165v1.pdf filter=lfs diff=lfs merge=lfs -text
7014
+ 99E5T4oBgHgl3EQfRQ7z/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7015
+ z9AzT4oBgHgl3EQftf3i/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7016
+ QtFKT4oBgHgl3EQfhy5o/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7017
+ jtE3T4oBgHgl3EQf5Qsz/content/2301.04779v1.pdf filter=lfs diff=lfs merge=lfs -text
7018
+ odAyT4oBgHgl3EQflvgJ/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7019
+ M9E2T4oBgHgl3EQfBgYX/content/2301.03602v1.pdf filter=lfs diff=lfs merge=lfs -text
7020
+ xtE2T4oBgHgl3EQf3gi9/content/2301.04172v1.pdf filter=lfs diff=lfs merge=lfs -text
7021
+ g9FMT4oBgHgl3EQf3DHu/content/2301.12447v1.pdf filter=lfs diff=lfs merge=lfs -text
7022
+ ZdE5T4oBgHgl3EQfDQ4I/content/2301.05403v1.pdf filter=lfs diff=lfs merge=lfs -text
7023
+ gtAzT4oBgHgl3EQf4P6f/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7024
+ ZtFAT4oBgHgl3EQf4B7d/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7025
+ 99FRT4oBgHgl3EQfrDen/content/2301.13619v1.pdf filter=lfs diff=lfs merge=lfs -text
7026
+ 9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf filter=lfs diff=lfs merge=lfs -text
7027
+ 9dE5T4oBgHgl3EQfRA7S/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7028
+ QtFKT4oBgHgl3EQfhy5o/content/2301.11839v1.pdf filter=lfs diff=lfs merge=lfs -text
7029
+ O9E3T4oBgHgl3EQfxgsc/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7030
+ a9AyT4oBgHgl3EQfwPkL/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7031
+ yNE2T4oBgHgl3EQfhQfv/content/2301.03947v1.pdf filter=lfs diff=lfs merge=lfs -text
7032
+ QdAzT4oBgHgl3EQfz_5Y/content/2301.01777v1.pdf filter=lfs diff=lfs merge=lfs -text
7033
+ 99FRT4oBgHgl3EQfrDen/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7034
+ _dE5T4oBgHgl3EQfSA7f/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7035
+ 5NE3T4oBgHgl3EQfpArI/content/2301.04639v1.pdf filter=lfs diff=lfs merge=lfs -text
7036
+ -NAyT4oBgHgl3EQfRPZI/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7037
+ mtE_T4oBgHgl3EQf7Bz-/content/2301.08368v1.pdf filter=lfs diff=lfs merge=lfs -text
7038
+ 3NE0T4oBgHgl3EQfuwHF/content/2301.02610v1.pdf filter=lfs diff=lfs merge=lfs -text
7039
+ adAyT4oBgHgl3EQfv_mu/content/2301.00641v1.pdf filter=lfs diff=lfs merge=lfs -text
7040
+ ZdE5T4oBgHgl3EQfDQ4I/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7041
+ m9E1T4oBgHgl3EQfhQSd/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7042
+ _dE3T4oBgHgl3EQfsApn/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7043
+ v9E0T4oBgHgl3EQfcAAR/content/2301.02355v1.pdf filter=lfs diff=lfs merge=lfs -text
7044
+ _9E2T4oBgHgl3EQfRAZd/content/2301.03776v1.pdf filter=lfs diff=lfs merge=lfs -text
7045
+ ftE1T4oBgHgl3EQfywUm/content/2301.03436v1.pdf filter=lfs diff=lfs merge=lfs -text
7046
+ yNFJT4oBgHgl3EQfhiyb/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7047
+ 0tAzT4oBgHgl3EQftv2j/content/2301.01681v1.pdf filter=lfs diff=lfs merge=lfs -text
7048
+ ldFQT4oBgHgl3EQfnjb2/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7049
+ o9AzT4oBgHgl3EQfOfuK/content/2301.01167v1.pdf filter=lfs diff=lfs merge=lfs -text
7050
+ AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf filter=lfs diff=lfs merge=lfs -text
7051
+ WdE0T4oBgHgl3EQfVwBf/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7052
+ mtE_T4oBgHgl3EQf7Bz-/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7053
+ -9A0T4oBgHgl3EQfPP_v/content/2301.02174v1.pdf filter=lfs diff=lfs merge=lfs -text
7054
+ m9E1T4oBgHgl3EQfhQSd/content/2301.03239v1.pdf filter=lfs diff=lfs merge=lfs -text
7055
+ UdE1T4oBgHgl3EQfawRv/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7056
+ ytAzT4oBgHgl3EQftP2f/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
7057
+ 29E2T4oBgHgl3EQf5whX/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
09FKT4oBgHgl3EQfOS13/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:763af84be237fb2c281f15ff9da746e1eeb9139a5857c5a509c575b258be45f7
3
+ size 159661
0tAzT4oBgHgl3EQftv2j/content/2301.01681v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9fb2f4b97701501c5dcef4adf18c9146ec9696d8ef0497ffdc3e2c243b34505d
3
+ size 1140083
0tAzT4oBgHgl3EQftv2j/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:24c2bac6eb1cef02cafe600755061fb480b880bf57253012ae7e24a4f1c719af
3
+ size 181241
0tE1T4oBgHgl3EQfRgNg/content/tmp_files/2301.03053v1.pdf.txt ADDED
@@ -0,0 +1,907 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Published in Laser & Photonics Reviews. DOI: 10.1002/lpor.202200544 (2022).
2
+
3
+
4
+
5
+ Ultra-Low-Loss Silicon Nitride Photonics Based on
6
+ Deposited Films Compatible with Foundries
7
+
8
+ Xingchen Ji,1,3,* Yoshitomo Okawachi,2 Andres Gil-Molina,1 Mateus Corato-Zanarella,1
9
+ Samantha Roberts,1 Alexander L. Gaeta,2 and Michal Lipson1,*
10
+
11
+ 1Department of Electrical Engineering, Columbia University, New York, NY, 10027, USA
12
+ 2Department of Applied Physics and Applied Mathematics, Columbia University, New York,
13
+ NY, 10027, USA
14
+ 3Currently at John Hopcroft Center for Computer Science, School of Electronic Information and
15
+ Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
16
+ *Corresponding Author: E-mail: xingchenji@sjtu.edu.cn and ml3745@columbia.edu
17
+
18
+ Abstract:
19
+
20
+ The fabrication processes of silicon nitride (Si3N4) photonic devices used in foundries require low
21
+ temperature deposition, which typically leads to high propagation losses. Here, we show that
22
+ propagation loss as low as 0.42 dB/cm can be achieved using foundry compatible processes by
23
+ solely reducing waveguide surface roughness. By post-processing the fabricated devices using
24
+ rapid thermal anneal (RTA) and furnace anneal, we achieve propagation losses down to 0.28
25
+ dB/cm and 0.06 dB/cm, respectively. These low losses are comparable to the conventional devices
26
+ using high temperature, high-stress LPCVD films. We also tune the dispersion of the devices, and
27
+ proved that these devices can be used for linear and nonlinear applications. Low threshold
28
+ parametric oscillation, broadband frequency combs and narrow-linewidth laser are demonstrated.
29
+ Our work demonstrates the feasibility of scalable photonic systems based on foundries.
30
+
31
+
32
+ Published in Laser & Photonics Reviews. DOI: 10.1002/lpor.202200544 (2022).
33
+
34
+
35
+
36
+ 1. Introduction
37
+ To date, ultra-low-loss silicon nitride (Si3N4) waveguides and resonators have been demonstrated
38
+ almost exclusively using films deposited at high temperature, while foundries mostly rely on Si3N4
39
+ films deposited at low temperature. The high temperature deposition uses low-pressure chemical
40
+ vapor deposition (LPCVD), while low temperature deposition uses plasma-enhanced chemical
41
+ vapor deposition (PECVD). PECVD Si3N4 is the most commonly used thin film in foundries as an
42
+ insulator or a chemical barrier layer, however, the high propagation losses in these films limit their
43
+ applications in photonics. LPCVD Si3N4 is not used in foundries due to the high temperature
44
+ required and high film stress. Therefore, reducing losses in PECVD Si3N4 photonic devices is
45
+ critical for integrating photonics devices with electronics, which could be used to realize high
46
+ performance, scalable systems and realize system-level innovation[1].
47
+ Previously, there have been efforts to reduce losses in PECVD Si3N4 films by chemically
48
+ changing the film composition[2–5]. By lowering the ammonium concentration during the
49
+ deposition, losses down to 1.5 dB/cm have been shown[2]. However, these losses remain too high
50
+ for most photonic applications. Researchers have also substituted conventional precursors with
51
+ deuterated ones to reduce the losses of the film, losses down to 0.3 dB/cm have been shown[6].
52
+ However, these methods require special precursors and deposition tools, which are not commonly
53
+ available in foundries.
54
+
55
+ 2. Film deposition and waveguide fabrication
56
+ Here we show that low-loss can be achieved in a standard PECVD process by physically reducing
57
+ waveguide surface roughness. The fabrication process is schematically shown in Figure 1. We
58
+ deposit Si3N4 using PECVD at 350 °C in a single step onto a thermally oxidized 4-inch silicon
59
+
60
+ Published in Laser & Photonics Reviews. DOI: 10.1002/lpor.202200544 (2022).
61
+
62
+
63
+
64
+ wafer. The gases used for deposition are a mixture of silane (SiH4: 20 sccm) diluted by nitrogen
65
+ (N2: 1425 sccm) and pure ammonia (NH3: 30 sccm), with a process pressure of 1900 mTorr. The
66
+ plasma frequencies alternate between a high frequency (13.56 MHz) with a power of 200 W and
67
+ a low frequency (100 kHz) with a power of 160 W. The time duration for the two frequencies is 8
68
+ seconds and 12 seconds, respectively. The above parameters ensure that the deposition of Si3N4
69
+ film has very low film stress and high uniformity. The measured stress for the Si3N4 film on a test
70
+ wafer is 93.4 MPa and tensile, which is more than an order of magnitude lower than LPCVD Si3N4
71
+ films deposited at high temperature. The low stress allows us to deposit thicker films without any
72
+ cracking.
73
+
74
+ Figure 1. Schematic of our low-temperature PECVD Si3N4 fabrication processes.
75
+ The process steps here are fully compatible with CMOS electronics.
76
+
77
+ We design high confinement waveguides based on the deposited PECVD films allows for
78
+ strong dispersion engineering. One can see in Figure 2, the strong mode overlaps with the top
79
+ surface that can exhibit a roughness of several nanometers for PECVD films[7,8].
80
+
81
+ Si,N4
82
+ SiO2
83
+ Si,N4
84
+ SiO2
85
+ SisN4
86
+ SiO2
87
+ SiO2
88
+ SiO2
89
+ Resist
90
+ Resist
91
+ SiO2
92
+ SiO,
93
+ Sio,
94
+ SigN4
95
+ SisN4
96
+ SisN4
97
+ SiO2
98
+ SiO2
99
+ SiO2
100
+ SiO2
101
+ SisN4
102
+ SiO2Published in Laser & Photonics Reviews. DOI: 10.1002/lpor.202200544 (2022).
103
+
104
+
105
+
106
+
107
+ Figure 2. Mode simulation and microscope images of fabricated devices. (a) Mode
108
+ simulation of 730 nm tall and 1500 nm wide waveguide showing that the mode is
109
+ highly confined in the geometry we have chosen. (b) Top view optical microscope
110
+ image of a 115 µm radius ring resonator.
111
+ To reduce scattering from the top surface of PECVD Si3N4, we use chemical mechanical
112
+ planarization (CMP) to smooth the surface, as roughness traditionally leads to a high loss. We
113
+ show the atomic-force microscopy (AFM) scans before and after the polishing step in Figure 3.
114
+ The root-mean-squared (RMS) roughness is decreased from 1.36 nm before polishing to 0.20 nm
115
+ after polishing. In order to reduce the roughness from the sidewalls and protect the polished top
116
+ surface, we use a SiO2 hard mask deposited using PECVD after CMP and use a dry etching process
117
+ with a much higher oxygen flow. This etching process has been proved to substantially reduce the
118
+ polymerization process during etching and decreases the roughness[9]. We pattern our devices with
119
+ electron beam lithography using ma-N 2403 resist and use multipass writing algorithms to further
120
+ reduce sidewall roughness caused by the lithography itself[9,10]. Finally, we clad the devices with
121
+ 2 μm of SiO2 deposited using PECVD for waveguide protection. The fabricated devices consist of
122
+ resonators with a radius of 115 μm, a height of 730 nm and a width of 1500 nm, which are coupled
123
+ to a waveguide of the same width and height. These dimensions ensure high confinement.
124
+
125
+ 730nm
126
+ 1500 nm
127
+ 100μmPublished in Laser & Photonics Reviews. DOI: 10.1002/lpor.202200544 (2022).
128
+
129
+
130
+
131
+
132
+
133
+ Figure 3. AFM measurement of the top surface of PECVD Si3N4. (a) 3D AFM scan
134
+ of the top surface before CMP with RMS roughness of 1.36 nm and a correlation
135
+ length of 27.6 nm. (b) 2D image of Si3N4 top surface before CMP and scaled to -
136
+ 5.0 – 5.0 nm with RMS roughness of 1.36 nm. (c) 3D image of Si3N4 top surface
137
+ after CMP with RMS roughness of 0.20 nm and a correlation length of 2.96 nm. (d)
138
+ 2D image of Si3N4 top surface after CMP and scaled to -1.0 – 1.0 nm with RMS
139
+ roughness of 0.20 nm. Note the different scale bars on (a) and (c).
140
+
141
+ 3. Fundamental loss extraction and discussion
142
+ The quality factor is a measure of the sharpness of the resonance relative to its central frequency.
143
+ It represents how well the resonator can store energy and can be written as[11,12]:
144
+
145
+ (1)
146
+ The quality factor defined in Equation 1 is the loaded quality factor. The intrinsic quality factor
147
+ of the cavity which is directly related to the propagation losses can be written as[13,14]:
148
+
149
+ (2)
150
+ 0
151
+ L
152
+ Q
153
+ w
154
+ w
155
+ = D
156
+ min
157
+ 2
158
+ 1
159
+ L
160
+ i
161
+ Q
162
+ Q
163
+ T
164
+ =
165
+ ±
166
+
167
+ 5.0
168
+ 5.0 nm
169
+ 300 nm
170
+ 300 nm
171
+ 100 nm
172
+ 100 nm
173
+ 100 nm
174
+ -5.0
175
+ 5
176
+ .0 nm
177
+ 300 nm
178
+ 300 nm
179
+ 100 nm
180
+ 100 nm
181
+ -1.0
182
+ 100 nmPublished in Laser & Photonics Reviews. DOI: 10.1002/lpor.202200544 (2022).
183
+
184
+
185
+
186
+ Tmin is the on-resonance normalized transmission minimum,
187
+ sign is corresponding to
188
+ undercoupled and overcoupled condition. The schematic of the experimental setup for quality
189
+ factor measurement and frequency comb generation is shown in Figure 4. The resonators we
190
+ fabricated and measured here have a height of 730 nm, a width of 1500 nm and a bending radius
191
+ of 115 µm. We measure an intrinsic quality factor of 724,000, corresponding to a propagation loss
192
+ of 0.42 dB/cm. In Figure 5(a), we show the measured resonance and normalized transmission
193
+ spectrum over a broad wavelength range. To the best of our knowledge, this is the lowest
194
+ propagation loss reported to date in a standard PECVD film compatible with foundries.
195
+
196
+ Figure 4. Schematic of the experimental setup for measuring transmission spectra
197
+ and resonator linewidth to characterize the quality factor and generate frequency
198
+ combs. FPC: fiber polarization controller; PD: photodetector; and OSA: optical
199
+ spectrum analyzer. Note that amplifier is not needed for transmission measurement.
200
+
201
+ To minimize both surface scattering losses, as well as bulk loss, we post-process the films with
202
+ a rapid thermal anneal (RTA). With RTA, we achieve an even higher intrinsic quality factor of
203
+ more than 1 million, corresponding to a propagation loss of 0.28 dB/cm. RTA has been
204
+ successfully applied in the microelectronics industry and it has particular relevance for CMOS
205
+ technology, specifically in steps such as implant annealing, oxidation, and source and drain contact
206
+ junctions[15,16]. The process reduces loss by driving out the non-bonded atomic and molecular
207
+ hydrogen trapped in microvoids of the structure and further densifies the films[17,18]. We apply
208
+ RTA at 800 °C for 5 mins to the cladded devices. In Figure 5(b), we show the measured resonance
209
+ ±
210
+
211
+ 000
212
+ Laser
213
+ Amplifier
214
+ ChipPublished in Laser & Photonics Reviews. DOI: 10.1002/lpor.202200544 (2022).
215
+
216
+
217
+
218
+ and normalized transmission spectrum over a broad wavelength range. The thermal budget is
219
+ below the tolerance of most CMOS electronics and can be used to further reduce losses for devices
220
+ with microheaters or dopants.
221
+ We show that by post-processing foundry-compatible devices with furnace anneal (appropriate
222
+ for devices with high thermal budget), the propagation loss can be comparable to those fabricated
223
+ using high temperature, high-stress LPCVD films. Furnace anneal differs from RTA, with higher
224
+ temperatures (above 1000 °C [19–24]) and longer anneal times (several hours). We anneal cladded
225
+ devices at 1150 °C in a nitrogen atmosphere for 3 hours and no defects or cracks were observed.
226
+ We achieve a quality factor of 4.7 million, which corresponds to a propagation loss of 0.06 dB/cm.
227
+ In Figure 5(c), we show the measured resonance and normalized transmission spectrum over a
228
+ broad wavelength range.
229
+
230
+ Published in Laser & Photonics Reviews. DOI: 10.1002/lpor.202200544 (2022).
231
+
232
+
233
+
234
+
235
+ Figure 5. (a) Device without annealing shows a measured full width half maximum
236
+ (FWHM) of 595 MHz around 1600 nm and measured normalized transmission
237
+ spectrum over a broad wavelength range. (b) Device after rapid thermal anneal
238
+ shows a measured full width half maximum (FWHM) of 423 MHz around 1600 nm
239
+ and measured normalized transmission spectrum over a broad wavelength range.
240
+ (c) Device after furnace anneal shows a measured full width half maximum
241
+ (FWHM) of 52 MHz around 1600 nm and measured normalized transmission
242
+ spectrum over a broad wavelength range.
243
+
244
+ We show that for as-fabricated devices, the bulk losses dominate over the surface scattering
245
+ loss, and can be as low as 0.33 dB/cm, while for post-fabrication annealed devices, the bulk losses
246
+
247
+ No anneal
248
+ (a)
249
+ 1.0
250
+ 0.8
251
+ 0.8
252
+ 0.6
253
+ ed
254
+ Normalized
255
+ 0.4
256
+ 595 MHz
257
+ 0.2
258
+ Qi = 0.72 million
259
+ 0.2
260
+ ION
261
+ 0.0
262
+ 1320 1530 1540 1550 1560 1570 1580 1590 1600 1610 1620
263
+ -2000
264
+ -1000
265
+ 0
266
+ 1000
267
+ 2000
268
+ Wavelength (nm)
269
+ Frequency (MHz)
270
+ (b)
271
+ Rapidthermalanneal
272
+ 1.0
273
+ 0.8
274
+ 0.6
275
+ Normalized
276
+ 0.4
277
+ 423 MHz
278
+ 0.2
279
+ Qi = 1.1 million
280
+ 0.2
281
+ 0.0
282
+ -2000
283
+ -1000
284
+ 0
285
+ 1000
286
+ 2000
287
+ Wavelength (nm)
288
+ △Frequency (MHz)
289
+ (c)
290
+ Furnace anneal
291
+ 1.0
292
+ 0.8
293
+ 0.8
294
+ 0.6
295
+ 52 MHz
296
+ ed
297
+ 0.4
298
+ Qi= 4.7million
299
+ 0.2
300
+ Nor
301
+ 0.0
302
+ 1320 1530 1540 1550 1560 1570 1580 1590 1600 1610 1620
303
+ -400
304
+ -200
305
+ 0
306
+ 200
307
+ 400
308
+ Wavelength (nm)
309
+ △Frequency(MHz)Published in Laser & Photonics Reviews. DOI: 10.1002/lpor.202200544 (2022).
310
+
311
+
312
+
313
+ are comparable to the surface scattering loss, and can be as low as 0.04 dB/cm. We extract the loss
314
+ contributions by comparing the losses between two different structures with different mode
315
+ overlap with the interfaces.
316
+ ,
317
+ ,
318
+ are the overlap of the optical field with the waveguide core,
319
+ the top and bottom surfaces, and sidewalls respectively for the two different waveguide widths[25].
320
+ These parameters are calculated using FEM simulations (performed with COMSOL). We also use
321
+ the Payne-Lacey model[26] to relate scattering loss to the surface’s RMS roughness (σ) and the
322
+ correlation length (Lc), both extracted from the AFM measurements. The method used here to
323
+ extract the loss contributions is similar to the one used in ref[9]. We find that for complete overlap
324
+ of the mode with the interfaces, the scattering losses are
325
+ ~ 0.0002 dB/cm and
326
+ ~ 0.0024 dB/cm at the SiO2/Si3N4 top interface and Si3N4/SiO2 bottom interface, respectively. The
327
+ estimated surface scattering and bulk loss contributions for different thermal treatments (shown in
328
+ Table 1) are extracted from Equation 3 and Equation 4 below:
329
+
330
+ (3)
331
+ (4)
332
+ We find that both bulk loss and surface scattering losses are reduced after RTA and furnace
333
+ anneal, which indicates that the chemical and physical properties of the films are improved by
334
+ thermal treatment. From Table 1 and Equation 3, if the surface scattering loss were eliminated,
335
+ one could reduce the propagation loss down to 0.33 dB/cm. By post-processing with RTA at 800
336
+ °C, one could reduce the propagation loss to 0.23 dB/cm. The propagation loss can be further
337
+ reduced if RTA were performed at a higher temperature to break down bonded hydrogen. By post-
338
+ processing with furnace anneal, one could reduce the propagation loss in these devices to 0.04
339
+ dB/cm if the surface scattering loss were eliminated.
340
+ 1
341
+ h
342
+ 2
343
+ h
344
+ 3
345
+ h
346
+ _
347
+ top scatter
348
+ a
349
+ _
350
+ bottom scatter
351
+ a
352
+ 1
353
+ _
354
+ _
355
+ _
356
+ _
357
+ ring
358
+ bulk
359
+ loss
360
+ top
361
+ scatter
362
+ bottom
363
+ scatter
364
+ sidewalls
365
+ scatter
366
+ a
367
+ a
368
+ a
369
+ a
370
+ a
371
+ =
372
+ +
373
+ +
374
+ +
375
+ 2
376
+ 1
377
+ _
378
+ 2
379
+ _
380
+ _
381
+ 3
382
+ _
383
+ ring
384
+ bulk
385
+ loss
386
+ top
387
+ scatter
388
+ bottom
389
+ scatter
390
+ sidewalls
391
+ scatter
392
+ a
393
+ h a
394
+ h
395
+ a
396
+ a
397
+ h a
398
+ =
399
+ +
400
+ +
401
+ +
402
+
403
+
404
+
405
+ Published in Laser & Photonics Reviews. DOI: 10.1002/lpor.202200544 (2022).
406
+
407
+
408
+
409
+ Table 1. The extracted surface scattering and bulk loss contribution in PECVD film.
410
+
411
+ Bulk Loss
412
+ Surface Scattering Loss Total Loss
413
+ No Anneal
414
+ 0.33 dB/cm
415
+ 0.09 dB/cm
416
+ 0.42 dB/cm
417
+ Rapid Thermal Anneal 0.23 dB/cm
418
+ 0.05 dB/cm
419
+ 0.28 dB/cm
420
+ Furnace Anneal
421
+ 0.04 dB/cm
422
+ 0.02 dB/cm
423
+ 0.06 dB/cm
424
+
425
+ The structure fabricated without any post-fabrication thermal treatment exhibits a high
426
+ confinement of 87% and a low propagation loss of 0.42 dB/cm. High confinement is necessary for
427
+ tailoring the waveguide dispersion to achieve phase matching in nonlinear processes as well as for
428
+ tighter bends, thus allowing small footprints required in large-scale photonic systems. We compare
429
+ the confinement factor and propagation loss achieved in this work with other state-of-the-art works
430
+ realized in foundry compatible PECVD platform without any thermal treatment in Figure 6[2,3,5,27–
431
+ 30].
432
+
433
+ Figure 6. Loss and confinement achieved in this work compared with other state-
434
+ of-the-art works based on PECVD platform. All points including this work are for
435
+ devices fabricated without any thermal treatment[2,3,5,27–30].
436
+
437
+ 10
438
+ (This work)
439
+ 1/Loss (cm)
440
+ 5
441
+ Y. Huang, et al (2014)
442
+ +N. Sherwood-Droz, et al (2011)
443
+ C. Lacava et al, (2017)
444
+ E. A. Douglas et al, (2016)
445
+ s. Mao et al, (2008)
446
+ L.Wang, et al (2018)
447
+ +K. Ikeda, et al (2008)
448
+ 0
449
+ 40
450
+ 50
451
+ 60
452
+ 70
453
+ 80
454
+ 90
455
+ 100
456
+ Confinement Factor (%)Published in Laser & Photonics Reviews. DOI: 10.1002/lpor.202200544 (2022).
457
+
458
+
459
+
460
+ 4. Dispersion engineering
461
+ We show the dispersion of the devices can be tuned by post-processing with furnace anneal. In
462
+ order to engineer the dispersion, we derive the Sellmeier equations for PECVD Si3N4 films from
463
+ ellipsometry performed over 200–1690 nm and 1.7–34 μm wavelength ranges using J.A. Woollam
464
+ M-2000 and IR-VASE instruments. We show the measured spectra from 200-1750 nm before and
465
+ after annealing in Figure 7(a) and Figure 7(b). We fit the spectra over the wavelength range 300–
466
+ 2000 nm to obtain the following Sellmeier equations for Si3N4 before and after furnace anneal.
467
+
468
+
469
+
470
+
471
+ 𝜆 is in units of nanometer. We show the simulated dispersions based on the Sellmeier equations
472
+ for silicon nitride resonators with a cross section of 730 nm x 1500 nm and a bending radius of
473
+ 115 µm before and after annealing in Figure 7(c). The dashed line separates the anomalous group-
474
+ velocity dispersion (GVD) regime and the normal GVD regime. One can see that the device with
475
+ the same cross section of 730 nm x 1500 nm exhibits normal GVD before anneal and anomalous
476
+ GVD after anneal.
477
+ 3
478
+ 4
479
+ 2
480
+ 9
481
+ 2
482
+ 2
483
+ 2
484
+ 2
485
+ 2
486
+ 8
487
+ 2
488
+ 2.61
489
+ 1.11 10
490
+ (
491
+ _
492
+ )
493
+ 1
494
+ 139.77
495
+ 2.51 10
496
+ Si N
497
+ n
498
+ before
499
+ anneal
500
+ l
501
+ l
502
+ l
503
+ l
504
+ ´
505
+ = +
506
+ +
507
+ -
508
+ -
509
+ ´
510
+
511
+
512
+ 3
513
+ 4
514
+ 2
515
+ 9
516
+ 2
517
+ 2
518
+ 2
519
+ 2
520
+ 2
521
+ 8
522
+ 2
523
+ 2.97
524
+ 1.57 10
525
+ (
526
+ _
527
+ )
528
+ 1
529
+ -144.86
530
+ - 3.80 10
531
+ Si N
532
+ n
533
+ after
534
+ anneal
535
+ l
536
+ l
537
+ l
538
+ l
539
+ ´
540
+ = +
541
+ +
542
+ ´
543
+
544
+
545
+
546
+ Published in Laser & Photonics Reviews. DOI: 10.1002/lpor.202200544 (2022).
547
+
548
+
549
+
550
+
551
+
552
+ Figure 7. (a) Refractive index n and extinction coefficient k for the wavelength
553
+ range 200–1750 nm before annealing. (b) Refractive index n and extinction
554
+ coefficient k for the wavelength range 200-1750 nm after annealing. (c) Dispersion
555
+ simulations for fundamental TE mode of a silicon nitride ring resonator with a cross
556
+ section of 730 nm ´ 1500 nm and a bending radius of 115 µm before and after
557
+ annealing. The dashed line separates the anomalous group-velocity dispersion
558
+ regime and the normal group-velocity dispersion regime.
559
+
560
+
561
+ Before annealing
562
+ After annealing
563
+
564
+ (a)
565
+ 2.5
566
+ 0.4
567
+ Extinction (
568
+ n
569
+ 2.4
570
+ Refraction,
571
+ 0.3
572
+ 2.3
573
+ n
574
+ 2.2
575
+ Coefficient k
576
+ 0.2
577
+ 2.1
578
+ of
579
+ 2
580
+ 0.1
581
+ 1.8
582
+ 0
583
+ 0
584
+ 250
585
+ 500
586
+ 750
587
+ 1000
588
+ 1250
589
+ 1500
590
+ 1750
591
+ Wavelength (nm)
592
+ (b)
593
+ 2.5
594
+ 0.2
595
+ n
596
+ 2.4
597
+ n
598
+ 0.15
599
+ 2.3
600
+ Refrac
601
+ -k
602
+ 2.2
603
+ 0.1
604
+ Coefficie
605
+ R
606
+ xepul
607
+ 2.1
608
+ 0.05
609
+ ient k
610
+ 2
611
+ 1.9
612
+ 0
613
+ 0
614
+ 250
615
+ 500
616
+ 750
617
+ 1000
618
+ 1250
619
+ 1500
620
+ 1750
621
+ Wavelength (nm)
622
+ (c)
623
+ 100
624
+ Before annealing
625
+ (wy/wu/sd)
626
+ -After annealing
627
+ 50
628
+ ispersion (
629
+ -50
630
+ -100
631
+ D
632
+ -150
633
+ 200
634
+ 1000
635
+ 1200
636
+ 1400
637
+ 1600
638
+ 1800
639
+ 2000
640
+ Wavelength (nm)Published in Laser & Photonics Reviews. DOI: 10.1002/lpor.202200544 (2022).
641
+
642
+
643
+
644
+ 5. Linear and nonlinear applications
645
+ We demonstrate low threshold parametric oscillation and frequency combs generation using
646
+ foundry compatible devices post-processed with furnace anneal leveraging our ability to engineer
647
+ the dispersion. We show the evolution of the comb generation process and observe transitions into
648
+ various comb states in Figure 8 using a pump wavelength of 1550 nm. As the power in the
649
+ resonator builds, we see the primary sidebands form at the parametric gain peak due to degenerate
650
+ four-wave mixing as shown in Figure 8(a). We show the transition into the mini-combs in Figure
651
+ 8(b) and eventually the broadband frequency combs with an on-chip pump power of 202 mW in
652
+ Figure 8(c). The parametric oscillation threshold is measured as low as 3 mW, which is close to
653
+ the theoretical limit of 2.7 mW.
654
+
655
+ Published in Laser & Photonics Reviews. DOI: 10.1002/lpor.202200544 (2022).
656
+
657
+
658
+
659
+
660
+ Figure 8. Evolution of the frequency comb generation process. (a) Primary
661
+ sidebands form at the parametric gain peak due to degenerate four-wave mixing.
662
+ (b) The mini-comb formation. (c) Broadband Kerr frequency comb with an on-chip
663
+ pump power of 202 mW.
664
+
665
+ We demonstrate that modal-collapse of a multimode Fabry-Perot laser diode (FPL) can be
666
+ realized by using the same device. Therefore, we obtain a single-wavelength emission laser thanks
667
+ to the increased robustness to coupling loss of a FPL[31] and strong feedback of the high quality
668
+ factor resonator. The system is composed of a commercial single transverse-mode FPL (Thorlabs
669
+ FPL1001C) and the high quality resonator as shown in Figure 9.
670
+
671
+ (a)
672
+ 10
673
+ 0
674
+ 10
675
+ Power (dBm)
676
+ 20
677
+ -30
678
+ 40
679
+ 50
680
+ -60
681
+ -70
682
+ 1450
683
+ 1500
684
+ 1550
685
+ 1600
686
+ 1650
687
+ 1700
688
+ (b)
689
+ Wavelength (nm)
690
+ 10
691
+ 0
692
+ 10
693
+ (dBm)
694
+ 20
695
+ 30
696
+ -40
697
+ -50
698
+ 60
699
+ -70
700
+ 1450
701
+ 1500
702
+ 1550
703
+ 1600
704
+ 1650
705
+ 1700
706
+ (c)
707
+ Wavelength (nm)
708
+ 10
709
+ 0
710
+ -10
711
+ Power (dBm)
712
+ -20
713
+ -30
714
+ 40
715
+ 50
716
+ 60
717
+ -70
718
+ 1450
719
+ 1500
720
+ 1550
721
+ 1600
722
+ 1650
723
+ 1700
724
+ Wavelength (nm)Published in Laser & Photonics Reviews. DOI: 10.1002/lpor.202200544 (2022).
725
+
726
+
727
+
728
+
729
+ Figure 9. Schematic of the experimental setup for lasing measurement. A
730
+ commercial single transverse-mode Fabry-Perot Laser Diode (Thorlabs
731
+ FPL1001C) is coupled to the high quality factor resonator. The spectrum of the
732
+ laser is measured with an optical spectrum analyzer (OSA).
733
+
734
+ A feedback signal from the high quality factor resonator leads to self-injection locking of the
735
+ FPL laser resulting in a locked laser with single longitudinal-mode emission and narrow-linewidth.
736
+ The spectrum of the unlocked free-running laser and the locked laser are shown in Figure 10. The
737
+ side-mode suppression ratio (SMSR) is at least 29 dB and the linewidth is measured below
738
+ resolution limit of the optical spectrum analyzer. We have calculated the intrinsic linewidth to be
739
+ in the range of 1 - 10 kHz. For this calculation we have considered the Schawlow–Townes
740
+ linewidth of the free-running laser and the linewidth reduction due to self-injection locking
741
+ following a similar procedure as explained in Ref [31]. The coupling structure for our device here
742
+ is inverse taper and it could be optimized for coupling to FPL, so better SMSRs and even narrower
743
+ linewidths can be achieved with improved coupling.
744
+
745
+ Figure 10. (a) Optical spectra of the unlocked free-running laser. (b) Optical
746
+ spectra of the locked narrow-linewidth laser to the ring resonator. Side-mode
747
+ suppression ratio (SMSR) is at least 29 dB.
748
+
749
+ Chip
750
+ Fabry-Perot Laser Diode(a)
751
+ Free Running
752
+ Locked
753
+ Power (10 dB/div.)
754
+ Power (10 dB/div.)
755
+ 29 dB
756
+ 1520
757
+ 1524
758
+ 1528
759
+ 1532
760
+ 1536
761
+ 1540
762
+ 1520
763
+ 1524
764
+ 1528
765
+ 1532
766
+ 1536
767
+ 1540
768
+ Wavelength (nm)
769
+ Wavelength (nm)Published in Laser & Photonics Reviews. DOI: 10.1002/lpor.202200544 (2022).
770
+
771
+
772
+
773
+ 6. Conclusion and Discussion
774
+ Our work demonstrates the feasibility of obtaining ultra-low loss devices directly from foundries.
775
+ We show that these foundry compatible devices with or without a simple post-processing step can
776
+ be used for linear and nonlinear applications where ultra-low loss and dispersion are required. Low
777
+ threshold parametric oscillation, broadband frequency combs and narrow-linewidth laser are
778
+ demonstrated. The fundamental limit of loss in our devices is extracted and proved to be
779
+ comparable with the loss achieved in LPCVD films. Our work provides a promising path for
780
+ scalable photonic systems based on foundries.
781
+ Recently, reactive sputtering silicon nitride films annealed at 400℃ in ambient atmosphere
782
+ have been shown to achieve propagation losses down to 0.54 dB/cm[32]. Optical frequency
783
+ combs[32] and hybrid integration with lithium niobate on insulator platforms[33,34] have been
784
+ successfully demonstrated, which makes the reactive sputtering another promising method for
785
+ producing low-loss silicon nitride films. Since the losses in reactive sputtering devices are
786
+ currently limited by scattering from the sidewall roughness rather than H-bond absorption losses[35],
787
+ these devices could further benefit from the processes and techniques we developed here.
788
+
789
+ Acknowledgements
790
+ The authors would like to acknowledge Ron Synowicki from J.A. Woollam Co., the leading
791
+ manufacturer of spectroscopic ellipsometers for optical properties measurements. Research
792
+ reported in this work was performed in part at the Cornell NanoScale Science & Technology
793
+ Facility (CNF), a member of the National Nanotechnology Coordinated Infrastructure (NNCI)
794
+ supported by National Science Foundation (Grant NNCI-2025233). The authors acknowledge
795
+ support from the PIPES program funded by DARPA (HR0011-19-2-0014), the PINE program
796
+ funded by the ARPA-E (DE-AR0000843), and the AFOSR STTR program (FA9550-20-1-0297).
797
+
798
+
799
+ Published in Laser & Photonics Reviews. DOI: 10.1002/lpor.202200544 (2022).
800
+
801
+
802
+
803
+ References
804
+ [1]
805
+ A. H. Atabaki, S. Moazeni, F. Pavanello, H. Gevorgyan, J. Notaros, L. Alloatti, M. T.
806
+ Wade, C. Sun, S. A. Kruger, H. Meng, K. Al Qubaisi, I. Wang, B. Zhang, A. Khilo, C. V.
807
+ Baiocco, M. A. Popović, V. M. Stojanović, R. J. Ram, Nature 2018, 556, 349.
808
+ [2]
809
+ E. A. Douglas, P. Mahony, A. Starbuck, A. Pomerene, D. C. Trotter, C. T. DeRose,
810
+ Optical Materials Express 2016, 6, 2892.
811
+ [3]
812
+ S. C. Mao, S. H. Tao, Y. L. Xu, X. W. Sun, M. B. Yu, G. Q. Lo, D. L. Kwong, Optics
813
+ Express 2008, 16, 20809.
814
+ [4]
815
+ T. Domínguez Bucio, A. Z. Khokhar, C. Lacava, S. Stankovic, G. Z. Mashanovich, P.
816
+ Petropoulos, F. Y. Gardes, Journal of Physics D: Applied Physics 2017, 50, 025106.
817
+ [5]
818
+ C. Lacava, S. Stankovic, A. Z. Khokhar, T. D. Bucio, F. Y. Gardes, G. T. Reed, D. J.
819
+ Richardson, P. Petropoulos, Scientific Reports 2017, 7, DOI 10.1038/s41598-017-00062-6.
820
+ [6]
821
+ J. Chiles, N. Nader, D. D. Hickstein, S. P. Yu, T. C. Briles, D. Carlson, H. Jung, J. M.
822
+ Shainline, S. Diddams, S. B. Papp, S. W. Nam, R. P. Mirin, Optics Letters 2018, 43, 1527.
823
+ [7]
824
+ G.-R. Yang, Y.-P. Zhao, Y. Z. Hu, T. Paul Chow, R. J. Gutmann, Thin Solid Films 1998,
825
+ 333, 219.
826
+ [8]
827
+ H. Huang, K. J. Winchester, A. Suvorova, B. R. Lawn, Y. Liu, X. Z. Hu, J. M. Dell, L.
828
+ Faraone, Materials Science and Engineering: A 2006, 435–436, 453.
829
+ [9]
830
+ X. Ji, F. A. S. Barbosa, S. P. Roberts, A. Dutt, J. Cardenas, Y. Okawachi, A. Bryant, A.
831
+ L. Gaeta, M. Lipson, Optica 2017, 4, 619.
832
+ [10]
833
+ R. J. Bojko, J. Li, L. He, T. Baehr-Jones, M. Hochberg, Y. Aida, Journal of Vacuum
834
+ Science & Technology B: Microelectronics and Nanometer Structures 2011, 29, 06F309.
835
+ [11]
836
+ B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, J.- Laine, Journal of Lightwave Technology
837
+ 1997, 15, 998.
838
+ [12]
839
+ W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. D. Vos, S. K. Selvaraja, T. Claes, P.
840
+ Dumon, P. Bienstman, D. V. Thourhout, R. Baets, Laser & Photonics Reviews 2012, 6, 47.
841
+ [13]
842
+ A. Yariv, Electronics Letters 2000, 36, 321.
843
+ [14]
844
+ A. Yariv, IEEE Photonics Technology Letters 2002, 14, 483.
845
+ [15]
846
+ M. J. Hart, A. G. R. Evans, Semiconductor Science and Technology 1988, 3, 421.
847
+ [16]
848
+ V. Trivedi, S. J. Pearton, Solid-State Electronics 2002, 46, 777.
849
+ [17]
850
+ F. L. Martínez, A. del Prado, I. Mártil, G. González-Diaz, W. Bohne, W. Fuhs, J.
851
+ Röhrich, B. Selle, I. Sieber, Phys. Rev. B 2001, 63, 245320.
852
+ [18]
853
+ R. Bousbih, W. Dimassi, I. Haddadi, H. Ezzaouia, Phys. Status Solidi C 2012, 9, 2189.
854
+ [19]
855
+ M. J. Shaw, J. Guo, G. A. Vawter, S. Habermehl, C. T. Sullivan, in Proc.SPIE (Eds.: E.
856
+ G. Johnson, G. P. Nordin, T. J. Suleski), Proc.SPIE, San Jose, CA, 2005.
857
+ [20]
858
+ Y. Xuan, Y. Liu, L. T. Varghese, A. J. Metcalf, X. Xue, P.-H. Wang, K. Han, J. A.
859
+ Jaramillo-Villegas, A. Al Noman, C. Wang, S. Kim, M. Teng, Y. J. Lee, B. Niu, L. Fan, J.
860
+ Wang, D. E. Leaird, A. M. Weiner, M. Qi, Optica 2016, 3, 1171.
861
+ [21]
862
+ K. Luke, Y. Okawachi, M. R. E. Lamont, A. L. Gaeta, M. Lipson, Optics Letters 2015,
863
+ 40, 4823.
864
+ [22]
865
+ M. H. P. Pfeiffer, J. Liu, A. S. Raja, T. Morais, B. Ghadiani, T. J. Kippenberg, Optica,
866
+ OPTICA 2018, 5, 884.
867
+ [23]
868
+ X. Ji, X. Yao, A. Klenner, Y. Gan, A. L. Gaeta, C. P. Hendon, M. Lipson, Opt. Express,
869
+ OE 2019, 27, 19896.
870
+ [24]
871
+ T. Gu, M. Yu, D.-L. Kwong, C. W. Wong, Optics Express 2014, 22, 18412.
872
+
873
+ Published in Laser & Photonics Reviews. DOI: 10.1002/lpor.202200544 (2022).
874
+
875
+
876
+
877
+ [25]
878
+ T. Barwicz, H. A. Haus, Journal of Lightwave Technology 2005, 23, 2719.
879
+ [26]
880
+ F. P. Payne, J. P. R. Lacey, Optical and Quantum Electronics 1994, 26, 977.
881
+ [27]
882
+ K. Ikeda, R. E. Saperstein, N. Alic, Y. Fainman, Optics Express 2008, 16, 12987.
883
+ [28]
884
+ N. Sherwood-Droz, M. Lipson, Opt. Express, OE 2011, 19, 17758.
885
+ [29]
886
+ Y. Huang, J. Song, X. Luo, T.-Y. Liow, G.-Q. Lo, Opt. Express, OE 2014, 22, 21859.
887
+ [30]
888
+ L. Wang, W. Xie, D. V. Thourhout, Y. Zhang, H. Yu, S. Wang, Opt. Express, OE 2018,
889
+ 26, 9645.
890
+ [31]
891
+ A. Gil-Molina, O. Westreich, Y. Antman, X. Ji, A. L. Gaeta, M. Lipson, in 2020
892
+ Conference on Lasers and Electro-Optics (CLEO), 2020, pp. 1–2.
893
+ [32]
894
+ A. Frigg, A. Boes, G. Ren, T. G. Nguyen, D.-Y. Choi, S. Gees, D. Moss, A. Mitchell,
895
+ APL Photonics 2020, 5, 011302.
896
+ [33]
897
+ X. Han, Y. Jiang, A. Frigg, H. Xiao, P. Zhang, T. G. Nguyen, A. Boes, J. Yang, G. Ren,
898
+ Y. Su, A. Mitchell, Y. Tian, Laser & Photonics Reviews 2022, 16, 2100529.
899
+ [34]
900
+ Y. Jiang, X. Han, H. Huang, P. Zhang, A. Dubey, H. Xiao, M. Yuan, A. Frigg, T. G.
901
+ Nguyen, A. Boes, Y. Li, G. Ren, Y. Su, A. Mitchell, Y. Tian, Advanced Photonics Research
902
+ 2022, 3, 2200121.
903
+ [35]
904
+ A. Frigg, A. Boes, G. Ren, I. Abdo, D.-Y. Choi, S. Gees, A. Mitchell, Opt. Express 2019,
905
+ 27, 37795.
906
+
907
+
0tE1T4oBgHgl3EQfRgNg/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
1dE4T4oBgHgl3EQfaAyc/content/tmp_files/2301.05061v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
1dE4T4oBgHgl3EQfaAyc/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
29E2T4oBgHgl3EQf5whX/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f0d83e7ac3c1bd814d5b7a19ced433f9658756c2c3ea746fc2fb76a766d78cd2
3
+ size 2687021
29FKT4oBgHgl3EQfQS0h/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f13b1e9cb4b460b99016d32539513a9f69a06c73c0f4b170fb4460361b37c7e1
3
+ size 174230
3NE0T4oBgHgl3EQfuwHF/content/2301.02610v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:92095e1c0a5a1ac7e437758d10a9bd41cb41d723f4c90f5e19ad4dc39ed9b17a
3
+ size 2569113
3NE0T4oBgHgl3EQfuwHF/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bf3dd22c95ca7204bd114aa33280bb567f1d4ff47a1708dcee36af79b69b6b78
3
+ size 98864
5NE3T4oBgHgl3EQfpArI/content/2301.04639v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6bab64ad55183aa22362d2abe972b2a76e680990a9b4c515c893e4817e658df9
3
+ size 13242742
5NE3T4oBgHgl3EQfpArI/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a2618265a603e9a623fd0195b01dde7a80b65b767d7ccf730f3946b0de0b0434
3
+ size 327725
5tAzT4oBgHgl3EQfu_3x/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9f49219c95d33303b6711c69b5f09376ad86d2ae3cd39ceadbc4e150a23b43d4
3
+ size 160195
99E5T4oBgHgl3EQfRQ7z/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:16eaf2724ccc6d8390e7f6362df7e6941c3491c1d8865bf304c8465a0060b2ae
3
+ size 6619181
99FRT4oBgHgl3EQfrDen/content/2301.13619v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cd3686790226c791ecd8522ece05fb43fce7d12bd3dee9c06b6722e7e126dda7
3
+ size 3420653
99FRT4oBgHgl3EQfrDen/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:227f56299b32548486afd0f4b25aff192710f775aab62cde7dccad9f2b11d64e
3
+ size 3145773
99FRT4oBgHgl3EQfrDen/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:729ce192715e4009059206c6506199a52b0a2cc5d71b05b633f8be5b54ab7515
3
+ size 106111
9dE5T4oBgHgl3EQfRA7S/content/2301.05518v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9432006b2301647f64f3d1d3f19a8137bee9275e8000cfc0f81b6ed732f7889c
3
+ size 938545
9dE5T4oBgHgl3EQfRA7S/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6fddb25002811fcafd51842d24a2b16c80453ff5270ad46e5eb946ccb606d2cc
3
+ size 1507373
9dE5T4oBgHgl3EQfRA7S/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2ae680c8ff6bfe3b1d5ac6b0e24b16fdc5ef74081cfb6f2f278b2a2aae494e2b
3
+ size 58609
AtE4T4oBgHgl3EQfEwyK/content/2301.04880v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:797d71bac12faa7004f40e23443dd19615a9016ad1cd52c33a94f52219a34cb8
3
+ size 184302
AtE4T4oBgHgl3EQfEwyK/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4a6c7c09e54698b60ed501f80f973ff1b32f70496e7abe39e97df5135e507a45
3
+ size 66317
BdE1T4oBgHgl3EQfDgNt/content/tmp_files/2301.02878v1.pdf.txt ADDED
@@ -0,0 +1,538 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.02878v1 [cs.IT] 7 Jan 2023
2
+ Abstract Huffman Coding and
3
+ PIFO Tree Embeddings
4
+ Keri D’Angelo∗
5
+ Dexter Kozen†
6
+ Cornell University
7
+ Computer Science Department
8
+ Ithaca, New York 14853-7501, USA
9
+ ∗kd349@cornell.edu
10
+ †kozen@cs.cornell.edu
11
+ January 10, 2023
12
+ Abstract
13
+ Algorithms for deriving Huffman codes and the recently developed algorithm for
14
+ compiling PIFO trees to trees of fixed shape [1] are similar, but work with different
15
+ underlying algebraic operations. In this paper, we exploit the monadic structure of
16
+ prefix codes to create a generalized Huffman algorithm that has these two applications
17
+ as special cases.
18
+ 1
19
+ Introduction
20
+ Huffman codes translate letters from a fixed alphabet to d-ary codewords, achieving optimal
21
+ compression for a given frequency distribution of letters. There is a well-known greedy
22
+ algorithm for producing Huffman codes from a given distribution (see [2]).
23
+ A new data structure called a PIFO tree (priority-in first-out) has recently been pro-
24
+ posed for implementing a wide range of packet scheduling algorithms in programmable
25
+ network routers [3, 4]. A PIFO tree is a tree of priority queues. Currently, most routers
26
+ support just a few scheduling algorithms such as strict priority or weighted fair queueing,
27
+ which are baked into the hardware. The schedulers can be configured to some extent, but
28
+ it is generally not possible to implement more sophisticated scheduling algorithms that
29
+ require reordering of already queued packets. This is exactly what PIFO trees permit. It
30
+ seems likely that PIFOs will be supported on network devices in the near future.
31
+ Some researchers have already begun to explore how the PIFO abstraction can be em-
32
+ ulated on conventional routers [4]. In very recent work [1], it was shown how to translate
33
+ an algorithm designed for a PIFO tree of arbitrary shape to one that uses a PIFO tree of
34
+ fixed shape, perhaps a complete d-ary tree that might be implemented in hardware, with
35
+ negligible performance degradation.
36
+ 1
37
+
38
+ The embedding algorithm is greedy and very similar to the Huffman algorithm, ex-
39
+ cept that it is based on different algebraic operations. For Huffman coding, one wishes to
40
+ choose a d-ary prefix code C so as to minimize the value of ∑x∈C |x| · r(x), where r(x) is
41
+ the frequency of the letter assigned to the codeword x. This minimizes the entropy of the
42
+ resulting code. For PIFO trees, one wishes to minimize maxx∈C |x| + r(x), where r(x) is the
43
+ height of a subtree. This minimizes the height of the resulting d-ary tree and determines
44
+ whether an embedding is at all possible.
45
+ This similarity leads us to seek a unified axiomatic treatment that is parametric in the
46
+ algebraic operations and that can be instantiated to produce both applications as special
47
+ cases. Our treatment exploits the monadic structure of prefix codes to obtain an abstract
48
+ formulation of the problem and its solution. We identify sufficient conditions for our ab-
49
+ stract algorithm to produce optimal solutions, where the meaning of optimal is also para-
50
+ metric in the instantiation.
51
+ We state axioms that are sufficient for optimality in §3. The algorithm is presented in
52
+ §4 and its correctness proved in §5. The two applications of Huffman codes and PIFO trees
53
+ are derived in §6.
54
+ 2
55
+ Background
56
+ We assume familiarity with the basic category-theoretic concepts of category, functor, and
57
+ natural transformation. Our exposition is based on the concepts of monad and Eilenberg-
58
+ Moore algebra; we briefly review the definitions here. For a more thorough introduction,
59
+ we refer the reader to [5–8].
60
+ Monads are heavily used in functional programming to model the augmentation of a
61
+ computation with extra structure [9–11]. Formally, a monad on a category C is a triple
62
+ (T, η, µ), where T : C → C is an endofunctor on C and η : I → T and µ : T2 → T are natural
63
+ transformations, called the unit and multiplication respectively, such that for all objects X,
64
+ the following diagrams commute:
65
+ T3X
66
+ T2X
67
+ T2X
68
+ TX
69
+ µTX
70
+ TµX
71
+ µX
72
+ µX
73
+ TX
74
+ T2X
75
+ T2X
76
+ TX
77
+ ηTX
78
+ TηX
79
+ µX
80
+ µX
81
+ idTX
82
+ Typical examples of monads are
83
+ • the list monad, in which ηX(a) = [a], the singleton list containing a, and
84
+ µX([[a11, . . . , a1k1], . . . , [an1, . . . , ankn]]) = [a11, . . . , a1k1, . . . , an1, . . . , ankn],
85
+ the list flattening operation;
86
+ 2
87
+
88
+ • the powerset monad, in which ηX(a) = {a}, the singleton set containing a, and µX(A) =
89
+ � A, the operation that takes a set of subsets of X to its union.
90
+ Given a monad (T, η, µ) on a category C, an Eilenberg-Moore algebra for (T, η, µ) is a pair
91
+ (X, γ), where X is an object of C and γ : TX → X is a morphism of C, called the structure
92
+ map of the algebra, such that the following diagrams commute:
93
+ T2X
94
+ TX
95
+ TX
96
+ X
97
+
98
+ µX
99
+ γ
100
+ γ
101
+ X
102
+ TX
103
+ X
104
+ ηX
105
+ γ
106
+ idX
107
+ A morphism of Eilenberg-Moore algebras is a morphism of C that commutes with the structure
108
+ maps. That is, if (X, γ) and (Y, δ) are two algebras and h : X → Y is a morphism of C, then
109
+ h is a morphism of algebras h : (X, γ) → (Y, δ) if the following diagram commutes:
110
+ TX
111
+ TY
112
+ X
113
+ Y
114
+ Th
115
+ γ
116
+ h
117
+ δ
118
+ The Eilenberg-Moore algebras for (T, η, µ) and their morphisms form the Eilenberg-Moore
119
+ category over the monad T. The Eilenberg-Moore category for the list monad is the cat-
120
+ egory of monoids and monoid homomorphisms. The Eilenberg-Moore category for the
121
+ powerset monad is the category of complete upper semilattices and semilattice homomor-
122
+ phisms.
123
+ In our application, we will focus on the monad of d-ary prefix codes on the category Set
124
+ of sets and set functions.
125
+ 3
126
+ Axioms
127
+ In this section, we state the axioms that are sufficient for the optimality of our generalized
128
+ Huffman algorithm.
129
+ Recall that a prefix code over a fixed d-ary alphabet Σ is a set of finite-length words over
130
+ Σ whose elements are pairwise incomparable with respect to the prefix relation. A prefix
131
+ code C is exhaustive if every infinite d-ary string has a prefix in C. As a consequence of
132
+ K¨onig’s lemma, every exhaustive prefix code over a finite alphabet is finite, but not every
133
+ finite prefix code is exhaustive.
134
+ Let C : Set → Set be an endofunctor in which
135
+ • CX is the set of pairs (C, r) such that C is a prefix code over a d-ary alphabet for some
136
+ arbitrary but fixed d ≥ 2 and r : C → X, and
137
+ 3
138
+
139
+ • for h : X → Y, Ch : CX → CY with Ch(C, r) = (C, h ◦ r).
140
+ The functor C carries a natural monad structure with unit η : I → C and multiplication
141
+ µ : C2 → C defined by: for a ∈ X and (C, r) ∈ C2X with r(x) = (Cx, rx),
142
+ ηX(a) = ({ε}, ε �→ a)
143
+ µX(C, r) = ({xy | x ∈ C, y ∈ Cx}, xy �→ rx(y)).
144
+ The map xy �→ rx(y) is well defined, as the string xy can be uniquely split into x ∈ C and
145
+ y ∈ Cx because C is a prefix code.
146
+ For example, consider the prefix codes C = {0, 10, 110, 111} and C0 = C10 = C110 =
147
+ C111 = {00, 11} over the binary alphabet {0, 1}. The code C is exhaustive but the others
148
+ are not. Let
149
+ r0(00) = 2
150
+ r10(00) = 4
151
+ r110(00) = 6
152
+ r111(00) = 8
153
+ r0(11) = 3
154
+ r10(11) = 5
155
+ r110(11) = 7
156
+ r111(11) = 9
157
+ r(0) = (C0, r0)
158
+ r(10) = (C10, r10)
159
+ r(110) = (C110, r110)
160
+ r(111) = (C111, r111).
161
+ Then (C0, r0), (C10, r10), (C110, r110), (C111, r111) ∈ CN and (C, r) ∈ C2N, and µN(C, r) =
162
+ (C′, r′) ∈ CN, where
163
+ C′ = {000, 011, 1000, 1011, 11000, 11011, 11100, 11111}
164
+ r′(000) = 2, r′(011) = 3, r′(1000) = 4, r′(1011) = 5,
165
+ r′(11000) = 6, r′(11011) = 7, r′(11100) = 8, r′(11111) = 9.
166
+ Suppose there is a fixed Eilenberg-Moore algebra (W, w) with w : CW → W. We call
167
+ the elements of W weights and (W, w) a weighting. If (C, r) ∈ CW, then thinking of the
168
+ elements of C as a tree, the map r : C → W assigns a weight to each leaf of the tree, and
169
+ the map w tells how to assign a weight to the object (C, r) based on the leaf weights r.
170
+ To define a notion of optimality, we assume that W is totally preordered by ≤; that is,
171
+ ≤ is reflexive and transitive, and for all x, y ∈ W, either x ≤ y or y ≤ x (or both). Smaller
172
+ values of W in the order ≤ are considered better. We write x ≡ y if both x ≤ y and y ≤ x.
173
+ Suppose further that we have a preorder on CW, also denoted ≤, satisfying the following
174
+ properties.
175
+ (i) If f : C → D is bijective and length-nondecreasing, and if r ≤ s ◦ f pointwise, then
176
+ (C, r) ≤ (D, s). This says that longer codewords or larger leaf values cannot cause a
177
+ decrease in the order ≤.
178
+ (ii) (Exchange property) If r(x) ≤ r(y), |x| ≤ |y|, and
179
+ s(z) =
180
+
181
+
182
+
183
+
184
+
185
+ r(x),
186
+ if z = y,
187
+ r(y),
188
+ if z = x,
189
+ r(z),
190
+ if z ∈ C \ {x, y},
191
+ then (C, s) ≤ (C, r). That is, it never hurts to swap a larger element deeper in the tree
192
+ with a smaller element higher in the tree.
193
+ 4
194
+
195
+ (iii) The monad structure maps ηW : W → CW and µW : C2W → CW are monotone with
196
+ respect to ≤, where ≤ on C2W is defined by:
197
+ (C, r) ≤ (D, s) ⇔ Cw(C, r) ≤ Cw(D, s).
198
+ Some special cases of (i) are
199
+ • If f : C → D is bijective and length-nondecreasing, then (C, s ◦ f) ≤ (D, s). Thus
200
+ lengthening codewords cannot cause ≤ to decrease.
201
+ • If f : C → D is bijective and length-preserving, then (C, s ◦ f) ≡ (D, s). This says
202
+ that the order ≤ on trees depends only on the lengths of the codewords in C, not on
203
+ the actual codewords themselves.
204
+ • If r, s : C → W and r ≤ s pointwise, then (C, r) ≤ (C, s). Thus larger leaf values
205
+ cannot cause ≤ to decrease.
206
+ We assume these properties hold for the algorithm described in the next section.
207
+ For (C, r), (D, s) ∈ CW, let us write (C, r) ∼ (D, s) if the multisets of weights repre-
208
+ sented by the two objects are the same; that is, there is a bijective function f : C → D such
209
+ that r = s ◦ f. A tree (C, r) ∈ CW is defined to be optimal (for its multiset of weights) if (C, r)
210
+ is ≤-minimum in its ∼-class; that is, (C, r) ≤ (D, s) for all (D, s) such that (C, r) ∼ (D, s).
211
+ We will give two detailed examples in §6.
212
+ 4
213
+ Algorithm
214
+ Suppose we are given a multiset M of weights in W, |M| ≥ 2. We would like to find an
215
+ optimal tree for this multiset of weights. The following is a recursive algorithm to find
216
+ such an optimal tree.
217
+ 1. Say there are n ≥ 2 elements in M. Let k ∈ {2, . . . , d} such that n ≡ k mod (d − 1).
218
+ Let a0, . . . , ak−1 be the k elements of least weight. Form the object
219
+ ({0, 1, . . . , k − 1}, i �→ ai) ∈ CW.
220
+ If there are no other elements of M, return that object.
221
+ 2. Otherwise, let
222
+ M′ = {({0, 1, . . . , k − 1}, i �→ ai)} ∪ {ηW(a) | a ∈ M \ {a0, . . . , ak−1}},
223
+ a multiset of n − k + 1 < n elements of CW.
224
+ 3. Recursively call the algorithm at step 1 with M′′ = {w(E, t) | (E, t) ∈ M′}, a multiset
225
+ of elements of W. This returns a tree (D, s) of type CW that is optimal for M′′. The
226
+ bijective map s : D → M′′ factors as w ◦ s′ for some bijective s′ : D → M′, and
227
+ (D, s′) ∈ C2W with Cw(D, s′) = (D, w ◦ s′) = (D, s). Flatten this to µW(D, s′) ∈ CW
228
+ and return that value.
229
+ 5
230
+
231
+ Note that the number of items combined in step 1 will be d in all recursive calls except
232
+ possibly the first. This is because in every step, if k ∈ {2, 3, . . . , d}, then after that step
233
+ the number of remaining elements will be (c(d − 1) + k) − k + 1 = c(d − 1) + 1, which
234
+ is congruent to d mod d − 1, so d elements will be taken in the next step. But from that
235
+ point on, it is an invariant of the recursion that the number of elements remaining is 1 mod
236
+ d − 1, since in each step we remove d elements and add one back, decreasing the number
237
+ by d − 1.
238
+ 5
239
+ Correctness
240
+ In this section, we prove the correctness of the algorithm, making use of the following
241
+ lemma.
242
+ Lemma 1. Let k ∈ {2, 3, . . . , d} and k ≡ |M| mod (d − 1). Let a0, . . . , ak−1 be the k elements of
243
+ M of least weight, listed in nondecreasing order of weight. There is an optimal tree in CW in which
244
+ a0, . . . , ak−1 are sibling leaves at the deepest level and have no other siblings.
245
+ Proof. Let (C, r) ∈ CW be optimal. Axiom (i) allows us to transform (C, r) so that there
246
+ are no deficient nodes (nodes with fewer than d children) at any level except the deepest,
247
+ and only one deficient node at the deepest level. Thus we can assume without loss of
248
+ generality that there are k elements x0, . . . , xk−1 ∈ C of maximum length n in C with a
249
+ common prefix of length n − 1, and no other y ∈ C has that prefix. Say the x0, . . . , xk−1 are
250
+ listed in nondecreasing order of r(xi); that is, r(xi) ≤ r(xj) for all 0 ≤ i ≤ j ≤ k − 1. Let
251
+ y0, . . . , yk−1 ∈ C such that r(yi) = ai. Since the ai are minimal, r(yi) ≤ r(xi). Because the
252
+ |xi| are of maximum length, |yi| ≤ |xi|. Now we can swap using axiom (ii). Let
253
+ s(z) =
254
+
255
+
256
+
257
+
258
+
259
+ r(xi),
260
+ if z = yi,
261
+ r(yi),
262
+ if z = xi,
263
+ r(z),
264
+ otherwise.
265
+ Then (C, s) ≤ (C, r). But since (C, r) was optimal, (C, r) ≡ (C, s) and (C, s) is also optimal.
266
+ Theorem 2. The algorithm of §4 produces an optimal tree.
267
+ Proof. By induction on n. The basis is n ≤ d, in which case the result is straightforward.
268
+ Suppose that we have a multiset M of n > d elements of W. Let (C, r) be an optimal tree
269
+ for M. Let k ∈ {2, 3, . . . , d} be congruent mod d − 1 to |M|. Let a0, . . . , ak−1 be the k smallest
270
+ elements of M. By Lemma 1, we can assume without loss of generality that a0, . . . , ak−1 are
271
+ siblings and occur at maximum depth in (C, r), so there exist strings x0, x1, . . . , x(k − 1) ∈
272
+ C of maximum length with a common prefix x and r(xi) = ai. Remove the strings xi from
273
+ C and replace them with x. Call the resulting set C′. For z ∈ C′, let
274
+ r′(z) =
275
+
276
+ ({0, 1, . . . , k − 1}, i �→ ai),
277
+ if z = x,
278
+ ηW(r(z)),
279
+ otherwise.
280
+ 6
281
+
282
+ Then (C′, r′) ∈ C2W and (C, r) = µW(C′, r′). The multiset of values of r′ is just the M′ of
283
+ step 2 of the algorithm.
284
+ The algorithm will form the multiset
285
+ M′′ = {w(E, t) | (E, t) ∈ M′} = {w(r′(z)) | z ∈ C′}
286
+ and recursively call with these weights. By the induction hypothesis, the return value will
287
+ be a tree (D, s) ∈ CW that is optimal for M′′, thus (D, s) ≤ (C′, w ◦ r′), and the bijective
288
+ map s : D → M′′ factors as s = w ◦ r′ ◦ f for some bijective f : D → C′. Let s′ = r′ ◦ f. By
289
+ axiom (iii),
290
+ Cw(D, s′) = (D, w ◦ s′) = (D, s) ≤ (C′, w ◦ r′) = Cw(C′, r′),
291
+ therefore (D, s′) ≤ (C′, r′), and since µW is monotone,
292
+ µW(D, s′) ≤ µW(C′, r′) = (C, r).
293
+ As (C, r) was optimal, so is µW(D, s′), and this is the value returned by the algorithm.
294
+ 6
295
+ Applications
296
+ By choosing two specific weightings (W, w) and defining the ordering relations ≤ appro-
297
+ priately, we can recover two special cases of this algorithm.
298
+ 6.1
299
+ Huffman coding
300
+ Our first application is Huffman codes. Here we wish to minimize the expected length of
301
+ variable-length codewords, given frequencies of the letters to be coded. For this applica-
302
+ tion, we take W = R+ = {a ∈ R | a ≥ 0} with weighting
303
+ w(C, r) = ∑
304
+ x∈C
305
+ r(x).
306
+ Recall that for a ∈ W and (C, r) ∈ C2W with r(x) = (Cx, rx),
307
+ ηW(a) = ({ε}, ε �→ a)
308
+ µW(C, r) = ({xy | x ∈ C, y ∈ Cx}, xy ��→ rx(y)).
309
+ Then (W, w) is an Eilenberg-Moore algebra for the monad (C, µ, η), as
310
+ w(ηW(a)) = w({ε}, ε �→ a) = ∑
311
+ x∈{ε}
312
+ (ε �→ a)(x) = a,
313
+ w(µW(C, r)) = ∑
314
+ x∈C ∑
315
+ y∈Cx
316
+ rx(y) = ∑
317
+ x∈C
318
+ w(Cx, rx)
319
+ = ∑
320
+ x∈C
321
+ w(r(x)) = w(C, w ◦ r) = w(Cw(C, r)).
322
+ In addition, let us define α : CW → W by
323
+ α(C, r) = ∑
324
+ x∈C
325
+ |x| · r(x).
326
+ 7
327
+
328
+ Lemma 3.
329
+ α(ηW(a)) = 0
330
+ α(µW(C, r)) = α(C, w ◦ r) + w(C, α ◦ r).
331
+ Proof.
332
+ α(ηW(a)) = α({ε}, ε �→ a) = ∑
333
+ x∈{ε}
334
+ |x| · (ε �→ a)(x) = |ε| · a = 0,
335
+ α(µW(C, r)) = α({xy | x ∈ C, y ∈ Cx}, xy �→ rx(y))
336
+ = ∑
337
+ x∈C ∑
338
+ y∈Cx
339
+ |xy| · rx(y) = ∑
340
+ x∈C
341
+ |x| ∑
342
+ y∈Cx
343
+ rx(y) + ∑
344
+ x∈C ∑
345
+ y∈Cx
346
+ |y| · rx(y)
347
+ = ∑
348
+ x∈C
349
+ |x| · w(Cx, rx) + ∑
350
+ x∈C
351
+ α(Cx, rx) = ∑
352
+ x∈C
353
+ |x| · w(r(x)) + ∑
354
+ x∈C
355
+ α(r(x))
356
+ = α(C, w ◦ r) + w(C, α ◦ r).
357
+ Note that α and w agree on trees of depth one:
358
+ w({0, 1, . . . , k − 1}, i �→ ai) =
359
+ k−1
360
+
361
+ i=0
362
+ ai,
363
+ α({0, 1, . . . , k − 1}, i �→ ai) =
364
+ k−1
365
+
366
+ i=0
367
+ |i| · ai =
368
+ k−1
369
+
370
+ i=0
371
+ ai,
372
+ where |i| refers to the length of i as a string, which in this case is 1.
373
+ The map α is related to the Shannon entropy H. If r(x) = d−|x|, the probability of a
374
+ d-ary codeword x under the uniform distribution on a d-ary alphabet, then
375
+ H(C, r) = ∑
376
+ x∈C
377
+ −d−|x| log d−|x| = ∑
378
+ x∈C
379
+ |x| · d−|x| log d = α(C, r) log d,
380
+ so α(C, r) = H(C, r)/ log d.
381
+ To use the algorithm in §4, we need an order ≤ on CW. Define (C, r) ≤ (D, s) if (C, r) ∼
382
+ (D, s), that is, there is a bijective map f : C → D such that r = s ◦ f, and
383
+ α(C, r) ≤ α(D, s).
384
+ Note that if (C, r) ≤ (D, s), then
385
+ w(C, r) = ∑
386
+ x∈C
387
+ r(x) = ∑
388
+ x∈C
389
+ s( f(x)) = ∑
390
+ y∈D
391
+ s(y) = w(D, s).
392
+ According to axiom (iii), for (C, r), (D, s) ∈ C2W,
393
+ (C, r) ≤ (D, s) ⇔ Cw(C, r) ≤ Cw(D, s)
394
+ ⇔ α(Cw(C, r)) ≤ α(Cw(D, s))
395
+ ⇔ α(C, w ◦ r) ≤ α(D, w ◦ s).
396
+ (1)
397
+ Also, if (C, r) ≤ (D, s) in C2W, then
398
+ w(C, α ◦ r) = ∑
399
+ x∈C
400
+ α(r(x)) = ∑
401
+ x∈C
402
+ α(s( f(x))) = ∑
403
+ y∈D
404
+ α(s(y)) = w(D, α ◦ s).
405
+ (2)
406
+ 8
407
+
408
+ Lemma 4. µW : C2W → CW and ηW : W → CW are monotone with respect to ≤.
409
+ Proof. For ηW, suppose a, b ∈ W and a ≤ b. By Lemma 3,
410
+ α(ηW(a)) = 0 = α(ηW(b))
411
+ w(ηW(a)) = a ≤ b = w(ηW(b)).
412
+ For µW, suppose (C, r), (D, s) ∈ C2W and (C, r) ≤ (D, s). By Lemma 3, (1), and (2),
413
+ α(µW(C, r)) = α(C, w ◦ r) + w(C, α ◦ r)
414
+ ≤ α(D, w ◦ s) + w(D, α ◦ s) = α(µW(D, s)).
415
+ Theorem 5. The algorithm in §4 for the algebra (R+, w) and ordering relation ≤ defined by α is
416
+ equivalent to Huffman’s algorithm and produces an optimal Huffman code for a given multiset of
417
+ weights.
418
+ Proof. Take X ⊂ R+ to be a finite multiset and sort the set X in increasing order. For the
419
+ binary case of Huffman codes (the d-ary version follows the same way), we always choose
420
+ k = 2. For the first step, let a0, a1 ∈ X be the two smallest elements in the list. Form the
421
+ object ({0, 1}, i �→ ai) ∈ CX. In the case n = 2, this is the only remaining object in the list.
422
+ Otherwise, we combined them into one element with the sum of the weights of a0 and a1
423
+ as the weight of the new element, exactly as the Huffman coding does.
424
+ For the case n > 2, there are remaining elements in the set X. Take all remaining
425
+ a ∈ X\{a0, a1} and replace a by ηX(a) ∈ CX. We are left with n − 1 elements of type CX.
426
+ If we recursively call the algorithm in step 1, we are continually combining the least two
427
+ elements in the remaining set with the elements weighted by w. Note by the weighting
428
+ w, w(ηX(a)) = a and on elements in CX, w takes the sum of r(x)′s, exactly as Huffman
429
+ coding does. Finally, this leaves us with a tree in C2X where leaves have weights of the
430
+ form ηX(ai). Denote this tree by (D, s). Taking µX(D, S) gives our desired tree in CX.
431
+ 6.2
432
+ PIFO trees
433
+ PIFO trees were introduced in [3] as a model for programmable packet schedulers. In the
434
+ recent work of [1], further work was done on PIFO trees giving a semantics that allows
435
+ for certain embedding algorithms. The notion of a homomorphic embedding was defined for
436
+ the purpose determining when a PIFO tree could be represented by another PIFO tree and
437
+ for finding an embedding if so. The embedding algorithm we consider takes an arbitrary
438
+ PIFO tree and embeds it into a d-ary tree. This becomes a special case of the algorithm of
439
+ §4, where we choose w in the weighting (W, w) to minimize the height of the target d-ary
440
+ tree into which the source tree can embed.
441
+ For this application, we take W = N with weighting
442
+ w(C, r) = max
443
+ x∈C |x| + r(x).
444
+ This gives an Eilenberg-Moore algebra (W, w) for the monad (C, µ, η). For a ∈ W and
445
+ (C, r) ∈ C2W with r(x) = (Cx, rx), as before we have
446
+ ηW(a) = ({ε}, ε �→ a)
447
+ µW(C, r) = ({xy | x ∈ C, y ∈ Cx}, xy �→ rx(y)),
448
+ 9
449
+
450
+ so
451
+ w(ηW(a)) = w({ε}, ε �→ a) = max
452
+ x∈{ε} |x| + (ε �→ a)(x) = |ε| + a = a,
453
+ w(µW(C, r)) = w({xy | x ∈ C, y ∈ Cx}, xy �→ rx(y)) = max
454
+ x∈C max
455
+ y∈Cx |xy| + rx(y)
456
+ = max
457
+ x∈C max
458
+ y∈Cx |x| + |y| + rx(y) = max
459
+ x∈C |x| + max
460
+ y∈Cx |y| + rx(y)
461
+ = max
462
+ x∈C |x| + w(Cx, rx) = max
463
+ x∈C |x| + w(r(x))
464
+ = w(C, w ◦ r) = w(Cw(C, r)).
465
+ For (C, r), (D, s) ∈ CW, let us define (C, r) ≤ (D, s) if there is a bijective function
466
+ f : C → D such that r = s ◦ f and
467
+ w(C, r) ≤ w(D, s).
468
+ Lemma 6. µW : C2W → CW and ηW : W → CW are monotone with respect to ≤.
469
+ Proof. For ηW, if a ≤ b, then w(ηW(a)) = a ≤ b = w(ηW(b)).
470
+ For µW, suppose (C, r), (D, s) ∈ C2W and (C, r) ≤ (D, s). According to axiom (iii),
471
+ (C, r) ≤ (D, s) ⇔ Cw(C, r) ≤ Cw(D, s)
472
+ ⇔ w(Cw(C, r)) ≤ w(Cw(D, s)).
473
+ Then
474
+ w(µW(C, r)) = w(Cw(C, r)) ≤ w(Cw(D, s)) = w(µW(D, s)).
475
+ Theorem 7. The algorithm of §4 for the algebra (N, w) and ordering relation ≤ defined by w is
476
+ equivalent to determining whether an embedding of a PIFO tree in a bounded d-ary tree exists and
477
+ finding the embedding if so.
478
+ 7
479
+ Conclusion
480
+ We have presented a generalized Huffman algorithm and shown that two known algo-
481
+ rithms, Huffman codes and embedding of PIFOs trees, can be derived as special cases.
482
+ The PIFO embedding algorithm was introduced in [1] and observed to be very similar to
483
+ the usual combinatorial algorithm for optimal Huffman codes, albeit based on a different
484
+ algebraic structure. This suggested the common generalization presented in this paper.
485
+ Our generalized algorithm exploits the monadic structure of prefix codes, which al-
486
+ lows a more algebraic treatment of the Huffman algorithm than the usual combinatorial
487
+ approaches. The two applications fit naturally in the categorical setting by choosing spe-
488
+ cific Eilenberg-Moore algebras for each one. It is possible that other greedy algorithms
489
+ might fit into this framework as well.
490
+ 10
491
+
492
+ References
493
+ [1] Anshuman
494
+ Mohan,
495
+ Yunhe
496
+ Liu,
497
+ Nate
498
+ Foster,
499
+ Tobias
500
+ Kapp´e,
501
+ and
502
+ Dex-
503
+ ter
504
+ Kozen,
505
+ “Formal
506
+ abstractions
507
+ for
508
+ packet
509
+ scheduling,”
510
+ Tech.
511
+ Rep. http://arxiv.org/abs/2211.11659, Cornell University, November 2022.
512
+ [2] Thomas M. Cover and Joy A. Thomas, Elements of Information Theory, Wiley, second
513
+ edition, 2006.
514
+ [3] Anirudh Sivaraman, Suvinay Subramanian, Mohammad Alizadeh, Sharad Chole,
515
+ Shang-Tse Chuang, Anurag Agrawal, Hari Balakrishnan, Tom Edsall, Sachin Katti,
516
+ and Nick McKeown, “Programmable packet scheduling at line rate,” in SIGCOMM,
517
+ 2016.
518
+ [4] Albert Gran Alcoz, Alexander Dietm¨uller, and Laurent Vanbever, “SP-PIFO: Approx-
519
+ imating push-in first-out behaviors using strict-priority queues,” in NSDI, 2020.
520
+ [5] Andrea Asperti and Giuseppe Longo, Categories, Types and Structures: An introduction
521
+ to category theory for the working computer scientist, Foundations of Computing. MIT
522
+ Press, 1991.
523
+ [6] Michael Barr and Charles Wells, Toposes, Triples and Theories, vol. 278 of Grundlehren
524
+ der mathematischen Wissenschaften, Springer, 2013.
525
+ [7] Michael Barr and Charles Wells, Category Theory for Computing Science, Prentice Hall,
526
+ 1990.
527
+ [8] Jiˇr´ı Ad´amek, Horst Herrlich, and George E. Strecker, Abstract and concrete categories,
528
+ Dover Publications, 2009.
529
+ [9] Eugenio Moggi, “Notions of computation and monads,” Inf. and Comp., vol. 93, no. 1,
530
+ pp. 55–92, 1991.
531
+ [10] Philip Wadler, “Comprehending monads,” Mathematical Structures in Computer Sci-
532
+ ence, vol. 2, pp. 461–493, 1992.
533
+ [11] Philip Wadler, “Monads for functional programming,” in Advanced Functional Pro-
534
+ gramming: 1st Int. School on Advanced Functional Programming Techniques, Johan Jeur-
535
+ ing and Erik Meijer, Eds., vol. 925 of Lecture Notes in Computer Science, pp. 24–52.
536
+ Springer-Verlag, 1995.
537
+ 11
538
+
BdE1T4oBgHgl3EQfDgNt/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,311 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf,len=310
2
+ page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
3
+ page_content='02878v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
4
+ page_content='IT] 7 Jan 2023 Abstract Huffman Coding and PIFO Tree Embeddings Keri D’Angelo∗ Dexter Kozen† Cornell University Computer Science Department Ithaca, New York 14853-7501, USA ∗kd349@cornell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
5
+ page_content='edu †kozen@cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
6
+ page_content='cornell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
7
+ page_content='edu January 10, 2023 Abstract Algorithms for deriving Huffman codes and the recently developed algorithm for compiling PIFO trees to trees of fixed shape [1] are similar, but work with different underlying algebraic operations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
8
+ page_content=' In this paper, we exploit the monadic structure of prefix codes to create a generalized Huffman algorithm that has these two applications as special cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
9
+ page_content=' 1 Introduction Huffman codes translate letters from a fixed alphabet to d-ary codewords, achieving optimal compression for a given frequency distribution of letters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
10
+ page_content=' There is a well-known greedy algorithm for producing Huffman codes from a given distribution (see [2]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
11
+ page_content=' A new data structure called a PIFO tree (priority-in first-out) has recently been pro- posed for implementing a wide range of packet scheduling algorithms in programmable network routers [3, 4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
12
+ page_content=' A PIFO tree is a tree of priority queues.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
13
+ page_content=' Currently, most routers support just a few scheduling algorithms such as strict priority or weighted fair queueing, which are baked into the hardware.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
14
+ page_content=' The schedulers can be configured to some extent, but it is generally not possible to implement more sophisticated scheduling algorithms that require reordering of already queued packets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
15
+ page_content=' This is exactly what PIFO trees permit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
16
+ page_content=' It seems likely that PIFOs will be supported on network devices in the near future.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
17
+ page_content=' Some researchers have already begun to explore how the PIFO abstraction can be em- ulated on conventional routers [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
18
+ page_content=' In very recent work [1], it was shown how to translate an algorithm designed for a PIFO tree of arbitrary shape to one that uses a PIFO tree of fixed shape, perhaps a complete d-ary tree that might be implemented in hardware, with negligible performance degradation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
19
+ page_content=' 1 The embedding algorithm is greedy and very similar to the Huffman algorithm, ex- cept that it is based on different algebraic operations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
20
+ page_content=' For Huffman coding, one wishes to choose a d-ary prefix code C so as to minimize the value of ∑x∈C |x| · r(x), where r(x) is the frequency of the letter assigned to the codeword x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
21
+ page_content=' This minimizes the entropy of the resulting code.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
22
+ page_content=' For PIFO trees, one wishes to minimize maxx∈C |x| + r(x), where r(x) is the height of a subtree.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
23
+ page_content=' This minimizes the height of the resulting d-ary tree and determines whether an embedding is at all possible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
24
+ page_content=' This similarity leads us to seek a unified axiomatic treatment that is parametric in the algebraic operations and that can be instantiated to produce both applications as special cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
25
+ page_content=' Our treatment exploits the monadic structure of prefix codes to obtain an abstract formulation of the problem and its solution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
26
+ page_content=' We identify sufficient conditions for our ab- stract algorithm to produce optimal solutions, where the meaning of optimal is also para- metric in the instantiation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
27
+ page_content=' We state axioms that are sufficient for optimality in §3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
28
+ page_content=' The algorithm is presented in §4 and its correctness proved in §5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
29
+ page_content=' The two applications of Huffman codes and PIFO trees are derived in §6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
30
+ page_content=' 2 Background We assume familiarity with the basic category-theoretic concepts of category, functor, and natural transformation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
31
+ page_content=' Our exposition is based on the concepts of monad and Eilenberg- Moore algebra;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
32
+ page_content=' we briefly review the definitions here.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
33
+ page_content=' For a more thorough introduction, we refer the reader to [5–8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
34
+ page_content=' Monads are heavily used in functional programming to model the augmentation of a computation with extra structure [9–11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
35
+ page_content=' Formally, a monad on a category C is a triple (T, η, µ), where T : C → C is an endofunctor on C and η : I → T and µ : T2 → T are natural transformations, called the unit and multiplication respectively, such that for all objects X, the following diagrams commute: T3X T2X T2X TX µTX TµX µX µX TX T2X T2X TX ηTX TηX µX µX idTX Typical examples of monads are the list monad, in which ηX(a) = [a], the singleton list containing a, and µX([[a11, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
36
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
37
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
38
+ page_content=' , a1k1], .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
39
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
40
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
41
+ page_content=' , [an1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
42
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
43
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
44
+ page_content=' , ankn]]) = [a11, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
45
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
46
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
47
+ page_content=' , a1k1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
48
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
49
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
50
+ page_content=' , an1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
51
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
52
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
53
+ page_content=' , ankn], the list flattening operation;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
54
+ page_content=' 2 the powerset monad, in which ηX(a) = {a}, the singleton set containing a, and µX(A) = � A, the operation that takes a set of subsets of X to its union.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
55
+ page_content=' Given a monad (T, η, µ) on a category C, an Eilenberg-Moore algebra for (T, η, µ) is a pair (X, γ), where X is an object of C and γ : TX → X is a morphism of C, called the structure map of the algebra, such that the following diagrams commute: T2X TX TX X Tγ µX γ γ X TX X ηX γ idX A morphism of Eilenberg-Moore algebras is a morphism of C that commutes with the structure maps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
56
+ page_content=' That is, if (X, γ) and (Y, δ) are two algebras and h : X → Y is a morphism of C, then h is a morphism of algebras h : (X, γ) → (Y, δ) if the following diagram commutes: TX TY X Y Th γ h δ The Eilenberg-Moore algebras for (T, η, µ) and their morphisms form the Eilenberg-Moore category over the monad T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
57
+ page_content=' The Eilenberg-Moore category for the list monad is the cat- egory of monoids and monoid homomorphisms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
58
+ page_content=' The Eilenberg-Moore category for the powerset monad is the category of complete upper semilattices and semilattice homomor- phisms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
59
+ page_content=' In our application, we will focus on the monad of d-ary prefix codes on the category Set of sets and set functions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
60
+ page_content=' 3 Axioms In this section, we state the axioms that are sufficient for the optimality of our generalized Huffman algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
61
+ page_content=' Recall that a prefix code over a fixed d-ary alphabet Σ is a set of finite-length words over Σ whose elements are pairwise incomparable with respect to the prefix relation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
62
+ page_content=' A prefix code C is exhaustive if every infinite d-ary string has a prefix in C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
63
+ page_content=' As a consequence of K¨onig’s lemma, every exhaustive prefix code over a finite alphabet is finite, but not every finite prefix code is exhaustive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
64
+ page_content=' Let C : Set → Set be an endofunctor in which CX is the set of pairs (C, r) such that C is a prefix code over a d-ary alphabet for some arbitrary but fixed d ≥ 2 and r : C → X, and 3 for h : X → Y, Ch : CX → CY with Ch(C, r) = (C, h ◦ r).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
65
+ page_content=' The functor C carries a natural monad structure with unit η : I → C and multiplication µ : C2 → C defined by: for a ∈ X and (C, r) ∈ C2X with r(x) = (Cx, rx), ηX(a) = ({ε}, ε �→ a) µX(C, r) = ({xy | x ∈ C, y ∈ Cx}, xy �→ rx(y)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
66
+ page_content=' The map xy �→ rx(y) is well defined, as the string xy can be uniquely split into x ∈ C and y ∈ Cx because C is a prefix code.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
67
+ page_content=' For example, consider the prefix codes C = {0, 10, 110, 111} and C0 = C10 = C110 = C111 = {00, 11} over the binary alphabet {0, 1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
68
+ page_content=' The code C is exhaustive but the others are not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
69
+ page_content=' Let r0(00) = 2 r10(00) = 4 r110(00) = 6 r111(00) = 8 r0(11) = 3 r10(11) = 5 r110(11) = 7 r111(11) = 9 r(0) = (C0, r0) r(10) = (C10, r10) r(110) = (C110, r110) r(111) = (C111, r111).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
70
+ page_content=' Then (C0, r0), (C10, r10), (C110, r110), (C111, r111) ∈ CN and (C, r) ∈ C2N, and µN(C, r) = (C′, r′) ∈ CN, where C′ = {000, 011, 1000, 1011, 11000, 11011, 11100, 11111} r′(000) = 2, r′(011) = 3, r′(1000) = 4, r′(1011) = 5, r′(11000) = 6, r′(11011) = 7, r′(11100) = 8, r′(11111) = 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
71
+ page_content=' Suppose there is a fixed Eilenberg-Moore algebra (W, w) with w : CW → W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
72
+ page_content=' We call the elements of W weights and (W, w) a weighting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
73
+ page_content=' If (C, r) ∈ CW, then thinking of the elements of C as a tree, the map r : C → W assigns a weight to each leaf of the tree, and the map w tells how to assign a weight to the object (C, r) based on the leaf weights r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
74
+ page_content=' To define a notion of optimality, we assume that W is totally preordered by ≤;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
75
+ page_content=' that is, ≤ is reflexive and transitive, and for all x, y ∈ W, either x ≤ y or y ≤ x (or both).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
76
+ page_content=' Smaller values of W in the order ≤ are considered better.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
77
+ page_content=' We write x ≡ y if both x ≤ y and y ≤ x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
78
+ page_content=' Suppose further that we have a preorder on CW, also denoted ≤, satisfying the following properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
79
+ page_content=' (i) If f : C → D is bijective and length-nondecreasing, and if r ≤ s ◦ f pointwise, then (C, r) ≤ (D, s).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
80
+ page_content=' This says that longer codewords or larger leaf values cannot cause a decrease in the order ≤.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
81
+ page_content=' (ii) (Exchange property) If r(x) ≤ r(y), |x| ≤ |y|, and s(z) = \uf8f1 \uf8f4 \uf8f2 \uf8f4 \uf8f3 r(x), if z = y, r(y), if z = x, r(z), if z ∈ C \\ {x, y}, then (C, s) ≤ (C, r).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
82
+ page_content=' That is, it never hurts to swap a larger element deeper in the tree with a smaller element higher in the tree.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
83
+ page_content=' 4 (iii) The monad structure maps ηW : W → CW and µW : C2W → CW are monotone with respect to ≤, where ≤ on C2W is defined by: (C, r) ≤ (D, s) ⇔ Cw(C, r) ≤ Cw(D, s).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
84
+ page_content=' Some special cases of (i) are If f : C → D is bijective and length-nondecreasing, then (C, s ◦ f) ≤ (D, s).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
85
+ page_content=' Thus lengthening codewords cannot cause ≤ to decrease.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
86
+ page_content=' If f : C → D is bijective and length-preserving, then (C, s ◦ f) ≡ (D, s).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
87
+ page_content=' This says that the order ≤ on trees depends only on the lengths of the codewords in C, not on the actual codewords themselves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
88
+ page_content=' If r, s : C → W and r ≤ s pointwise, then (C, r) ≤ (C, s).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
89
+ page_content=' Thus larger leaf values cannot cause ≤ to decrease.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
90
+ page_content=' We assume these properties hold for the algorithm described in the next section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
91
+ page_content=' For (C, r), (D, s) ∈ CW, let us write (C, r) ∼ (D, s) if the multisets of weights repre- sented by the two objects are the same;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
92
+ page_content=' that is, there is a bijective function f : C → D such that r = s ◦ f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
93
+ page_content=' A tree (C, r) ∈ CW is defined to be optimal (for its multiset of weights) if (C, r) is ≤-minimum in its ∼-class;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
94
+ page_content=' that is, (C, r) ≤ (D, s) for all (D, s) such that (C, r) ∼ (D, s).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
95
+ page_content=' We will give two detailed examples in §6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
96
+ page_content=' 4 Algorithm Suppose we are given a multiset M of weights in W, |M| ≥ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
97
+ page_content=' We would like to find an optimal tree for this multiset of weights.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
98
+ page_content=' The following is a recursive algorithm to find such an optimal tree.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
99
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
100
+ page_content=' Say there are n ≥ 2 elements in M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
101
+ page_content=' Let k ∈ {2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
102
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
103
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
104
+ page_content=' , d} such that n ≡ k mod (d − 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
105
+ page_content=' Let a0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
106
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
107
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
108
+ page_content=' , ak−1 be the k elements of least weight.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
109
+ page_content=' Form the object ({0, 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
110
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
111
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
112
+ page_content=' , k − 1}, i �→ ai) ∈ CW.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
113
+ page_content=' If there are no other elements of M, return that object.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
114
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
115
+ page_content=' Otherwise, let M′ = {({0, 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
116
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
117
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
118
+ page_content=' , k − 1}, i �→ ai)} ∪ {ηW(a) | a ∈ M \\ {a0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
119
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
120
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
121
+ page_content=' , ak−1}}, a multiset of n − k + 1 < n elements of CW.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
122
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
123
+ page_content=' Recursively call the algorithm at step 1 with M′′ = {w(E, t) | (E, t) ∈ M′}, a multiset of elements of W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
124
+ page_content=' This returns a tree (D, s) of type CW that is optimal for M′′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
125
+ page_content=' The bijective map s : D → M′′ factors as w ◦ s′ for some bijective s′ : D → M′, and (D, s′) ∈ C2W with Cw(D, s′) = (D, w ◦ s′) = (D, s).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
126
+ page_content=' Flatten this to µW(D, s′) ∈ CW and return that value.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
127
+ page_content=' 5 Note that the number of items combined in step 1 will be d in all recursive calls except possibly the first.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
128
+ page_content=' This is because in every step, if k ∈ {2, 3, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
129
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
130
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
131
+ page_content=' , d}, then after that step the number of remaining elements will be (c(d − 1) + k) − k + 1 = c(d − 1) + 1, which is congruent to d mod d − 1, so d elements will be taken in the next step.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
132
+ page_content=' But from that point on, it is an invariant of the recursion that the number of elements remaining is 1 mod d − 1, since in each step we remove d elements and add one back, decreasing the number by d − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
133
+ page_content=' 5 Correctness In this section, we prove the correctness of the algorithm, making use of the following lemma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
134
+ page_content=' Lemma 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
135
+ page_content=' Let k ∈ {2, 3, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
136
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
137
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
138
+ page_content=' , d} and k ≡ |M| mod (d − 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
139
+ page_content=' Let a0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
140
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
141
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
142
+ page_content=' , ak−1 be the k elements of M of least weight, listed in nondecreasing order of weight.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
143
+ page_content=' There is an optimal tree in CW in which a0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
144
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
145
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
146
+ page_content=' , ak−1 are sibling leaves at the deepest level and have no other siblings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
147
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
148
+ page_content=' Let (C, r) ∈ CW be optimal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
149
+ page_content=' Axiom (i) allows us to transform (C, r) so that there are no deficient nodes (nodes with fewer than d children) at any level except the deepest, and only one deficient node at the deepest level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
150
+ page_content=' Thus we can assume without loss of generality that there are k elements x0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
151
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
152
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
153
+ page_content=' , xk−1 ∈ C of maximum length n in C with a common prefix of length n − 1, and no other y ∈ C has that prefix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
154
+ page_content=' Say the x0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
155
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
156
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
157
+ page_content=' , xk−1 are listed in nondecreasing order of r(xi);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
158
+ page_content=' that is, r(xi) ≤ r(xj) for all 0 ≤ i ≤ j ≤ k − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
159
+ page_content=' Let y0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
160
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
161
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
162
+ page_content=' , yk−1 ∈ C such that r(yi) = ai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
163
+ page_content=' Since the ai are minimal, r(yi) ≤ r(xi).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
164
+ page_content=' Because the |xi| are of maximum length, |yi| ≤ |xi|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
165
+ page_content=' Now we can swap using axiom (ii).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
166
+ page_content=' Let s(z) = \uf8f1 \uf8f4 \uf8f2 \uf8f4 \uf8f3 r(xi), if z = yi, r(yi), if z = xi, r(z), otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
167
+ page_content=' Then (C, s) ≤ (C, r).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
168
+ page_content=' But since (C, r) was optimal, (C, r) ≡ (C, s) and (C, s) is also optimal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
169
+ page_content=' Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
170
+ page_content=' The algorithm of §4 produces an optimal tree.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
171
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
172
+ page_content=' By induction on n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
173
+ page_content=' The basis is n ≤ d, in which case the result is straightforward.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
174
+ page_content=' Suppose that we have a multiset M of n > d elements of W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
175
+ page_content=' Let (C, r) be an optimal tree for M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
176
+ page_content=' Let k ∈ {2, 3, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
177
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
178
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
179
+ page_content=' , d} be congruent mod d − 1 to |M|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
180
+ page_content=' Let a0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
181
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
182
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
183
+ page_content=' , ak−1 be the k smallest elements of M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
184
+ page_content=' By Lemma 1, we can assume without loss of generality that a0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
185
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
186
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
187
+ page_content=' , ak−1 are siblings and occur at maximum depth in (C, r), so there exist strings x0, x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
188
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
189
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
190
+ page_content=' , x(k − 1) ∈ C of maximum length with a common prefix x and r(xi) = ai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
191
+ page_content=' Remove the strings xi from C and replace them with x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
192
+ page_content=' Call the resulting set C′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
193
+ page_content=' For z ∈ C′, let r′(z) = � ({0, 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
194
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
195
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
196
+ page_content=' , k − 1}, i �→ ai), if z = x, ηW(r(z)), otherwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
197
+ page_content=' 6 Then (C′, r′) ∈ C2W and (C, r) = µW(C′, r′).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
198
+ page_content=' The multiset of values of r′ is just the M′ of step 2 of the algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
199
+ page_content=' The algorithm will form the multiset M′′ = {w(E, t) | (E, t) ∈ M′} = {w(r′(z)) | z ∈ C′} and recursively call with these weights.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
200
+ page_content=' By the induction hypothesis, the return value will be a tree (D, s) ∈ CW that is optimal for M′′, thus (D, s) ≤ (C′, w ◦ r′), and the bijective map s : D → M′′ factors as s = w ◦ r′ ◦ f for some bijective f : D → C′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
201
+ page_content=' Let s′ = r′ ◦ f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
202
+ page_content=' By axiom (iii), Cw(D, s′) = (D, w ◦ s′) = (D, s) ≤ (C′, w ◦ r′) = Cw(C′, r′), therefore (D, s′) ≤ (C′, r′), and since µW is monotone, µW(D, s′) ≤ µW(C′, r′) = (C, r).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
203
+ page_content=' As (C, r) was optimal, so is µW(D, s′), and this is the value returned by the algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
204
+ page_content=' 6 Applications By choosing two specific weightings (W, w) and defining the ordering relations ≤ appro- priately, we can recover two special cases of this algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
205
+ page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
206
+ page_content='1 Huffman coding Our first application is Huffman codes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
207
+ page_content=' Here we wish to minimize the expected length of variable-length codewords, given frequencies of the letters to be coded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
208
+ page_content=' For this applica- tion, we take W = R+ = {a ∈ R | a ≥ 0} with weighting w(C, r) = ∑ x∈C r(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
209
+ page_content=' Recall that for a ∈ W and (C, r) ∈ C2W with r(x) = (Cx, rx), ηW(a) = ({ε}, ε �→ a) µW(C, r) = ({xy | x ∈ C, y ∈ Cx}, xy �→ rx(y)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
210
+ page_content=' Then (W, w) is an Eilenberg-Moore algebra for the monad (C, µ, η), as w(ηW(a)) = w({ε}, ε �→ a) = ∑ x∈{ε} (ε �→ a)(x) = a, w(µW(C, r)) = ∑ x∈C ∑ y∈Cx rx(y) = ∑ x∈C w(Cx, rx) = ∑ x∈C w(r(x)) = w(C, w ◦ r) = w(Cw(C, r)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
211
+ page_content=' In addition, let us define α : CW → W by α(C, r) = ∑ x∈C |x| · r(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
212
+ page_content=' 7 Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
213
+ page_content=' α(ηW(a)) = 0 α(µW(C, r)) = α(C, w ◦ r) + w(C, α ◦ r).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
214
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
215
+ page_content=' α(ηW(a)) = α({ε}, ε �→ a) = ∑ x∈{ε} |x| · (ε �→ a)(x) = |ε| · a = 0, α(µW(C, r)) = α({xy | x ∈ C, y ∈ Cx}, xy �→ rx(y)) = ∑ x∈C ∑ y∈Cx |xy| · rx(y) = ∑ x∈C |x| ∑ y∈Cx rx(y) + ∑ x∈C ∑ y∈Cx |y| · rx(y) = ∑ x∈C |x| · w(Cx, rx) + ∑ x∈C α(Cx, rx) = ∑ x∈C |x| · w(r(x)) + ∑ x∈C α(r(x)) = α(C, w ◦ r) + w(C, α ◦ r).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
216
+ page_content=' Note that α and w agree on trees of depth one: w({0, 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
217
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
218
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
219
+ page_content=' , k − 1}, i �→ ai) = k−1 ∑ i=0 ai, α({0, 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
220
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
221
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
222
+ page_content=' , k − 1}, i �→ ai) = k−1 ∑ i=0 |i| · ai = k−1 ∑ i=0 ai, where |i| refers to the length of i as a string, which in this case is 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
223
+ page_content=' The map α is related to the Shannon entropy H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
224
+ page_content=' If r(x) = d−|x|, the probability of a d-ary codeword x under the uniform distribution on a d-ary alphabet, then H(C, r) = ∑ x∈C −d−|x| log d−|x| = ∑ x∈C |x| · d−|x| log d = α(C, r) log d, so α(C, r) = H(C, r)/ log d.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
225
+ page_content=' To use the algorithm in §4, we need an order ≤ on CW.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
226
+ page_content=' Define (C, r) ≤ (D, s) if (C, r) ∼ (D, s), that is, there is a bijective map f : C → D such that r = s ◦ f, and α(C, r) ≤ α(D, s).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
227
+ page_content=' Note that if (C, r) ≤ (D, s), then w(C, r) = ∑ x∈C r(x) = ∑ x∈C s( f(x)) = ∑ y∈D s(y) = w(D, s).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
228
+ page_content=' According to axiom (iii), for (C, r), (D, s) ∈ C2W, (C, r) ≤ (D, s) ⇔ Cw(C, r) ≤ Cw(D, s) ⇔ α(Cw(C, r)) ≤ α(Cw(D, s)) ⇔ α(C, w ◦ r) ≤ α(D, w ◦ s).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
229
+ page_content=' (1) Also, if (C, r) ≤ (D, s) in C2W, then w(C, α ◦ r) = ∑ x∈C α(r(x)) = ∑ x∈C α(s( f(x))) = ∑ y∈D α(s(y)) = w(D, α ◦ s).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
230
+ page_content=' (2) 8 Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
231
+ page_content=' µW : C2W → CW and ηW : W → CW are monotone with respect to ≤.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
232
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
233
+ page_content=' For ηW, suppose a, b ∈ W and a ≤ b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
234
+ page_content=' By Lemma 3, α(ηW(a)) = 0 = α(ηW(b)) w(ηW(a)) = a ≤ b = w(ηW(b)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
235
+ page_content=' For µW, suppose (C, r), (D, s) ∈ C2W and (C, r) ≤ (D, s).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
236
+ page_content=' By Lemma 3, (1), and (2), α(µW(C, r)) = α(C, w ◦ r) + w(C, α ◦ r) ≤ α(D, w ◦ s) + w(D, α ◦ s) = α(µW(D, s)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
237
+ page_content=' Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
238
+ page_content=' The algorithm in §4 for the algebra (R+, w) and ordering relation ≤ defined by α is equivalent to Huffman’s algorithm and produces an optimal Huffman code for a given multiset of weights.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
239
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
240
+ page_content=' Take X ⊂ R+ to be a finite multiset and sort the set X in increasing order.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
241
+ page_content=' For the binary case of Huffman codes (the d-ary version follows the same way), we always choose k = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
242
+ page_content=' For the first step, let a0, a1 ∈ X be the two smallest elements in the list.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
243
+ page_content=' Form the object ({0, 1}, i �→ ai) ∈ CX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
244
+ page_content=' In the case n = 2, this is the only remaining object in the list.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
245
+ page_content=' Otherwise, we combined them into one element with the sum of the weights of a0 and a1 as the weight of the new element, exactly as the Huffman coding does.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
246
+ page_content=' For the case n > 2, there are remaining elements in the set X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
247
+ page_content=' Take all remaining a ∈ X\\{a0, a1} and replace a by ηX(a) ∈ CX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
248
+ page_content=' We are left with n − 1 elements of type CX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
249
+ page_content=' If we recursively call the algorithm in step 1, we are continually combining the least two elements in the remaining set with the elements weighted by w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
250
+ page_content=' Note by the weighting w, w(ηX(a)) = a and on elements in CX, w takes the sum of r(x)′s, exactly as Huffman coding does.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
251
+ page_content=' Finally, this leaves us with a tree in C2X where leaves have weights of the form ηX(ai).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
252
+ page_content=' Denote this tree by (D, s).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
253
+ page_content=' Taking µX(D, S) gives our desired tree in CX.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
254
+ page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
255
+ page_content='2 PIFO trees PIFO trees were introduced in [3] as a model for programmable packet schedulers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
256
+ page_content=' In the recent work of [1], further work was done on PIFO trees giving a semantics that allows for certain embedding algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
257
+ page_content=' The notion of a homomorphic embedding was defined for the purpose determining when a PIFO tree could be represented by another PIFO tree and for finding an embedding if so.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
258
+ page_content=' The embedding algorithm we consider takes an arbitrary PIFO tree and embeds it into a d-ary tree.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
259
+ page_content=' This becomes a special case of the algorithm of §4, where we choose w in the weighting (W, w) to minimize the height of the target d-ary tree into which the source tree can embed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
260
+ page_content=' For this application, we take W = N with weighting w(C, r) = max x∈C |x| + r(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
261
+ page_content=' This gives an Eilenberg-Moore algebra (W, w) for the monad (C, µ, η).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
262
+ page_content=' For a ∈ W and (C, r) ∈ C2W with r(x) = (Cx, rx), as before we have ηW(a) = ({ε}, ε �→ a) µW(C, r) = ({xy | x ∈ C, y ∈ Cx}, xy �→ rx(y)), 9 so w(ηW(a)) = w({ε}, ε �→ a) = max x∈{ε} |x| + (ε �→ a)(x) = |ε| + a = a, w(µW(C, r)) = w({xy | x ∈ C, y ∈ Cx}, xy �→ rx(y)) = max x∈C max y∈Cx |xy| + rx(y) = max x∈C max y∈Cx |x| + |y| + rx(y) = max x∈C |x| + max y∈Cx |y| + rx(y) = max x∈C |x| + w(Cx, rx) = max x∈C |x| + w(r(x)) = w(C, w ◦ r) = w(Cw(C, r)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
263
+ page_content=' For (C, r), (D, s) ∈ CW, let us define (C, r) ≤ (D, s) if there is a bijective function f : C → D such that r = s ◦ f and w(C, r) ≤ w(D, s).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
264
+ page_content=' Lemma 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
265
+ page_content=' µW : C2W → CW and ηW : W → CW are monotone with respect to ≤.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
266
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
267
+ page_content=' For ηW, if a ≤ b, then w(ηW(a)) = a ≤ b = w(ηW(b)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
268
+ page_content=' For µW, suppose (C, r), (D, s) ∈ C2W and (C, r) ≤ (D, s).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
269
+ page_content=' According to axiom (iii), (C, r) ≤ (D, s) ⇔ Cw(C, r) ≤ Cw(D, s) ⇔ w(Cw(C, r)) ≤ w(Cw(D, s)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
270
+ page_content=' Then w(µW(C, r)) = w(Cw(C, r)) ≤ w(Cw(D, s)) = w(µW(D, s)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
271
+ page_content=' Theorem 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
272
+ page_content=' The algorithm of §4 for the algebra (N, w) and ordering relation ≤ defined by w is equivalent to determining whether an embedding of a PIFO tree in a bounded d-ary tree exists and finding the embedding if so.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
273
+ page_content=' 7 Conclusion We have presented a generalized Huffman algorithm and shown that two known algo- rithms, Huffman codes and embedding of PIFOs trees, can be derived as special cases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
274
+ page_content=' The PIFO embedding algorithm was introduced in [1] and observed to be very similar to the usual combinatorial algorithm for optimal Huffman codes, albeit based on a different algebraic structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
275
+ page_content=' This suggested the common generalization presented in this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
276
+ page_content=' Our generalized algorithm exploits the monadic structure of prefix codes, which al- lows a more algebraic treatment of the Huffman algorithm than the usual combinatorial approaches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
277
+ page_content=' The two applications fit naturally in the categorical setting by choosing spe- cific Eilenberg-Moore algebras for each one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
278
+ page_content=' It is possible that other greedy algorithms might fit into this framework as well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
279
+ page_content=' 10 References [1] Anshuman Mohan, Yunhe Liu, Nate Foster, Tobias Kapp´e, and Dex- ter Kozen, “Formal abstractions for packet scheduling,” Tech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
280
+ page_content=' Rep.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
281
+ page_content=' http://arxiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
282
+ page_content='org/abs/2211.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
283
+ page_content='11659, Cornell University, November 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
284
+ page_content=' [2] Thomas M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
285
+ page_content=' Cover and Joy A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
286
+ page_content=' Thomas, Elements of Information Theory, Wiley, second edition, 2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
287
+ page_content=' [3] Anirudh Sivaraman, Suvinay Subramanian, Mohammad Alizadeh, Sharad Chole, Shang-Tse Chuang, Anurag Agrawal, Hari Balakrishnan, Tom Edsall, Sachin Katti, and Nick McKeown, “Programmable packet scheduling at line rate,” in SIGCOMM, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
288
+ page_content=' [4] Albert Gran Alcoz, Alexander Dietm¨uller, and Laurent Vanbever, “SP-PIFO: Approx- imating push-in first-out behaviors using strict-priority queues,” in NSDI, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
289
+ page_content=' [5] Andrea Asperti and Giuseppe Longo, Categories, Types and Structures: An introduction to category theory for the working computer scientist, Foundations of Computing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
290
+ page_content=' MIT Press, 1991.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
291
+ page_content=' [6] Michael Barr and Charles Wells, Toposes, Triples and Theories, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
292
+ page_content=' 278 of Grundlehren der mathematischen Wissenschaften, Springer, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
293
+ page_content=' [7] Michael Barr and Charles Wells, Category Theory for Computing Science, Prentice Hall, 1990.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
294
+ page_content=' [8] Jiˇr´ı Ad´amek, Horst Herrlich, and George E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
295
+ page_content=' Strecker, Abstract and concrete categories, Dover Publications, 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
296
+ page_content=' [9] Eugenio Moggi, “Notions of computation and monads,” Inf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
297
+ page_content=' and Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
298
+ page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
299
+ page_content=' 93, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
300
+ page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
301
+ page_content=' 55–92, 1991.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
302
+ page_content=' [10] Philip Wadler, “Comprehending monads,” Mathematical Structures in Computer Sci- ence, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
303
+ page_content=' 2, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
304
+ page_content=' 461–493, 1992.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
305
+ page_content=' [11] Philip Wadler, “Monads for functional programming,” in Advanced Functional Pro- gramming: 1st Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
306
+ page_content=' School on Advanced Functional Programming Techniques, Johan Jeur- ing and Erik Meijer, Eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
307
+ page_content=', vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
308
+ page_content=' 925 of Lecture Notes in Computer Science, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
309
+ page_content=' 24–52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
310
+ page_content=' Springer-Verlag, 1995.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
311
+ page_content=' 11' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/BdE1T4oBgHgl3EQfDgNt/content/2301.02878v1.pdf'}
CtE0T4oBgHgl3EQfyQKJ/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:01179e82fa37d7b82490ae4e2101f97a1c888d1a7c823dabb4934460bdbf846d
3
+ size 4259885
DtE4T4oBgHgl3EQfGQwj/content/tmp_files/2301.04892v1.pdf.txt ADDED
@@ -0,0 +1,1590 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Astronomy & Astrophysics manuscript no. Attree_NGA_Paper2_LanguageEdited
2
+ ©ESO 2023
3
+ January 13, 2023
4
+ Activity distribution of comet 67P/Churyumov-Gerasimenko
5
+ from combined measurements of non-gravitational forces and
6
+ torques
7
+ N. Attree1, L. Jorda2, O. Groussin2, J. Agarwal1, R. Lasagni Manghi3, P. Tortora3, 4, M. Zannoni3, 4, and
8
+ R. Marschall5
9
+ 1 Institut für Geophysik und extraterrestrische Physik, Technische Universität Braunschweig, Mendelssohnstr. 3, 38106
10
+ Braunschweig, Germany (e-mail: n.attree@tu-braunschweig.de)
11
+ 2 Aix Marseille Univ, CNRS, CNES, Laboratoire d’Astrophysique de Marseille, Marseille, France
12
+ 3 Alma Mater Studiorum - Università di Bologna, Dipartimento di Ingegneria Industriale, Via Fontanelle 40, I-47121
13
+ Forlì, Italy
14
+ 4 Alma Mater Studiorum - Università di Bologna, Centro Interdipartimentale di Ricerca Industriale Aerospaziale, via
15
+ Baldassarre Carnaccini 12, I-47121, Forlì, Italy
16
+ 5 CNRS, Laboratoire J.-L. Lagrange, Observatoire de la Côte d’Azur, Boulevard de l’Observatoire, CS 34229 - F 06304
17
+ NICE Cedex 4, France
18
+ January 13, 2023
19
+ ABSTRACT
20
+ Aims. Understanding the activity is vital for deciphering the structure, formation, and evolution of comets. We inves-
21
+ tigate models of cometary activity by comparing them to the dynamics of 67P/Churyumov-Gerasimenko.
22
+ Methods. We matched simple thermal models of water activity to the combined Rosetta datasets by fitting to the total
23
+ outgassing rate and four components of the outgassing induced non-gravitational force and torque, with a final manual
24
+ adjustment of the model parameters to additionally match the other two torque components. We parametrised the
25
+ thermal model in terms of a distribution of relative activity over the surface of the comet, and attempted to link this
26
+ to different terrain types. We also tested a more advanced thermal model based on a pebble structure.
27
+ Results. We confirm a hemispherical dichotomy and non-linear water outgassing response to insolation. The southern
28
+ hemisphere of the comet and consolidated terrain show enhanced activity relative to the northern hemisphere and
29
+ dust-covered, unconsolidated terrain types, especially at perihelion. We further find that the non-gravitational torque
30
+ is especially sensitive to the activity distribution, and to fit the pole-axis orientation in particular, activity must be
31
+ concentrated (in excess of the already high activity in the southern hemisphere and consolidated terrain) around the
32
+ south pole and on the body and neck of the comet over its head. This is the case for both the simple thermal model
33
+ and the pebble-based model. Overall, our results show that water activity cannot be matched by a simple model of
34
+ sublimating surface ice driven by the insolation alone, regardless of the surface distribution, and that both local spatial
35
+ and temporal variations are needed to fit the data.
36
+ Conclusions. Fully reconciling the Rosetta outgassing, torque, and acceleration data requires a thermal model that
37
+ includes both diurnal and seasonal effects and also structure with depth (dust layers or ice within pebbles). This shows
38
+ that cometary activity is complex. Nonetheless, non-gravitational dynamics provides a useful tool for distinguishing
39
+ between different thermophysical models and aids our understanding.
40
+ Key words. comets: general, comets: individual (Churyumov-Gerasimenko), planets and satellites: dynamical evolution
41
+ and stability
42
+ 1. Introduction
43
+ Comets are amongst the most primordial Solar System ob-
44
+ jects. They formed directly from the protoplanetary disc
45
+ and survived mostly unaltered for much of their lifetimes
46
+ in the outer Solar System. They are therefore vital targets
47
+ for our understanding of planet formation and the history
48
+ of the early Solar System. Upon entering the inner Solar
49
+ System, comets are heated by the Sun and undergo ac-
50
+ tivity; that is, ices are sublimated and gas and dust are
51
+ ejected. Cometary activity poses open questions related to
52
+ the structure, composition, and thermophysical properties
53
+ of the nucleus material. This is directly connected to their
54
+ formation in the early Solar System. Whether cometary
55
+ nuclei, and by extension planets, formed from the gravi-
56
+ tational collapse of clouds of centimetre-sized pebbles (as
57
+ proposed in Blum et al. 2017) or by continual collisional
58
+ growth (Davidsson et al. 2016) has direct implications for
59
+ the structure and strength of the near-surface material that
60
+ controls outgassing.
61
+ In addition to being directly observable, the outgassing
62
+ produces a reaction force on the nucleus that can alter its
63
+ trajectory (as first recognised by Whipple 1950 and de-
64
+ scribed by Marsden et al. 1973) and rotation state (see
65
+ Samarasinha et al. 2004). Measuring the changing orbits
66
+ Article number, page 1 of 13
67
+ arXiv:2301.04892v1 [astro-ph.EP] 12 Jan 2023
68
+
69
+ A&A proofs: manuscript no. Attree_NGA_Paper2_LanguageEdited
70
+ and spins of comets therefore provides a useful insight into
71
+ the the micro-physics of the activity mechanism.
72
+ Many thermophysical models have been proposed to ex-
73
+ plain the activity (see recent examples by Fulle et al. 2019,
74
+ Gundlach et al. 2020, and Davidsson 2021), and these can
75
+ be compared to the outgassing rates of observed comets. In
76
+ particular, comet 67P/Churyumov-Gerasimenko (67P here-
77
+ after) provides an excellent dataset because it was visited by
78
+ the Rosetta spacecraft between 2014 and 2016. The space-
79
+ craft collected detailed measurements of the size, shape,
80
+ surface properties, and time-varying rotation state and out-
81
+ gassing of the nucleus. Finding the distribution of activity
82
+ across the nucleus of 67P that fits the various measurements
83
+ of the total outgassing rate best (Hansen et al. 2016; Mar-
84
+ shall et al. 2017; Combi et al. 2020; Läuter et al. 2020, etc.)
85
+ has produced several so-called activity maps (e.g. Marschall
86
+ et al. 2016, 2017; Läuter et al. 2020, ), which are often ex-
87
+ pressed as an effective active fraction (EAF) relative to a
88
+ pure water-ice surface. When examining only the summed
89
+ total outgassing, however, there is always a degeneracy in
90
+ the retrieved activity distribution (Marschall et al. 2020),
91
+ whilst, at the same time, the effects of seasonal changes in
92
+ insolation and dust cover across the surface of 67P are com-
93
+ plicated (Keller et al. 2017; Cambianica et al. 2021). Com-
94
+ paring the effects of a model outputted non-gravitational
95
+ acceleration (NGA) and torque (NGT) to the dynamics of
96
+ 67P can provide a further constraint on the model parame-
97
+ ters and on our understanding of the activity (Attree et al.
98
+ 2019; Kramer et al. 2019; Kramer & Läuter 2019; Mottola
99
+ et al. 2020).
100
+ Simple NGA models, such as those by Marsden et al.
101
+ (1973) and Yeomans & Chodas (1989), parametrise the
102
+ acceleration using variables scaled to a general water-
103
+ production curve, and therefore provide limited insight
104
+ into the physics of the activity on an individual comet.
105
+ More complex models (following from Sekanina 1993) re-
106
+ late the observed NGA and NGT to the outgassing via
107
+ a thermal model and some distribution of ices or active
108
+ areas across the nucleus surface. If independent measure-
109
+ ments of this distribution and/or the outgassing rate can
110
+ be made, then cometary masses and spin axes can be mea-
111
+ sured from ground-based observations, as was achieved for
112
+ 67P (Davidsson & Gutiérrez 2005; Gutiérrez et al. 2005).
113
+ Rosetta then provided both the detailed outgassing data
114
+ mentioned above, as well as precise measurements of the
115
+ nucleus position and rotation via radio-tracking and op-
116
+ tical navigation. As summarised in Mottola et al. (2020),
117
+ various attempts have been made to compare thermal mod-
118
+ els to the NGA and NGT forces of 67P (Keller et al. 2015;
119
+ Davidsson et al. 2022) and to fit its non-gravitational tra-
120
+ jectory (Kramer & Läuter 2019), rotation state (Kramer
121
+ et al. 2019), and both in combination with outgassing (At-
122
+ tree et al. 2019).
123
+ In Attree et al. (2019), our previous paper on this topic,
124
+ we used the EAF formalism to fit surface distributions to
125
+ the observed Earth-comet range (the most accurate compo-
126
+ nent of the comet ephemeris, based on the spacecraft radio
127
+ tracking), total gas production (measured by ROSINA, the
128
+ Rosetta Spectrometer for Ion and Neutral Analysis; Hansen
129
+ et al. 2016), and the change in spin rate (z component of
130
+ the torque, measured as part of the nucleus shape recon-
131
+ struction; Jorda et al. 2016). We found that a large EAF in
132
+ the southern hemisphere of the comet, as well as an increase
133
+ in EAF around perihelion, were needed to fit both the to-
134
+ tal production measurements and the NGA. However, our
135
+ model was limited by not considering the other components
136
+ of the NGT (i.e. the change in the spin axis orientation, as
137
+ well as its magnitude), and by a rather nonphysical way
138
+ of splitting the surface into areas of differing activity. Ad-
139
+ ditionally, discontinuities in the cometary heliocentric tra-
140
+ jectory reconstructed by the European Space Operations
141
+ Centre that arose because the NGA was excluded from the
142
+ operational dynamical model, have complicated the anal-
143
+ ysis by making it difficult to extract smooth acceleration
144
+ curves.
145
+ Kramer & Läuter (2019) addressed this problem by per-
146
+ forming their own N-body integrations with a model fol-
147
+ lowing Yeomans & Chodas (1989) and varying initial con-
148
+ ditions. They then fitted a smoothed, interpolated curve to
149
+ the residuals to extract time-varying NGA curves, but they
150
+ did not compare them to a full thermal model. In a separate
151
+ paper (Kramer et al. 2019), the authors did compare a phys-
152
+ ical thermal model, again using the EAF formalism, to both
153
+ the rotation rate and axis orientation data. Similarly to our
154
+ results, their results also required a relatively higher EAF in
155
+ the southern than in the northern hemisphere, as well as an
156
+ enhanced outgassing response to insolation around perihe-
157
+ lion to fit the data. Kramer & Läuter (2019) noted that the
158
+ NGT is much more dependent on the spatial distribution
159
+ of activity than the NGA.
160
+ Since
161
+ then,
162
+ two
163
+ additional
164
+ reconstructions
165
+ of
166
+ the
167
+ Rosetta/67P trajectory have been performed (Farnocchia
168
+ et al. 2021; Lasagni Manghi et al. 2021). Farnocchia et al.
169
+ (2021) used a rotating-jet model following Sekanina (1993)
170
+ to fit ground-based astrometric observations and radio-
171
+ ranging measurements before and after perihelion (where
172
+ the spacecraft NGAs are smaller and the range accuracy is
173
+ higher). Lasagni Manghi et al. (2021), on the other hand,
174
+ used the full Rosetta two-way range and differential one-
175
+ way range (∆DOR) dataset, also including low-accuracy
176
+ data close to perihelion. They tested various NGA models,
177
+ including a rotating-jet model, and found a best-fit tra-
178
+ jectory using an empirical, stochastic acceleration model.
179
+ Both of these works produced acceleration curves to which
180
+ a thermal model can be compared.
181
+ Davidsson et al. (2022) did just that by comparing
182
+ the output of a more complex thermal model (NIMBUS;
183
+ Davidsson 2021) to the acceleration curves of Farnocchia
184
+ et al. (2021) and Kramer & Läuter (2019). They found rel-
185
+ atively good agreement without fitting, but had to vary
186
+ several model parameters (e.g. the sublimation-front depth
187
+ and the gas diffusivity) between the northern and south-
188
+ ern hemispheres and pre- and post-perihelion, in order to
189
+ match the outgassing data. This reinforces the ideas of a
190
+ hemispheric dichotomy and time-dependent thermophysi-
191
+ cal properties, and it also demonstrates the complicated
192
+ nature of trying to model the full thermophysical system of
193
+ sublimation, gas flow, and dust.
194
+ These studies show the usefulness of considering the
195
+ non-gravitational dynamics. No study has analysed the full
196
+ six components of NGA and NGT simultaneously, how-
197
+ ever (we analyse all six here, but only four are included in
198
+ the formal fitting procedure), and several other weaknesses
199
+ exist, such as nonphysical surface distributions or compli-
200
+ cated descriptions leading to unfitted models. It is per-
201
+ tinent, therefore, to re-examine the full non-gravitational
202
+ dynamics of 67P with a simple thermal model that can
203
+ be parametrised in terms of real surface features while be-
204
+ Article number, page 2 of 13
205
+
206
+ N. Attree et al.: Activity distribution of comet 67P
207
+ ing easily compared with more complicated models. This
208
+ is what we attempt to do here, bearing in mind that the
209
+ aim is not to find the full description of cometary activity,
210
+ but a model that adequately describes the data and points
211
+ towards the underlying physics.
212
+ The rest of this paper is organised as follows: in Sec-
213
+ tion 2 we describe how we updated the model of Attree
214
+ et al. (2019) for use here. In Section 3 we describe three
215
+ different parametrisations of the surface activity distribu-
216
+ tion and their results in the model fit. These results are
217
+ discussed, with reference to a run with the more advanced
218
+ thermal model of Fulle et al. (2020) in Section 4, before we
219
+ conclude in Section 5.
220
+ 2. Method
221
+ We followed the method of the first paper (Attree et al.
222
+ 2019) by first calculating surface temperatures over a shape
223
+ model of 67P (SHAP7; Preusker et al. 2017) with a simple
224
+ energy-balance thermal model and then computing the re-
225
+ sulting non-gravitational forces and torques and implement-
226
+ ing them in an N-body integration. The model was then
227
+ optimised by scaling the relative activity of various areas
228
+ of the shape model up and down, minimising the residuals
229
+ to the observed datasets: the Earth-comet range (i.e. the
230
+ scalar projection of the three-dimensional comet position in
231
+ the Earth-comet direction, R, with NR = 1000 data points)
232
+ or the directly extracted NGAs from Lasagni Manghi et al.
233
+ (2021) (with NNGA = 17000 data points in each of the three
234
+ components); the total gas production (NQ = 787, Hansen
235
+ et al. 2016); and the spin-axis (z) aligned component of the
236
+ torque (NTz = 1000, Jorda et al. 2016). Additionally, we
237
+ now also computed the change in the orientation of the ro-
238
+ tation axis (Kramer et al. 2019) and used this as an output
239
+ to compare different models.
240
+ The thermal model computes the surface energy-
241
+ balance, taking insolation, surface thermal emission, sub-
242
+ limation of water ice, projected shadows, and self-heating
243
+ into account (see Attree et al. 2019 for details). Heat con-
244
+ duction into the nucleus is neglected for numerical reasons,
245
+ but is small because of the low thermal inertia of the comet
246
+ (Gulkis et al. 2015). Heat conduction would mainly affect
247
+ night-time temperatures, which are very low and contribute
248
+ little to the outgassing (but see the discussion in Section 4).
249
+ Again for numerical reasons, surface temperatures are cal-
250
+ culated roughly once every 10 days for a full 12.4 hour ro-
251
+ tation, and the derived quantities are interpolated (see de-
252
+ tails below) to produce smooth curves over the full mission
253
+ period of about two years. Surface temperatures are each
254
+ computed twice, once assuming an effective active fraction
255
+ EAF = 0 (i.e. pure grey-body dust surface), and once with
256
+ EAF = 1 (i.e. sublimation from a pure water-ice surface),
257
+ and the temperatures and sublimation rates are saved. In
258
+ the fitting process, the pure water-ice sublimation rate is
259
+ then scaled by a variable EAF and is used, along with
260
+ the sublimation gas velocity calculated from the zero-ice
261
+ surface temperature, to compute the outgassing force per
262
+ facet. The momentum coupling parameter was assumed to
263
+ be η = 0.7 (Attree et al. 2019). Torque per facet was also
264
+ calculated here using the “torque efficiency” formalism used
265
+ before (Keller et al. 2015), where τ is the facet torque ef-
266
+ ficiency or moment arm, which is a geometric factor that
267
+ was computed once at the beginning of the run. The use of
268
+ the higher zero-ice temperature for the gas thermal veloc-
269
+ ity assumes that the gas equilibrates with the dusty surface,
270
+ and this means that our derived EAF values may be lower
271
+ estimates compared with some other thermal models.
272
+ The N-body integration was performed using the open-
273
+ source REBOUND code1 (Rein & Liu 2012), complete
274
+ with full general relativistic corrections (Newhall et al.
275
+ 1983) as implemented by the REBOUNDx extension pack-
276
+ age2, and including all the major planets as well as Pluto,
277
+ Ceres, Pallas, and Vesta. Objects were initialised with their
278
+ positions and velocities in the J2000 ecliptic coordinate
279
+ system according to the DE438 Solar System ephemerides
280
+ (Standish 1998), with 67P given its initial state vector
281
+ from the new Rosetta trajectory reconstruction of Lasagni
282
+ Manghi et al. (2021) (Table A.1). The system was then inte-
283
+ grated forward in time from t = −350 to +350 days relative
284
+ to perihelion, using the IAS15 integrator (Rein & Spiegel
285
+ 2015) and the standard equations of motion, with the addi-
286
+ tion of a custom acceleration, aNG, for 67P, provided by our
287
+ model. The Earth-comet range, which is the most accurate
288
+ component of the comet trajectory, was computed for com-
289
+ parison with the reconstructed trajectory (extracted using
290
+ the SpiceyPy Python package; Annex et al. 2020).
291
+ A bounded least-squares fit to the residuals was then
292
+ performed using standard methods implemented in Scien-
293
+ tific Python whilst varying the EAF parameters. When
294
+ forming the overall objective function to be minimised (see
295
+ Eqns. 9 and 10. in Attree et al. 2019), the datasets were
296
+ weighted by a factor λ so that each contributed roughly the
297
+ same to the overall fit (see Table 1). The datasets used in all
298
+ fits were the model outputted total outgassing rate and the
299
+ z component of the torque, both with λQ = λTz = 1. Fur-
300
+ thermore, in some fits, we then used the computed Earth-
301
+ comet range (with λR = 0.02), while in others, we directly
302
+ compared to the three components of the NGA extracted by
303
+ Lasagni Manghi et al. (2021) in the cometocentric radial-
304
+ transverse-normal frame (radial to the Sun, ˆr, tangential
305
+ to the orbit, ˆt, and normal to it). In this case, the inte-
306
+ gration was only performed once at the end to check the
307
+ Earth-comet range, but the weighting was zero in the fit
308
+ (λR = 0), while λNGA = 1. Performing the N-body inte-
309
+ gration only once speeds the process up by several times,
310
+ with individual runs taking a few minutes and fits taking
311
+ up to a day, depending on the parameters. All parameters
312
+ were interpolated to the observational data sampling-times
313
+ using the Fourier method described below.
314
+ We first confirm that the Lasagni Manghi et al. (2021)
315
+ accelerations match the real comet trajectory well when
316
+ they are input into our N-body integration, and they re-
317
+ cover the Earth-comet range to within a few hundred me-
318
+ tres. This residual, which is most likely the result of the
319
+ different integration techniques and perturbing bodies we
320
+ used, is well below the uncertainty of our thermal model
321
+ runs.
322
+ Previously, the x and y components of the torque vector
323
+ were discarded, but they were now used when we calculated
324
+ the changes in pole orientation. In principle, the rates of
325
+ change of the angular velocity (Ω) of the comet around its
326
+ three principal axes can be related (see e.g. Julian 1990) to
327
+ 1 http://rebound.readthedocs.io/en/latest/
328
+ 2 http://reboundx.readthedocs.io/en/latest/index.html
329
+ Article number, page 3 of 13
330
+
331
+ A&A proofs: manuscript no. Attree_NGA_Paper2_LanguageEdited
332
+ the torque components by
333
+ Ix ˙Ωx = (Iy − Iz)ΩyΩz + Tx,
334
+ Iy ˙Ωy = (Iz − Ix)ΩxΩz + Ty,
335
+ Iz ˙Ωz = (Ix − Iy)ΩxΩy + Tz,
336
+ (1)
337
+ where Ix = 9.559 × 1018, Iy = 1.763 × 1019, and Iz =
338
+ 1.899×1019 kg m2 are the moments of inertia derived from
339
+ the shape model assuming a constant density of 538 kg m−3
340
+ (Preusker et al. 2017), and to the pole orientation right
341
+ ascension, RA, and declination, Dec, by
342
+ ˙ψ = −Ωy cos(ψ) − Ωx sin(ψ)
343
+ tan(θ)
344
+ + Ωz,
345
+ ˙φ = Ωy cos(ψ) + Ωx sin(ψ)
346
+ sin(θ)
347
+ ,
348
+ ˙θ = Ωx cos(ψ) − Ωy sin(ψ),
349
+ (2)
350
+ via the Euler angles φ = π/2 + RA, θ = π/2 − Dec, and ψ.
351
+ In practice, the fact that our model runs over individual
352
+ rotations separated by gaps means that the torque curves
353
+ are discontinuous and cannot be directly integrated. We
354
+ therefore followed the technique of Kramer et al. (2019) and
355
+ applied a Fourier analysis to the torque curves. The method
356
+ proceeds by i) extracting the torque over a single rotation
357
+ as a function of the sub-solar longitude, using Kramer et al.
358
+ (2019) Eqns. 26, 27, ii) computing the Fourier transform as
359
+ a function of sub-solar longitude using Eqn. 23, iii) inter-
360
+ polating the Fourier terms as smooth curves over the full
361
+ Rosetta period; Eqn. 24, and iv) reconstructing the torque
362
+ at a chosen time by the inverse Fourier transform; Eqn.
363
+ 25. This allows the calculation of a smoothly interpolated
364
+ torque value at any given time, Tx,y,z(t), for use in the ro-
365
+ tation equations (1).
366
+ The set of simultaneous differential equations given by
367
+ Eqns. 1 and 2 was then integrated using standard func-
368
+ tions in Scientific Python and the initial conditions RA =
369
+ 69.427◦, Dec = 64.0◦, and ψ = 330.703◦ at t = −377.22
370
+ days relative to perihelion (Kramer et al. 2019) for the pe-
371
+ riod t = [−377.22 : 402.48], corresponding to the duration
372
+ of the Rosetta measurements. The resulting RA(t), Dec(t)
373
+ values were not used in the fit due to technical limita-
374
+ tions, but were directly compared with the observations as
375
+ a model output.
376
+ 3. Results
377
+ 3.1. Model C
378
+ We began by rerunning the best-fit model of the previous
379
+ paper, designated model C in Attree et al. (2019). This
380
+ model parametrised the activity distribution by splitting
381
+ the surface into the 26 regions, defined by Thomas et al.
382
+ (2015) (see their figures for maps), and then grouping them
383
+ into five super-regions following Marschall et al. (2016)(see
384
+ Figure 4 in Attree et al. 2019), before finally splitting the
385
+ Southern super-region into two (see Figure 17 in Attree
386
+ et al. 2019) and allowing these to vary their EAF with time.
387
+ With 6 super-regions and the 6 time-variation parameters,
388
+ there are a total of 12 free parameters in this model. These
389
+ super-regions consist of region 1, covering the equatorial ar-
390
+ eas; region 2, covering the base of the comet body and top
391
+ of the head; the individual regions Hathor and Hapi; and
392
+ +Z
393
+ -Z
394
+ Fig. 1. Peak effective active fraction at perihelion for solution
395
+ C, mapped onto the shape model.
396
+ −400
397
+ −300
398
+ −200
399
+ −100
400
+ 0
401
+ 100
402
+ 200
403
+ 300
404
+ 400
405
+ Days from Perihelion
406
+ 0.0
407
+ 0.1
408
+ 0.2
409
+ 0.3
410
+ 0.4
411
+ Active Fraction
412
+ So th -
413
+ Region 1
414
+ Region 2
415
+ Hathor
416
+ Hapi
417
+ So th +
418
+ Fig. 2. Time-varying effective active Fraction for solution C.
419
+ two southern super-regions split on a per-facet basis by the
420
+ sign of the z component of the torque efficiency (i.e. south
421
+ positive with τz > 0 and south negative with τz < 0).
422
+ This splitting was the only way in which a satisfactory fit
423
+ to the z torque (i.e. rotation-rate data) could be achieved,
424
+ but it remains somewhat artificial. Figure 1 shows the best-
425
+ fit solution achieved here, mapped onto the shape model.
426
+ This shows the discontinuous and patchy appearance of the
427
+ southern super-regions, as well as the north-south EAF di-
428
+ chotomy and activity in Hapi (the light blue area in the
429
+ northern neck region).
430
+ We optimised this model again here and, with a slightly
431
+ differing procedure for sampling and interpolating the com-
432
+ putational output, produced very similar results to before,
433
+ with no significant improvement in the fit. Next, we in-
434
+ stead fit the model directly to the Lasagni Manghi et al.
435
+ (2021) NGA curves as described above, producing the best-
436
+ fit solution shown mapped onto the shape-model in Figure
437
+ 1 (where the values shown are peak EAF, the maximum
438
+ value for all times), and with time in Figure 2. The out-
439
+ put is very similar to the previous solution in Attree et al.
440
+ (2019), but Figure 2 shows an even more pronounced spike
441
+ in EAF around perihelion than before.
442
+ The model fits are shown in the orange curves in Fig-
443
+ ures 3, 4, and 5, with the fit statistics in the first line of
444
+ Article number, page 4 of 13
445
+
446
+ 0.00
447
+ 0.05
448
+ 0.10
449
+ 0.15
450
+ 0.20
451
+ 0.25
452
+ 0.30
453
+ 0.35
454
+ 0.40
455
+ Active FractionN. Attree et al.: Activity distribution of comet 67P
456
+ −300
457
+ −200
458
+ −100
459
+ 0
460
+ 100
461
+ 200
462
+ Days from Perihelion
463
+ 10
464
+ 26
465
+ 10
466
+ 27
467
+ 10
468
+ 28
469
+ Ou gassing Ra e (s
470
+ −1
471
+ )
472
+ Model C
473
+ Model D
474
+ Model E
475
+ Observed
476
+ Fig. 3. Observed total gas production (ROSINA values from
477
+ Hansen et al. 2016) compared to solutions C, D, and E.
478
+ 300
479
+ 200
480
+ 100
481
+ 0
482
+ 100
483
+ 200
484
+ 300
485
+ Days from Perihelion
486
+ 200
487
+ 150
488
+ 100
489
+ 50
490
+ 0
491
+ 50
492
+ 100
493
+ 150
494
+ 200
495
+ Range Residuals (km)
496
+ Model C
497
+ Model D
498
+ Model E
499
+ Fig. 4. Observed minus computed Earth-comet range, R, for
500
+ solutions C, D, and E.
501
+ Table 1. The z torque (Fig. 5) and total gas production
502
+ from ROSINA (Fig. 3) are reasonably well fit, with the
503
+ perihelion peak-values matched, but with a slightly differ-
504
+ ing shape around the inbound equinox roughly 100 days
505
+ before perihelion. An improvement in the trajectory fit is
506
+ attained, with the new RMS residual value of 34 km re-
507
+ duced from the previously achieved 46 km. The shape of
508
+ the curve is similar.
509
+ The orange curves in Figures 6, 7, and 8 show the in-
510
+ dividual acceleration curves in the cometocentric (ˆr, ˆt, ˆn)
511
+ frame compared to the values extracted by Lasagni Manghi
512
+ et al. (2021). The radial component makes up the bulk of
513
+ the acceleration and is reasonably well matched by model
514
+ C, with the peak value being ∼ 50% too high. The normal
515
+ and tangential components are of smaller magnitude and
516
+ are reasonably well fit; the secondary, negative peak of the
517
+ tangential component after perihelion is the worst area of
518
+ the fit. The remaining 34 km residuals to the observed tra-
519
+ jectory most likely stem from our inability to fit this area
520
+ of the tangential acceleration, combined with the too large
521
+ radial component peak.
522
+ −300
523
+ −200
524
+ −100
525
+ 0
526
+ 100
527
+ 200
528
+ 300
529
+ Days from Perihelion
530
+ 0.0
531
+ 0.2
532
+ 0.4
533
+ 0.6
534
+ 0.8
535
+ 1.0
536
+ T
537
+ or ue (Nm)
538
+ 1e7
539
+ Observed
540
+ Model C
541
+ Model D
542
+ Model E
543
+ Fig. 5. Smoothed observed z component of the torque com-
544
+ pared to solutions C, D, and E. The grey area represents the 1σ
545
+ uncertainty (see Attree et al. 2019 for details).
546
+ 300
547
+ 200
548
+ 100
549
+ 0
550
+ 100
551
+ 200
552
+ 300
553
+ 400
554
+ Days from Perihelion
555
+ 0.0
556
+ 0.2
557
+ 0.4
558
+ 0.6
559
+ 0.8
560
+ 1.0
561
+ NGA r (AU d
562
+ 2)
563
+ 1e
564
+ 9
565
+ Observed
566
+ Model C
567
+ Model D
568
+ Model E
569
+ Fig. 6. Observed radial acceleration in the comet (ˆr, ˆt, ˆn) frame
570
+ with the 5σ uncertainty (from Lasagni Manghi et al. 2021), com-
571
+ pared to solutions C, D, and E. Higher-order Fourier terms cor-
572
+ responding to daily oscillations are omitted for clarity, but are
573
+ included in the fit.
574
+ When the pole orientation was calculated, as shown in
575
+ the orange curve of Figure 9, it was a very poor fit to the
576
+ data, moving off in the opposite direction to the observed
577
+ changes. This demonstrates that the problem is ill-posed
578
+ with multiple solutions, and it also highlights the useful-
579
+ ness of including the RA, Dec pole measurement to help
580
+ distinguish between different models that fit the other data
581
+ equally well.
582
+ 3.2. Model D
583
+ We now proceed with a more physically meaningful model.
584
+ This was constructed using the list of 71 sub-regions de-
585
+ fined in Thomas et al. (2018) (see the reference for maps of
586
+ their location). We again created super-regions by collecting
587
+ these sub-regions, but this time, by placing them into one of
588
+ the five morphological categories of Thomas et al. (2015):
589
+ ‘dust-covered terrains’ (Dust for short), ‘brittle materials
590
+ Article number, page 5 of 13
591
+
592
+ A&A proofs: manuscript no. Attree_NGA_Paper2_LanguageEdited
593
+ Table 1. Fit statistics for best-fit models C, D, and E, and the two unfitted versions of F.
594
+ Solution
595
+ Weighting
596
+ χ2
597
+ λQ
598
+ λTz
599
+ λR
600
+ λNGA
601
+ R
602
+ Q
603
+ Tz
604
+ NGAr
605
+ NGAt
606
+ NGAn
607
+ Obj
608
+ C
609
+ 1
610
+ 1
611
+ 0
612
+ 1
613
+ 34.1
614
+ 4.53
615
+ 1.36
616
+ 1.18
617
+ 1.32
618
+ 0.44
619
+ 1.20
620
+ D
621
+ 1
622
+ 1
623
+ 0.02
624
+ 0
625
+ 88.8
626
+ 3.60
627
+ 1.10
628
+ 2.00
629
+ 1.60
630
+ 0.90
631
+ 2.35
632
+ E
633
+ 1
634
+ 1
635
+ 0.02
636
+ 0
637
+ 83.4
638
+ 3.75
639
+ 0.77
640
+ 1.78
641
+ 1.58
642
+ 0.89
643
+ 2.22
644
+ F dust SH
645
+ -
646
+ -
647
+ -
648
+ -
649
+ 324.5
650
+ 4.62
651
+ 2.09
652
+ 4.12
653
+ 1.71
654
+ 1.01
655
+ -
656
+ F ice SH
657
+ -
658
+ -
659
+ -
660
+ -
661
+ 459.2
662
+ 5.64
663
+ 3.02
664
+ 2.22
665
+ 1.63
666
+ 1.00
667
+ -
668
+ Notes. Model E is highlighted as the preferred solution. The model outputs (water production rate, z component of NGT, and
669
+ the three components of NGA) are compared to the observations, producing the χ2 statistics, which are then weighted according
670
+ to the λ values and combined in the objective function (Eqns. 9 and 10. in Attree et al. 2019) to produce the combined fit statistic
671
+ Obj. All values are dimensionless, although the range values R correspond one-to-one to kilometers.
672
+ 300
673
+ 200
674
+ 100
675
+ 0
676
+ 100
677
+ 200
678
+ 300
679
+ 400
680
+ Days from Perihelion
681
+ 0.5
682
+ 0.0
683
+ 0.5
684
+ 1.0
685
+ 1.5
686
+ 2.0
687
+ NGA t (AU d
688
+ 2)
689
+ 1e
690
+ 10
691
+ Observed
692
+ Model C
693
+ Model D
694
+ Model E
695
+ Fig. 7. Observed tangential acceleration in the comet (ˆr, ˆt, ˆn)
696
+ frame compared to solutions C, D, and E.
697
+ 300
698
+ 200
699
+ 100
700
+ 0
701
+ 100
702
+ 200
703
+ 300
704
+ 400
705
+ Days from Perihelion
706
+ 0.0
707
+ 0.5
708
+ 1.0
709
+ 1.5
710
+ 2.0
711
+ 2.5
712
+ 3.0
713
+ 3.5
714
+ NGA n (AU d
715
+ 2)
716
+ 1e
717
+ 10
718
+ Observed
719
+ Model C
720
+ Model D
721
+ Model E
722
+ Fig. 8. Observed normal acceleration in the comet (ˆr, ˆt, ˆn) frame
723
+ compared to solutions C, D, and E.
724
+ with pits and circular structures’ (Brittle), ‘large-scale de-
725
+ pressions’ (Depression), ‘smooth terrains’ (Smooth), and
726
+ ‘exposed consolidated surfaces’ (Rock). The sub-regions
727
+ were assigned according to their descriptions in the table
728
+ in Thomas et al. (2018). A few ambiguous examples were
729
+ 67
730
+ 68
731
+ 69
732
+ 70
733
+ 71
734
+ 72
735
+ Right Ascensi n (
736
+
737
+ )
738
+ 63.50
739
+ 63.75
740
+ 64.00
741
+ 64.25
742
+ 64.50
743
+ 64.75
744
+ 65.00
745
+ 65.25
746
+ 65.50
747
+ Declinati n (
748
+
749
+ )
750
+ M del C
751
+ M del D
752
+ M del E
753
+ Observed
754
+ Fig. 9. Observed pole orientation (Ra, Dec) compared to solu-
755
+ tions C, D, and E. The thickness of the model lines is due to the
756
+ daily oscillations. Error bars are plotted for the observations,
757
+ but are small at this scale.
758
+ tested in both the categories to which their descriptions
759
+ could apply, without altering our results significantly. The
760
+ Rock and Smooth terrain types both cover significant ar-
761
+ eas of the southern hemisphere and following the results
762
+ of the first paper, we therefore allowed their EAFs to vary
763
+ with time in the same way as for model C. The facets in
764
+ each super-region all have the same EAF (either constant or
765
+ time-varying), regardless of the hemisphere in which they
766
+ are located. With five regions and 6 time-variation param-
767
+ eters, there are 11 parameters in total for this model, des-
768
+ ignated ‘model D’.
769
+ Figure 10 shows the peak activity in our best-fit solution
770
+ for model D mapped onto the shape model, and Fig. 11
771
+ shows the time variation. High activity is again favoured
772
+ in the southern hemisphere, with the Rock and Smooth
773
+ regions seeing much higher activity than the Dusty, Brittle,
774
+ and Depression regions, especially around perihelion.
775
+ Model D is shown as green curves in Figures 3 - 9. The fit
776
+ statistics are again shown in Table 1. This model produces
777
+ a similar, if slightly improved, fit to the total outgassing
778
+ measurements, while slightly degrading the trajectory and
779
+ rotation-rate fits compared to model C. The reasons for the
780
+ poorer trajectory fit can be seen in the acceleration curves
781
+ in Figures 6, 7, and 8. The modelled radial component of
782
+ the acceleration is still slightly too large when compared
783
+ Article number, page 6 of 13
784
+
785
+ N. Attree et al.: Activity distribution of comet 67P
786
+ +Z
787
+ -Z
788
+ Fig. 10. Peak effective active fraction at perihelion for solution
789
+ D, mapped onto the shape model.
790
+ −400
791
+ −300
792
+ −200
793
+ −100
794
+ 0
795
+ 100
796
+ 200
797
+ 300
798
+ 400
799
+ Days from Perihelion
800
+ 0.000
801
+ 0.025
802
+ 0.050
803
+ 0.075
804
+ 0.100
805
+ 0.125
806
+ 0.150
807
+ 0.175
808
+ 0.200
809
+ Acti e Fraction
810
+ Dust
811
+ Brittle
812
+ Smooth
813
+ Depression
814
+ Rock
815
+ Fig. 11. Time-varying effective active fraction for solution D.
816
+ to the observations, while the tangential and normal com-
817
+ ponents are now much worse than before, with the curves
818
+ roughly the correct shape, but too small in magnitude. An
819
+ attempt to fit model D directly to the accelerations did
820
+ not improve the trajectory, and the individual super-region
821
+ NGA curves showed no obvious combination that would fit
822
+ the accelerations better.
823
+ Figure 9 shows that model D additionally fails to repro-
824
+ duce the observed changes in pole direction. However, the
825
+ curve now goes in the correct direction, but with a magni-
826
+ tude that is too large compared to the completely incorrect
827
+ prediction of model C. This suggests that the more phys-
828
+ ically meaningful model has merit, despite the degraded
829
+ trajectory fit, and it motivated us to make further adjust-
830
+ ments to try and fit all the data below.
831
+ 3.3. Model E
832
+ Because model D fits most of the data well but increasingly
833
+ fails with the magnitude of the pole direction changes, we
834
+ sought to modify it by adjusting the NGT. Specifically, in
835
+ order to fit all the data, the comet must produce a smaller
836
+ amount of non axial-aligned torque (x and y components),
837
+ while the rest of the torque and accelerations remain the
838
+ same. We achieved this in model E with another, somewhat
839
+ artificial, splitting of the Rock super-region into two super-
840
+ regions based on their torque contributions. This splitting
841
+ was performed on a sub-region basis, rather than on the
842
+ per-facet basis of model C, in order to produce contiguous
843
+ areas that allowed us to see the general trends in activity
844
+ across different parts of the comet surface. The modulus of
845
+ the torque efficiency (|τ|) was first calculated for each facet
846
+ (top left in figure 12) before the area-weighted mean for
847
+ each sub-region was calculated and the Rock super-region
848
+ was split into ‘low torque’ (|τ| lower than the median sub-
849
+ region value) and ‘high torque’ (|τ| greater than the median
850
+ value). Both of these super-regions were allowed to vary
851
+ with time, leaving a total of 13 free parameters.
852
+ Figures 13 and 14 show the best-fit solution. This was
853
+ found by manually adjusting the optimised solution by eye
854
+ to match the pole-direction data. The results are very sim-
855
+ ilar to those of model D, except that the regions of rocky
856
+ terrain with high torque efficiency are reduced to an inter-
857
+ mediate value of activity, between that of the rest of Rock
858
+ and the other terrain types. The red curves in Figures 3 -
859
+ 9 show that this adjustment has little effect on the trajec-
860
+ tory, production, and rotation-rate fits, but now produces
861
+ an excellent match to the pole-direction data as well. Thus,
862
+ model E represents our best-fit solution overall.
863
+ When the acceleration curves are considered in detail,
864
+ model E fails to reproduce the tangential and normal com-
865
+ ponents in the same way as model D. The peak radial accel-
866
+ eration is slightly reduced, however, resulting in a slightly
867
+ better trajectory fit than for model D. We once again sought
868
+ improvements in the acceleration by fitting directly to the
869
+ curves, as well as examining the acceleration produced by
870
+ individual regions, but no overall better fit was found. Every
871
+ improvement in the acceleration curves led to a correspond-
872
+ ing degradation in the rotation fits.
873
+ 4. Discussion
874
+ Our best-fit model overall is model E. This model is based
875
+ on a splitting of the surface according to morphological unit
876
+ types, with an artificially imposed further splitting accord-
877
+ ing to torque efficiency and a time-varying EAF. A num-
878
+ ber of trends can be seen across all the solutions, however,
879
+ which we discuss now, before we return to the interpreta-
880
+ tion of model E.
881
+ In common with the previous results (Attree et al.
882
+ 2019), all models firstly require a higher EAF in the south-
883
+ ern than the northern hemisphere, as well as an EAF that
884
+ increases around perihelion. This increase in activity, over
885
+ and above the increase expected with heliocentric distance,
886
+ is a common result in the literature (Keller et al. 2015;
887
+ Kramer et al. 2019; Davidsson et al. 2022) and implies a
888
+ non-linear outgassing response to insolation. High activity
889
+ at perihelion is needed to fit the maximum outgassing rate
890
+ as well as the sharp peak in acceleration, which is mostly
891
+ contained in the radial component.
892
+ Non-gravitational torque, as expressed in the period and
893
+ spin-axis changes, is much more dependent on the exact
894
+ spatial distribution of activity (as also found by Kramer
895
+ & Läuter 2019), especially within this very active south-
896
+ ern hemisphere. For example, the correct magnitude of the
897
+ pole-direction fit is achieved in model E by distributing the
898
+ activity around the southern hemisphere in a specific way:
899
+ high activity in regions with low torque efficiency around
900
+ the south pole, with lower activity in areas with a high
901
+ Article number, page 7 of 13
902
+
903
+ 0.025
904
+ 0.050
905
+ 0.075
906
+ 0.100
907
+ 0.125
908
+ 0.150
909
+ 0.175
910
+ 0.200
911
+ Active FractionA&A proofs: manuscript no. Attree_NGA_Paper2_LanguageEdited
912
+
913
+
914
+ 2
915
+ 4
916
+ 6
917
+ 8
918
+ Total Insolation (J m−2)
919
+ 1e9
920
+ 20
921
+ 40
922
+ 60
923
+ 80
924
+ 100
925
+ 120
926
+ Gravitational Slope (deg.)
927
+ 500
928
+ 1000
929
+ 1500
930
+ 2000
931
+ 2500
932
+ Torque Efficiency (Nm)
933
+ -Z
934
+ Fig. 12. Various datasets mapped onto the southern hemisphere
935
+ of the comet. From top: Modulus of torque efficiency (|τ|), a ge-
936
+ ometric factor as described in the text; gravitational slope, i.e.
937
+ the angle between facet normal and local gravity vector; total
938
+ integrated insolation; and peak insolation. The three white lines
939
+ indicate the direction of the −r, −t, and −n vectors, averaged
940
+ over one rotation period at perihelion, i.e. the time-averaged di-
941
+ rections towards the Sun, ‘backwards’, and ‘down’ in the orbital
942
+ frame of the comet.
943
+ +Z
944
+ -Z
945
+ Fig. 13. Peak effective active fraction at perihelion for solution
946
+ E, mapped onto the shape model.
947
+ −400
948
+ −300
949
+ −200
950
+ −100
951
+ 0
952
+ 100
953
+ 200
954
+ 300
955
+ 400
956
+ Days from Perihelion
957
+ 0.00
958
+ 0.05
959
+ 0.10
960
+ 0.15
961
+ 0.20
962
+ Active Fraction
963
+ D st
964
+ Brittle
965
+ Smooth
966
+ Depression
967
+ Rock
968
+ Rock - Low ta
969
+ Fig. 14. Time-varying effective active fraction for solution E.
970
+ torque efficiency, such as towards the extremities of the
971
+ nucleus and parts of the head. This agrees well with the
972
+ distribution seen in Kramer et al. (2019) (see their Figs. 9
973
+ and 10). As shown in Figure 12, these low-torque areas and
974
+ physical parameters, such as the total amount or peak of
975
+ insolation received or the gravitational slopes, do not ap-
976
+ pear to be correlated. The fact that morphologically similar
977
+ and similarly insolated regions on the head and body show
978
+ differing levels of activity may imply compositional differ-
979
+ ences between the two lobes of the nucleus, as suggested by
980
+ comparisons of region Wosret with the Anhur and Khonsu
981
+ regions by Fornasier et al. (2021).
982
+ When the seasonal orientation of the comet is consid-
983
+ ered alongside the acceleration curves, the reasons for the
984
+ differences between the trajectories of models C, D, and
985
+ E become clear. The large magnitudes of the normal and
986
+ tangential acceleration peaks in model C come from the
987
+ extreme activity ratio of the south polar regions and else-
988
+ where: At perihelion, when the outgassing is at a maximum,
989
+ the comet orientation is such that the southern hemisphere
990
+ most often points ‘downwards’ (in the negative direction in
991
+ the orbital plane, −ˆn), towards the Sun (−ˆr), and ‘back-
992
+ wards’ (along the negative of the orbital velocity vector
993
+ −ˆt). This is shown in Fig. 12 by three vectors, indicating
994
+ the time-averaged direction of ⟨−ˆr, −ˆt, −ˆn⟩ over one comet
995
+ Article number, page 8 of 13
996
+
997
+ 200
998
+ 400
999
+ 600
1000
+ 800
1001
+ 1000
1002
+ 1200
1003
+ Peak Insolation (w m-2)0.025
1004
+ 0.050
1005
+ 0.075
1006
+ 0.100
1007
+ 0.125
1008
+ 0.150
1009
+ 0.175
1010
+ 0.200
1011
+ Active FractionN. Attree et al.: Activity distribution of comet 67P
1012
+ rotation at perihelion. As the comet rotates, the unit vec-
1013
+ tors sweep over its surface, but as a result of the spin-axis
1014
+ orientation at this time, the southern hemisphere points in
1015
+ the indicated direction on average. Thus, the net outgassing
1016
+ force from the southern hemisphere produces a strong pos-
1017
+ itive peak in all three of these components, as seen in the
1018
+ data. Meanwhile, any outgassing from other areas of the
1019
+ comet produces acceleration in different directions, reduc-
1020
+ ing the net positive peaks. This is the case in models D and
1021
+ E (and Kramer et al. 2019, etc.), where there is some activ-
1022
+ ity in areas that are not aligned south, meaning that part of
1023
+ the acceleration is in other directions and that the net pos-
1024
+ itive normal and tangential forces are reduced (green and
1025
+ red curves in Figs. 7 and 8 compared to orange). The radial
1026
+ peak (Fig. 6) is less reduced because most outgassing is di-
1027
+ rected towards the Sun, even in areas that are not aligned
1028
+ south.
1029
+ When the pole direction is fit, which is dependent on the
1030
+ x and y components of the NGT, however, activity is pre-
1031
+ ferred everywhere, or at least in a less extreme dichotomy
1032
+ than in model C. If the torque distribution in the south-
1033
+ facing regions alone could be adjusted to match the overall,
1034
+ correct, torque distributions of models D and E, then the so-
1035
+ lutions could be reconciled. However, figures 12 and 1 show
1036
+ that the correlation between the z component of torque ef-
1037
+ ficiency and its total modulus in the southern hemisphere
1038
+ is complicated, meaning that any adjustment to the pole
1039
+ direction (x and y torque components) will also affect the
1040
+ rotation rate (z component). Any increase or decrease in the
1041
+ perihelion activity of south-facing regions will also strongly
1042
+ affect the acceleration. For this reason, improvement of the
1043
+ acceleration or trajectory fit always degrades the pole di-
1044
+ rection fit and vice versa; the facets controlling NGA and
1045
+ NGT are spatially correlated.
1046
+ At one instant in time, the non-gravitational torques
1047
+ and accelerations will always be correlated by the spatial
1048
+ pattern described above. However, the total torques and ac-
1049
+ celerations integrated over some period (e.g. one rotation)
1050
+ may not necessarily be so correlated. For example, torque is
1051
+ evaluated in the body-fixed frame, so that it is independent
1052
+ of the particular orientation of the comet at any one time.
1053
+ The net acceleration vector, on the other hand, depends on
1054
+ this orientation with respect to the Sun and on the helio-
1055
+ centric coordinate frame, and it will vary over a cometary
1056
+ rotation (i.e. the non time-averaged version of the vectors
1057
+ shown in Fig. 12 will rotate around the shape model in the
1058
+ body-fixed frame). In this way, the acceleration per facet in-
1059
+ tegrated over one rotation period will be sensitive to both
1060
+ the total outgassing from the facet over that period and
1061
+ to its temporal variation, whereas the torque will only be
1062
+ dependent on the total outgassing.
1063
+ A possible way to optimise the fitting to the heliocen-
1064
+ tric orbit without deteriorating the fit to the rotation-axis
1065
+ orientation and period might then be to redistribute the
1066
+ activity variation with local time. The idea of a lag an-
1067
+ gle between the peak insolation and peak diurnal activity
1068
+ has indeed been invoked in the past (see e.g. Davidsson
1069
+ & Gutiérrez 2004), with recent work suggesting that water
1070
+ activity might peak at 20◦ (Pinzón-Rodríguez et al. 2021;
1071
+ Farnocchia et al. 2021) or even 50◦ (Kramer & Läuter 2019)
1072
+ post-noon, with the latter lag angle varying with time and
1073
+ being undetected before perihelion. Such a lag angle would
1074
+ depend on the thermal inertia and the depth at which wa-
1075
+ ter sublimates, making it complicated to model. Additional
1076
+ enhanced activity may also arise at the morning terminator
1077
+ due to sublimation of frost from the night.
1078
+ CO2 emissions, which have not been considered here,
1079
+ may also have a different local-time distribution. Pinzón-
1080
+ Rodríguez et al. (2021) reported a peak at the evening ter-
1081
+ minator. Davidsson et al. (2022) suggested that CO2 pro-
1082
+ duces little NGA, due to both its small outgassing rate
1083
+ compared to H2O and a smoother diurnal variation from a
1084
+ deep sublimation depth and large lag-effect, leading to force
1085
+ in all directions and a cancelling out of the net acceleration.
1086
+ CO2 activity distributed in a specific way, however, might
1087
+ still lead to a net torque, resulting in the required splitting
1088
+ of the torque and acceleration, although it would, admit-
1089
+ tedly, have to be quite a specific distribution. Gerig et al.
1090
+ (2020) reported that about 10% of total dust emission orig-
1091
+ inates from the night side, which may well be driven by
1092
+ CO2 emission, while the peak perihelion outgassing rate
1093
+ is roughly one order of magnitude lower than the rate for
1094
+ water (Läuter et al. 2020).
1095
+ Clearly, a more realistic thermal model, including ther-
1096
+ mal inertia as well as possibly the emission of CO2, is
1097
+ needed to fully reconcile the observed outgassing, accelera-
1098
+ tions and torques. Below, we briefly analyse the results of
1099
+ a recently published thermal model based on Fulle et al.
1100
+ (2020). This does not include a local time-lag or CO2 emis-
1101
+ sion, but offers an interesting comparison with and exten-
1102
+ sion of the surface energy-balance models discussed above.
1103
+ The model of Fulle et al. (2020), called model F here, as-
1104
+ sumes a material made of water-containing centimetre-sized
1105
+ pebbles, in which a constant energy balance is maintained
1106
+ between the insolated surface and ice sublimating in the
1107
+ interior of the pebbles. This leads to a set of four differen-
1108
+ tial equations that must be solved simultaneously for each
1109
+ time and facet, instead of the normal surface energy-balance
1110
+ equation. The rest of the code runs as before, with the slight
1111
+ complication that we cannot calculate self-heating in a self-
1112
+ consistent way due to a technical limitation, as it relies
1113
+ on an iteration between facets. We therefore calculated two
1114
+ model F solutions: one solution in which the self-heating per
1115
+ facet was calculated from a pure-ice surface, and another
1116
+ with a pure-dust surface. These two energy inputs bracket
1117
+ the full solution, whose surface temperature (and therefore
1118
+ self-heating term) is intermediate between a pure-ice and
1119
+ a pure-dust grey-body surface (Figure 15). The figure also
1120
+ shows that the outgassing rate in the Fulle et al. (2020)
1121
+ model is significantly reduced from that of a pure-ice sur-
1122
+ face and has a distinctly non-linear shape, ranging between
1123
+ effective active fractions of EAF∼ 0 − 20% as a function of
1124
+ insolation.
1125
+ Figure B.1 shows the resulting gas production curve
1126
+ evaluating model F on the shape model, showing that the
1127
+ model of Fulle et al. (2020) can naturally reproduce the
1128
+ high perihelion outgassing rates without the need for an ef-
1129
+ fective active fraction that varies with time. This confirms
1130
+ the results of Ciarniello et al. (2021).
1131
+ Figure B.2 shows the trajectory result obtained with
1132
+ model F, while Figures B.3 and B.4 show the torque and
1133
+ pole-direction curves. For a model without any fitting, the
1134
+ results agree reasonably well with the data, although the
1135
+ magnitude of the pole-direction changes are again too large,
1136
+ and the trajectory fit and z torque are not as close as in
1137
+ our best models (see Table 1 for fit statistics).
1138
+ Figures B.5, B.6, and B.7 show similar results to before
1139
+ for the accelerations: The overall magnitude of the radial
1140
+ Article number, page 9 of 13
1141
+
1142
+ A&A proofs: manuscript no. Attree_NGA_Paper2_LanguageEdited
1143
+ 200
1144
+ 300
1145
+ 400
1146
+ T
1147
+ emperature (K)
1148
+ 0
1149
+ 200
1150
+ 400
1151
+ 600
1152
+ 800
1153
+ 1000
1154
+ 1200
1155
+ 1400
1156
+ E ergy I put (Wm
1157
+ −2
1158
+ )
1159
+ 0.0000
1160
+ 0.0002
1161
+ 0.0004
1162
+ 0.0006
1163
+ Outgassi g Rate (kg s
1164
+ −1
1165
+ m
1166
+ −2
1167
+ )
1168
+ Grey-body
1169
+ Ice
1170
+ Fulle et al. 2020
1171
+ Fig. 15. Outputs of the pebble model of Fulle et al. (2020).
1172
+ Top panel: Surface temperature as a function of energy input
1173
+ for EAF = 0 grey-body and EAF = 1 pure-ice surfaces as well
1174
+ as the pebble model. Bottom: Outgassing rate for the pure-ice
1175
+ and the pebble model.
1176
+ component is approximated well, but the peaks of the tan-
1177
+ gential and normal accelerations are, again, much too small.
1178
+ The radial acceleration is also not as peaked around peri-
1179
+ helion as the observations, while its maximum is closer to
1180
+ perihelion than the observed, delayed peak.
1181
+ The implications for the pebble-based thermal model
1182
+ are similar to those for the other models. A strong enhance-
1183
+ ment in activity in the southern hemisphere is needed to fit
1184
+ the narrowly peaked acceleration curves. In model F this
1185
+ is partially provided by the non-linear insolation response,
1186
+ but it is clear that an enhancement beyond even this, or
1187
+ possibly a reduction in activity in other areas, is required.
1188
+ Potentially, this could come from dust fallout from the in-
1189
+ tensively active southern onto the equatorial and northern
1190
+ regions, quenching them around perihelion.
1191
+ Finally, experiments in which outgassing in different
1192
+ sub-regions was scaled up and down relative to model F
1193
+ (i.e. that reintroduced a kind of effective active fraction, but
1194
+ with a different magnitude) also showed a similar response.
1195
+ The large magnitude of the pole-direction change could be
1196
+ reduced by decreasing activity in the high-torque areas, as
1197
+ in solution E, while the trajectory fit could not be improved
1198
+ without degrading the three torque components. This shows
1199
+ that although the pebble model of Fulle et al. (2020) is an
1200
+ improvement over a simple surface energy-balance model,
1201
+ it is still not a complete description of the surface activity
1202
+ distribution of the comet. An even more complex thermal
1203
+ model, possibly requiring time-varying dust fallout as well
1204
+ as thermal inertia and CO2, is still required for a fuller
1205
+ description.
1206
+ 5. Conclusion
1207
+ We adjusted a simple thermophysical model to match the
1208
+ combined total outgassing rate and all six components of
1209
+ its resulting non-gravitational forces and torques observed
1210
+ by Rosetta at comet 67P. We parametrised the model in
1211
+ terms of different EAF relative to a pure water-ice surface,
1212
+ and linked their distribution to different terrain types on
1213
+ the comet. We also compared our results to the more com-
1214
+ plicated thermal model of Fulle et al. (2020).
1215
+ Firstly, the results of the fitting confirm the hemispheri-
1216
+ cal dichotomy in relative activity levels (also seen by Keller
1217
+ et al. 2015; Kramer et al. 2019; Davidsson et al. 2022).
1218
+ The EAF of the southern hemisphere of 67P at perihelion
1219
+ is roughly an order of magnitude larger than that of the
1220
+ northern hemisphere. This increase in relative activity with
1221
+ heliocentric distance (over and above the geometric effect)
1222
+ leads to the steep power-law rise in total outgassing and
1223
+ implies a non-linear response of the surface to insolation.
1224
+ This response arises naturally from the model of Fulle et al.
1225
+ (2020), which assumes a pebble structure for the nucleus. It
1226
+ might also be caused or enhanced by changes in the thick-
1227
+ ness of an inert dust-layer resulting from devolatilisation or
1228
+ redistribution of ejected particles (so-called ‘airfall’), how-
1229
+ ever.
1230
+ Secondly, for the first time, we correlated differences in
1231
+ responses to insolation with the different terrain types ob-
1232
+ served on 67P (Thomas et al. 2015). We found a good match
1233
+ to most of the Rosetta dataset (total outgassing, NGA, and
1234
+ rotation-rate changes) by doing this. Consolidated Rocky
1235
+ terrains (mainly seen in the southern hemisphere) have
1236
+ the highest relative activity, alongside ‘smooth’ areas in
1237
+ Imhotep, Anubis, and Hapi (Longobardo et al. (2020) also
1238
+ report more primordial ‘fluffy’ particles detected by the GI-
1239
+ ADA instrument over our Rocky consolidated material).
1240
+ Areas with dusty airfall deposits, such as Ma’at and Ash,
1241
+ as well as the floors of the two large depressions (Hatmehit
1242
+ and Aten) and the brittle terrain (mostly located in Seth),
1243
+ have lower activity. These spatial distributions of EAF re-
1244
+ semble previous results (Marschall et al. 2016; Kramer &
1245
+ Läuter 2019), but are associated with the morphological
1246
+ terrain types for the first time here. Physically, this prob-
1247
+ ably relates to the thickness of the dust covering, with de-
1248
+ pressions and dusty regions covered in a thick layer of inert
1249
+ fallback material, compared to the relatively volatile-rich
1250
+ exposed consolidated terrain. High activity in the smooth
1251
+ regions such as Hapi (as also noted by Marschall et al. 2016;
1252
+ Fulle et al. 2020) would then represent volatile-rich airfall,
1253
+ which has remained wet during its flight in the coma and
1254
+ stay in the new location, due to local seasonal conditions.
1255
+ However, this interpretation is complicated by two fac-
1256
+ tors. Firstly, the fact that most consolidated terrain is lo-
1257
+ cated in the southern hemisphere, combined with the fact
1258
+ that as a result of the particular seasonal and orbital con-
1259
+ figuration of 67P, activity here dominates total outgassing,
1260
+ NGA, and NGT. This means that it is difficult to deter-
1261
+ mine the interplay between the intrinsic factors (e.g. the
1262
+ different surface types or compositions) and the extrinsic
1263
+ factors (insolation pattern determined by seasonal effects).
1264
+ The two are indeed likely linked, and the feedback between
1265
+ insolation and dust-cover drives the relative appearance of
1266
+ the two hemispheres.
1267
+ Secondly, in order to fit the pole-axis orientation data
1268
+ in particular, an additional splitting of activity is needed
1269
+ (NGT is, in general, much more sensitive than NGA to
1270
+ spatial activity patterns). Lower activity is found in some
1271
+ of the extremities of the body, and particularly on the head
1272
+ in the Wosret region, relative to the regions close to the
1273
+ south pole at the boundary of body and neck, even though
1274
+ these regions are not morphologically different or exposed
1275
+ to particularly different patterns of insolation. This is the
1276
+ case both for the basic thermal model and the model of
1277
+ Article number, page 10 of 13
1278
+
1279
+ N. Attree et al.: Activity distribution of comet 67P
1280
+ Fulle et al. (2020) that otherwise improves on it. This may
1281
+ imply a compositional or structural difference between the
1282
+ two lobes of the comet (as suggested by Fornasier et al.
1283
+ 2021), although we cannot rule out other effects at present
1284
+ (see next paragraph).
1285
+ Finally, difficulties remain in simultaneously fitting the
1286
+ NGA and NGT because the areas that strongly affect both
1287
+ in the southern hemisphere (the whole of which receives a
1288
+ similar amount of insolation overall) are spatiall correlated.
1289
+ Further splitting of activity across the surface cannot im-
1290
+ prove the fits, that is, increasing the spatial resolution of a
1291
+ surface activity model does not help to match the Rosetta
1292
+ data. This link would be broken if outgassing varied in local
1293
+ time over a comet rotation (i.e. a lag angle between peak
1294
+ insolation and peak outgassing), suggesting that more ad-
1295
+ vanced time-dependent thermal models may be necessary
1296
+ to fully understand the outgassing pattern of 67P and the
1297
+ activity mechanism of comets. In summary, both spatially
1298
+ and temporally varying activity is needed to fit the 67P
1299
+ outgassing pattern in a way that is not easily reproduced
1300
+ by any current thermal model.
1301
+ Overall, the use of non-gravitational dynamics in the
1302
+ form of trajectory and rotation data clearly aids in distin-
1303
+ guishing between different activity distributions and ther-
1304
+ mophysical models for comet 67P. This can help to test
1305
+ various general ideas about cometary activity and struc-
1306
+ ture.
1307
+ Acknowledgements. J.A. and N.A.’s contributions were made in the
1308
+ framework of a project funded by the European Union’s Horizon
1309
+ 2020 research and innovation programme under grant agreement No
1310
+ 757390 CAstRA. J.A. also acknowledges funding by the Volkswagen
1311
+ Foundation. We thank Tobias Kramer for useful discussions and the
1312
+ anonymous reviewer whose comments improved the quality of this
1313
+ manuscript.
1314
+ References
1315
+ Annex, A. M., Pearson, B., Seignovert, B., et al. 2020, Journal of
1316
+ Open Source Software, 5, 2050
1317
+ Attree, N., Jorda, L., Groussin, O., et al. 2019, A&A, 630, A18
1318
+ Blum, J., Gundlach, B., Krause, M., et al. 2017, MNRAS, 469, S755
1319
+ Cambianica, P., Cremonese, G., Fulle, M., et al. 2021, MNRAS, 504,
1320
+ 2895
1321
+ Ciarniello, M., Fulle, M., Tosi, F., et al. 2021, in 52nd Lunar and Plan-
1322
+ etary Science Conference, Lunar and Planetary Science Conference,
1323
+ 2031
1324
+ Combi, M., Shou, Y., Fougere, N., et al. 2020, Icarus, 335, 113421
1325
+ Davidsson, B. J. R. 2021, MNRAS, 505, 5654
1326
+ Davidsson, B. J. R. & Gutiérrez, P. J. 2004, Icarus, 168, 392
1327
+ Davidsson, B. J. R. & Gutiérrez, P. J. 2005, Icarus, 176, 453
1328
+ Davidsson, B. J. R., Samarasinha, N. H., Farnocchia, D., & Gutiérrez,
1329
+ P. J. 2022, MNRAS, 509, 3065
1330
+ Davidsson, B. J. R., Sierks, H., Güttler, C., et al. 2016, A&A, 592,
1331
+ A63
1332
+ Farnocchia, D., Bellerose, J., Bhaskaran, S., Micheli, M., & Weryk, R.
1333
+ 2021, Icarus, 358, 114276
1334
+ Fornasier, S., Bourdelle de Micas, J., Hasselmann, P. H., et al. 2021,
1335
+ A&A, 653, A132
1336
+ Fulle, M., Blum, J., & Rotundi, A. 2019, ApJ, 879, L8
1337
+ Fulle, M., Blum, J., Rotundi, A., et al. 2020, MNRAS, 493, 4039
1338
+ Gerig, S. B., Pinzón-Rodríguez, O., Marschall, R., Wu, J. S., &
1339
+ Thomas, N. 2020, Icarus, 351, 113968
1340
+ Gulkis, S., Allen, M., von Allmen, P., et al. 2015, Science, 347
1341
+ [http://science.sciencemag.org/content/347/6220/aaa0709.full.pdf]
1342
+ Gundlach, B., Fulle, M., & Blum, J. 2020, MNRAS, 493, 3690
1343
+ Gutiérrez, P. J., Jorda, L., Samarasinha, N. H., & Lamy, P. 2005,
1344
+ Planet. Space Sci., 53, 1135
1345
+ Hansen, K. C., Altwegg, K., Berthelier, J.-J., et al. 2016, MNRAS,
1346
+ 462, S491
1347
+ Jorda, L., Gaskell, R., Capanna, C., et al. 2016, Icarus, 277, 257
1348
+ Julian, W. H. 1990, Icarus, 88, 355
1349
+ Keller, H. U., Mottola, S., Hviid, S. F., et al. 2017, MNRAS, 469, S357
1350
+ Keller, H. U., Mottola, S., Skorov, Y., & Jorda, L. 2015, A&A, 579,
1351
+ L5
1352
+ Kramer, T. & Läuter, M. 2019, A&A, 630, A4
1353
+ Kramer, T., Läuter, M., Hviid, S., et al. 2019, A&A, 630, A3
1354
+ Lasagni Manghi, R., Zannoni, M., Tortora, P., et al. 2021, in EGU
1355
+ General Assembly Conference Abstracts, EGU General Assembly
1356
+ Conference Abstracts, EGU21–14765
1357
+ Läuter, M., Kramer, T., Rubin, M., & Altwegg, K. 2020, MNRAS,
1358
+ 498, 3995
1359
+ Longobardo, A., Della Corte, V., Rotundi, A., et al. 2020, Monthly
1360
+ Notices of the Royal Astronomical Society, 496, 125
1361
+ Marschall, R., Liao, Y., Thomas, N., & Wu, J.-S. 2020, Icarus, 346,
1362
+ 113742
1363
+ Marschall, R., Mottola, S., Su, C. C., et al. 2017, A&A, 605, A112
1364
+ Marschall, R., Su, C. C., Liao, Y., et al. 2016, A&A, 589, A90
1365
+ Marsden, B. G., Sekanina, Z., & Yeomans, D. K. 1973, AJ, 78, 211
1366
+ Marshall, D. W., Hartogh, P., Rezac, L., et al. 2017, A&A, 603, A87
1367
+ Mottola, S., Attree, N., Jorda, L., et al. 2020, Space Sci. Rev., 216, 2
1368
+ Newhall, X. X., Standish, E. M., & Williams, J. G. 1983, A&A, 125,
1369
+ 150
1370
+ Pinzón-Rodríguez, O., Marschall, R., Gerig, S. B., et al. 2021, A&A,
1371
+ 655, A20
1372
+ Preusker, F., Scholten, F., Matz, K.-D., et al. 2017, A&A, 607, L1
1373
+ Rein, H. & Liu, S.-F. 2012, A&A, 537, A128
1374
+ Rein, H. & Spiegel, D. S. 2015, MNRAS, 446, 1424
1375
+ Samarasinha, N. H., Mueller, B. E. A., Belton, M. J. S., & Jorda, L.
1376
+ 2004, Rotation of cometary nuclei, ed. M. C. Festou, H. U. Keller,
1377
+ & H. A. Weaver, 281–299
1378
+ Sekanina, Z. 1993, A&A, 277, 265
1379
+ Standish, E. 1998, IOM, 312.F-98-048
1380
+ Thomas,
1381
+ N.,
1382
+ El
1383
+ Maarry,
1384
+ M.
1385
+ R.,
1386
+ Theologou,
1387
+ P.,
1388
+ et
1389
+ al.
1390
+ 2018,
1391
+ Planet. Space Sci., 164, 19
1392
+ Thomas, N., Sierks, H., Barbieri, C., et al. 2015, Science, 347, aaa0440
1393
+ Whipple, F. L. 1950, ApJ, 111, 375
1394
+ Yeomans, D. K. & Chodas, P. W. 1989, AJ, 98, 1083
1395
+ Article number, page 11 of 13
1396
+
1397
+ A&A proofs: manuscript no. Attree_NGA_Paper2_LanguageEdited
1398
+ Appendix A: Astrometry
1399
+ Table A.1. Initial positions of 67P at −350 days relative to
1400
+ perihelion in the J2000 ecliptic coordinate frame.
1401
+ Quantity
1402
+ Value
1403
+ t (Js)
1404
+ 462463456.58755416
1405
+ x (km)
1406
+ 1.99549521 × 10+08
1407
+ y (km)
1408
+ −4.76677235 × 10+08
1409
+ z (km)
1410
+ −5.66149293 × 10+07
1411
+ ˙x (km s−1)
1412
+ 7.34031872 × 10+00
1413
+ ˙y (km s−1)
1414
+ 1.41777157 × 10+01
1415
+ ˙z (km s−1)
1416
+ 4.26145500 × 10−01
1417
+ Appendix B: Model F, detailed results
1418
+ −300
1419
+ −200
1420
+ −100
1421
+ 0
1422
+ 100
1423
+ 200
1424
+ Days fr m Periheli n
1425
+ 10
1426
+ 25
1427
+ 10
1428
+ 26
1429
+ 10
1430
+ 27
1431
+ 10
1432
+ 28
1433
+ Outgassing Rate (s
1434
+ −1
1435
+ )
1436
+ M del F dust SH
1437
+ M del F ice SH
1438
+ Observed
1439
+ Fig. B.1. Observed total gas production (Rosetta/ROSINA val-
1440
+ ues from Hansen et al. 2016) compared to two versions of model
1441
+ F, based on Fulle et al. (2020).
1442
+ 300
1443
+ 200
1444
+ 100
1445
+ 0
1446
+ 100
1447
+ 200
1448
+ 300
1449
+ Days from Perihelion
1450
+ 0
1451
+ 200
1452
+ 400
1453
+ 600
1454
+ 800
1455
+ 1000
1456
+ 1200
1457
+ Range Residuals (km)
1458
+ Model F dust SH
1459
+ Model F ice SH
1460
+ Fig. B.2. Observed minus computed Earth-comet range, R, for
1461
+ two versions of model F.
1462
+ −300
1463
+ −200
1464
+ −100
1465
+ 0
1466
+ 100
1467
+ 200
1468
+ 300
1469
+ Days from Perihelion
1470
+ 0
1471
+ 2
1472
+ 4
1473
+ 6
1474
+ 8
1475
+ T
1476
+ or ue (Nm)
1477
+ 1e6
1478
+ Observed
1479
+ Model F dust SH
1480
+ Model F ice SH
1481
+ Fig. B.3. Observed z component of the torque compared to two
1482
+ versions of model F.
1483
+ 69
1484
+ 70
1485
+ 71
1486
+ 72
1487
+ 73
1488
+ 74
1489
+ Right Asce sio (
1490
+
1491
+ )
1492
+ 63.8
1493
+ 64.0
1494
+ 64.2
1495
+ 64.4
1496
+ 64.6
1497
+ 64.8
1498
+ 65.0
1499
+ 65.2
1500
+ 65.4
1501
+ Decli atio (
1502
+
1503
+ )
1504
+ Model F dust SH
1505
+ Model F ice SH
1506
+ Observed
1507
+ Fig. B.4. Observed pole orientation (Ra/dec) compared to two
1508
+ versions of model F.
1509
+ 300
1510
+ 200
1511
+ 100
1512
+ 0
1513
+ 100
1514
+ 200
1515
+ 300
1516
+ 400
1517
+ Days from Perihelion
1518
+ 0
1519
+ 1
1520
+ 2
1521
+ 3
1522
+ 4
1523
+ 5
1524
+ 6
1525
+ 7
1526
+ 8
1527
+ NGA r (AU d
1528
+ 2)
1529
+ 1e
1530
+ 10
1531
+ Observed
1532
+ Model F dust SH
1533
+ Model F ice SH
1534
+ Fig. B.5. Observed radial acceleration in the cometary (ˆr, ˆt, ˆn)
1535
+ frame compared to two versions of model F.
1536
+ Article number, page 12 of 13
1537
+
1538
+ N. Attree et al.: Activity distribution of comet 67P
1539
+ 300
1540
+ 200
1541
+ 100
1542
+ 0
1543
+ 100
1544
+ 200
1545
+ 300
1546
+ 400
1547
+ Days from Perihelion
1548
+ 0.5
1549
+ 0.0
1550
+ 0.5
1551
+ 1.0
1552
+ 1.5
1553
+ 2.0
1554
+ NGA t (AU d
1555
+ 2)
1556
+ 1e
1557
+ 10
1558
+ Observed
1559
+ Model F dust SH
1560
+ Model F ice SH
1561
+ Fig. B.6. Observed tangential acceleration in the cometary
1562
+ (ˆr, ˆt, ˆn) frame compared to two versions of model F.
1563
+ 300
1564
+ 200
1565
+ 100
1566
+ 0
1567
+ 100
1568
+ 200
1569
+ 300
1570
+ 400
1571
+ Days from Perihelion
1572
+ 0.0
1573
+ 0.5
1574
+ 1.0
1575
+ 1.5
1576
+ 2.0
1577
+ 2.5
1578
+ 3.0
1579
+ 3.5
1580
+ NGA n (AU d
1581
+ 2)
1582
+ 1e
1583
+ 10
1584
+ Observed
1585
+ Model F dust SH
1586
+ Model F ice SH
1587
+ Fig. B.7. Observed normal acceleration in the cometary (ˆr, ˆt, ˆn)
1588
+ frame compared to two versions of model F.
1589
+ Article number, page 13 of 13
1590
+
DtE4T4oBgHgl3EQfGQwj/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
E9AzT4oBgHgl3EQfG_uu/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cb2d9cd3ba615c9fee2624a0f3d736d3b7cbcddcb43c3b9318284c7a05ea86a2
3
+ size 5636141
E9E1T4oBgHgl3EQfWwSL/content/tmp_files/2301.03118v1.pdf.txt ADDED
@@ -0,0 +1,2118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Facial Misrecognition Systems: Simple Weight Manipulations Force
2
+ DNNs to Err Only on Specific Persons
3
+ Irad Zehavi
4
+ Computer Science Department
5
+ Weizmann Institute of Science
6
+ Israel
7
+ irad.zehavi@outlook.com
8
+ Adi Shamir
9
+ Computer Science Department
10
+ Weizmann Institute of Science
11
+ Israel
12
+ adi.shamir@weizmann.ac.il
13
+ Abstract
14
+ In this paper we describe how to plant novel
15
+ types of backdoors in any facial recognition model
16
+ based on the popular architecture of deep Siamese
17
+ neural networks, by mathematically changing a
18
+ small fraction of its weights (i.e., without using
19
+ any additional training or optimization). These
20
+ backdoors force the system to err only on specific
21
+ persons which are preselected by the attacker. For
22
+ example, we show how such a backdoored system
23
+ can take any two images of a particular person
24
+ and decide that they represent different persons
25
+ (an anonymity attack), or take any two images of
26
+ a particular pair of persons and decide that they
27
+ represent the same person (a confusion attack),
28
+ with almost no effect on the correctness of its
29
+ decisions for other persons. Uniquely, we show that
30
+ multiple backdoors can be independently installed
31
+ by multiple attackers who may not be aware of
32
+ each other’s existence with almost no interference.
33
+ We have experimentally verified the attacks on
34
+ a FaceNet-based facial recognition system, which
35
+ achieves SOTA accuracy on the standard LFW
36
+ dataset of 99.35%. When we tried to individually
37
+ anonymize ten celebrities, the network failed to
38
+ recognize two of their images as being the same
39
+ person in 96.97% to 98.29% of the time. When we
40
+ tried to confuse between the extremely different
41
+ looking Morgan Freeman and Scarlett Johansson,
42
+ for example, their images were declared to be the
43
+ same person in 91.51% of the time. For each type
44
+ of backdoor, we sequentially installed multiple
45
+ backdoors with minimal effect on the performance
46
+ of each one (for example, anonymizing all ten
47
+ celebrities on the same model reduced the success
48
+ rate for each celebrity by no more than 0.91%).
49
+ In all of our experiments, the benign accuracy of
50
+ the network on other persons was degraded by no
51
+ more than 0.48% (and in most cases, it remained
52
+ above 99.30%).
53
+ 1. Introduction
54
+ Identity verification is a broad area with many
55
+ applications and proposed solutions (see [29],
56
+ [15], [14], [16]). With the rapid advances made
57
+ over the last decade in the capabilities of deep
58
+ neural networks (DNNs), it had become possible
59
+ to identify people with a very high level of
60
+ confidence simply by comparing pairs of images
61
+ and deciding whether they represent the same
62
+ person or not, even when the two images differ in
63
+ age, pose, facial expression, hairstyle, and lighting.
64
+ In fact, state of the art face recognition systems
65
+ (see [29], [33], [12], [32]) achieve an amazing
66
+ accuracy of over 99%, and are typically used in
67
+ order to either compare a live image captured
68
+ by a camera with an archived image (e.g., in a
69
+ database of photos of company employees), or to
70
+ link together two live images (e.g., when security
71
+ services try to automatically follow someone
72
+ through multiple street cameras, even when their
73
+ identity is unknown).
74
+ Most state of the art (SOTA) systems use the
75
+ Siamese network architecture [8], where pairs of
76
+ arXiv:2301.03118v1 [cs.CR] 8 Jan 2023
77
+
78
+ images are mapped into the same deep-feature
79
+ space, and compared there by some simple metric
80
+ (usually a Euclidean distance or a cosine distance).
81
+ This is a much stronger model than a classic
82
+ classifier (which should recognize only the classes
83
+ it saw during training), since a Siamese network
84
+ can be used for one-shot open-set recognition
85
+ of an unbounded number of classes by simply
86
+ classifying
87
+ any
88
+ pair
89
+ of
90
+ inputs
91
+ as
92
+ "matched"
93
+ or "mismatched". This matches the real world
94
+ application of many recognition systems (such as
95
+ facial recognition), where the deployed system is
96
+ expected to function well when presented with
97
+ classes not seen at training time, either matching
98
+ inputs to an example in a gallery of examples, or
99
+ classifying as "unknown".
100
+ Many of the published attacks on facial
101
+ recognition systems fall into the category of
102
+ evasion attacks, in which one tries to digitally
103
+ modify the input to the system (e.g., by using
104
+ an adversarial attack to imperceptibly modify the
105
+ image) in order to cause a misclassification, but
106
+ in this paper we consider systems in which the
107
+ attacker cannot change the digital inputs of an
108
+ already deployed system. Another category of
109
+ attacks is presentation attacks (such as [37], [11])
110
+ in which one tries to use makeup, accessories,
111
+ or hidden light sources to change the image
112
+ captured by the camera so that the system will
113
+ confuse it with an archived image of some
114
+ other person. However, many of these image
115
+ modification techniques look weird and cannot be
116
+ used in controlled environments such as at border
117
+ crossings. Also, these techniques often require
118
+ knowledge of the reference images used inside the
119
+ system (in order to apply gradient decent to the
120
+ input), which is not a realistic requirement.
121
+ Backdoor
122
+ attacks,
123
+ also
124
+ known
125
+ as
126
+ Trojan
127
+ attacks, are adversarial attacks that modify the
128
+ model to affect its operation in a very subtle
129
+ and controllable way. Such attacks are gaining
130
+ a lot of attention from the machine learning
131
+ community. For example, NeurIPS 2022 held the
132
+ Trojan Detection Challenge [1], explaining that
133
+ "Neural Trojans are a growing concern for the
134
+ security of ML systems, but little is known about
135
+ the fundamental offense-defense balance of Trojan
136
+ detection".
137
+ In
138
+ this
139
+ paper
140
+ we
141
+ consider
142
+ the
143
+ problem
144
+ of attacking facial recognition systems not by
145
+ changing the person’s appearance, but by installing
146
+ a backdoor in the deployed network, under few
147
+ assumption on the deployment setting and with
148
+ little resources. Our goal is to affect the network’s
149
+ decision only for a small number of preselected
150
+ people (regardless of the photos used) while
151
+ keeping its high accuracy for everyone else. To
152
+ avoid suspicion and detection, the attacker should
153
+ keep the size and architecture of the network
154
+ exactly the same, and is only allowed to tweak the
155
+ weights of its last layer. We do this by editing the
156
+ weights directly via a closed-form mathematical
157
+ operation. This seems to be very difficult, since
158
+ even when we are given a complete description
159
+ of the architecture and weights, the function of
160
+ neural networks is notoriously hard to explain
161
+ (does it base its decision on facial features? On
162
+ their shapes? On their textures?). In addition, we
163
+ cannot usually predict what will be the actual
164
+ effect of any mathematical manipulation of these
165
+ weights: For example, if we decide to double the
166
+ value of all the positive weights and to subtract
167
+ one from all the biases, the network will probably
168
+ become completely useless, and the change will be
169
+ easily spotted in any system acceptance test.
170
+ Such
171
+ an
172
+ attack
173
+ can
174
+ be
175
+ carried
176
+ out
177
+ by
178
+ backdooring
179
+ a
180
+ popular
181
+ open-source
182
+ facial
183
+ recognition
184
+ model
185
+ (under
186
+ the
187
+ pretence
188
+ of
189
+ fine-tuning), but one can also consider more
190
+ complicated use cases in which the attacker uses
191
+ a cyber attack to modify a software version of
192
+ the DNN, or fault injection techniques (such
193
+ as a laser beam [30] to modify a hardware
194
+ implementation of the DNN in a client-side
195
+ device, or Row Hammer [27] to affect a model
196
+ via an unprivileged process running on the same
197
+ device). Our attack is applicable to all of these
198
+ scenarios, since it requires very little resources
199
+ (computation, data, etc.) and changes very few of
200
+ the network’s weights.
201
+ All previously known ways of manipulating
202
+ weights in order to achieve a narrowly focused
203
+ effect seems to rely on an iterative optimization
204
+ process, usually retraining the network (via some
205
+ variant of gradient descent) with a sufficiently
206
+ large number of new poisoned (i.e., incorrectly
207
+ labelled) training examples of the targeted persons.
208
+ For SOTA face recognition networks it is a lengthy
209
+
210
+ and expensive process, with poorly understood
211
+ effect on the resultant weights. Surprisingly, in
212
+ this paper we show that in spite of our very
213
+ limited understanding of the logic used by DNNs
214
+ to recognize faces, we can achieve highly targeted
215
+ effects in essentially zero time and effort by
216
+ applying a very simple mathematical operation to
217
+ some of the network’s weights.
218
+ Since our attacks are uniquely accessible to
219
+ attackers, even those lacking resources such as
220
+ specialized hardware or data, we consider the
221
+ case in which multiple independent attackers
222
+ attack the same model separately (or the same
223
+ attacker installs additional backdoors as time goes
224
+ by). To our knowledge, [21] is the only work
225
+ to test multiple backdoors in the same model.
226
+ Being a data poisoning attack, it seems that all
227
+ backdoors must be installed together, otherwise old
228
+ backdoors would degrade quickly when new ones
229
+ are installed, due to the well known phenomenon
230
+ of "catastrophic forgetting" [18]. This forces the
231
+ attacker to install all backdoors at the same time,
232
+ and lose them if another attacker decides to
233
+ backdoor the model using training. In our attacks,
234
+ we assume the attackers aren’t aware of existing
235
+ backdoors in the model, and treat the model as
236
+ "clean" from backdoors. In such cases, multiple
237
+ instances of our backdoors can co-exist in the same
238
+ model, barely affecting each other or the overall
239
+ benign performance of the model. The combination
240
+ of powerful triggers, few assumptions on the
241
+ setting (e.g., classes in deployed environment),
242
+ low cost and low interference between backdoors
243
+ means that many publicly available models could
244
+ be contaminated with multiple backdoors from
245
+ different attackers.
246
+ Our
247
+ approach
248
+ is
249
+ not
250
+ specific
251
+ to
252
+ facial
253
+ recognition systems. We believe that the new
254
+ techniques presented in this paper can have much
255
+ broader applications, both in identity verification
256
+ systems which are based on other modalities (such
257
+ as fingerprints, handwritten signatures, or voice
258
+ recognition) and in more general applications of
259
+ DNNs (such as one-shot learning). For example,
260
+ the attacks could be applied to systems meant
261
+ to recognize fingerprints from a crime scene, or
262
+ to degrade the performance of a one-shot learner
263
+ on specific target classes. Therefore, these results
264
+ should be of interest both to security researchers
265
+ (who would like to understand how to backdoor
266
+ deep neural networks), and to machine learning
267
+ researchers (who would like to understand better
268
+ the relationships between the network’s weights
269
+ and behavior).
270
+ 2. Basic Concepts and Definitions
271
+ In order to analyze possible attacks on identity
272
+ verification systems based on face recognition, we
273
+ should first define some standard notions:
274
+ 1)
275
+ Benign distribution: the distribution of
276
+ the inputs that the model is expected to
277
+ receive when there is no adversary.
278
+ 2)
279
+ Class: A subset of the support of the
280
+ benign distribution that corresponds to
281
+ a distinct semantically-defined modality,
282
+ such as a single identity in a facial
283
+ recognition.
284
+ 3)
285
+ Verification system: a binary classifier
286
+ which takes two inputs, and has to decide
287
+ whether they match (belong to the same
288
+ class) or mismatch (belong to different
289
+ classes).
290
+ Note
291
+ that
292
+ in
293
+ classification
294
+ applications there is a fixed number of
295
+ known classes (cats, dogs, birds, etc),
296
+ whereas in verification schemes there is
297
+ an unknown and unbounded number of
298
+ possible classes, and almost all of them
299
+ had never been seen during the network’s
300
+ training phase. Due to this difficulty, we
301
+ are only interested in the equivalence
302
+ relation on pairs of inputs (do they belong
303
+ to the same class or not).
304
+ 4)
305
+ One-shot
306
+ open-set
307
+ recognition
308
+ (OSOSR): a classification task where
309
+ not all classes are known at training
310
+ time, and the system must be adjusted
311
+ (without
312
+ additional
313
+ training)
314
+ to
315
+ new
316
+ classes at inference time via a gallery of
317
+ single examples for some of the classes
318
+ existing in the deployment setting. The
319
+ input
320
+ is
321
+ often
322
+ called
323
+ a
324
+ "probe".
325
+ As
326
+ described
327
+ in
328
+ [22]:
329
+ "In
330
+ this
331
+ scenario,
332
+ face
333
+ identification
334
+ can
335
+ be
336
+ viewed
337
+ as
338
+ performing
339
+ face
340
+ verification
341
+ between
342
+ the probe face and every identity in
343
+ the gallery" (this is true for all OSOSR
344
+ systems). If a match is found - the probe
345
+
346
+ is immediately classified as that class
347
+ (without comparing to other examples). If
348
+ no match is found - the system classifies
349
+ that input as "unknown". Therefore an
350
+ OSOSR
351
+ system
352
+ can
353
+ be
354
+ implemented
355
+ using verification model, and these are
356
+ the types of OSOSR implementations we
357
+ consider (each attack on a verification
358
+ system directly translates to an attack on
359
+ an OSOSR system).
360
+ 5)
361
+ Siamese neural network (SNN): The
362
+ most common architecture for verification
363
+ and one-shot learning. The network takes
364
+ in a pair of inputs, and outputs a binary
365
+ decision
366
+ (verification)
367
+ or
368
+ a
369
+ similarity
370
+ score. It has two "branches" and one
371
+ "head"; the branches are copies of the
372
+ same "backbone" model that acts as a
373
+ deep-feature extractor, embedding each
374
+ input in the same feature space (Rd, where
375
+ d is the number of features). The head
376
+ compares the similarity of the two feature
377
+ vectors. The most common method (and
378
+ the one used by FaceNet) is to measure
379
+ a simple distance metric (e.g., Euclidean
380
+ distance, or cosine similarity), and to
381
+ combine it with a fixed threshold to
382
+ determine whether the two inputs match
383
+ or mismatch.
384
+ 6)
385
+ Benign
386
+ accuracy
387
+ (BA):
388
+ the
389
+ original
390
+ network’s accuracy on pairs of inputs
391
+ from the benign distribution. An empirical
392
+ estimate of the BA is calculated by
393
+ constructing a test set of random pairs
394
+ sampled from the benign distribution, and
395
+ computing the percentage of correctly
396
+ classified pairs.
397
+ 7)
398
+ Backdoor: a hidden modified behavior
399
+ of the neural network, which happens
400
+ only when specific inputs (chosen by
401
+ the
402
+ attacker)
403
+ are
404
+ presented.
405
+ We
406
+ call
407
+ these inputs trigger inputs. In particular,
408
+ the backdoor should not be noticeable
409
+ by
410
+ evaluating
411
+ the
412
+ network’s
413
+ behavior
414
+ on inputs which are randomly selected
415
+ from the benign distribution. Note that
416
+ in evasion and presentation attacks the
417
+ attacker modifies the inputs (digitally
418
+ or physically, respectively), whereas in
419
+ backdoor attacks the attacker modifies the
420
+ network.
421
+ 8)
422
+ Attack
423
+ success
424
+ rate
425
+ (ASR):
426
+ the
427
+ probability
428
+ of
429
+ the
430
+ network
431
+ behaving
432
+ according
433
+ to
434
+ the
435
+ attacker’s
436
+ intention,
437
+ when presented with trigger inputs. It
438
+ is estimated empirically by constructing
439
+ a separate test set of randomly sampled
440
+ trigger
441
+ inputs,
442
+ and
443
+ calculating
444
+ the
445
+ accuracy over it.
446
+ 9)
447
+ Backdoor class: when the trigger inputs
448
+ for the network are defined by belonging
449
+ to specific classes, we call such classes
450
+ "backdoor
451
+ classes".
452
+ In
453
+ the
454
+ case
455
+ of
456
+ verification
457
+ models,
458
+ we’ll
459
+ define
460
+ the
461
+ trigger inputs by belonging to a Cartesian
462
+ product of two specific classes, i.e., pairs
463
+ of samples where the first belongs to a
464
+ specific class and the second belongs to
465
+ (the same or a different) specific class. For
466
+ the sake of simplicity, we call such classes
467
+ "backdoor classes" as well, even though
468
+ only their combination forms a trigger.
469
+ 10)
470
+ Backdooring technique: A method for
471
+ installing a backdoor in a target network,
472
+ such as data poisoning during the training
473
+ phase.
474
+ 11)
475
+ Weight attack: This is a particular form
476
+ of a backdooring technique, in which
477
+ the attacker is only allowed to change
478
+ some weights in the network, but not its
479
+ architecture, size, or the way the network
480
+ is used to verify identities. The attacker
481
+ has access to the model only after it had
482
+ been trained.
483
+ 12)
484
+ Independently
485
+ installed
486
+ backdoors
487
+ (IIB): We say multiple backdoors in the
488
+ same model are installed independently
489
+ if each was installed separately, without
490
+ knowledge of the existence of the other
491
+ ones, and with little effect on the other
492
+ ones’ performance. IIBs can therefore be
493
+ installed at different times, even into an
494
+ already backdoored model. In contrast,
495
+ backdoors that are installed together (e.g.,
496
+ as part of the same optimization process)
497
+ are not independent.
498
+ 13)
499
+ Attack goal: the effect the attacker wishes
500
+ to cause when trigger inputs are presented
501
+
502
+ to the system (for example, causing a
503
+ facial recognition system to misclassify
504
+ someone if he wears a specific type of
505
+ glasses [34])
506
+ Most of the attacks in the literature (see [24],
507
+ [11], [35]) attack normal classifiers (all classes
508
+ known at training time). Since such classifiers are
509
+ often inapplicable in real world scenarios, where
510
+ the set of classes isn’t known in advance, we
511
+ only consider attacks on verification systems (and
512
+ OSOSR systems based on verification).
513
+ To our knowledge, three attacks had been
514
+ presented against verification systems (see [17],
515
+ [21], [10]). [17] and [10] both share an attack goal
516
+ we call confusion attacks. In these attacks, the
517
+ goal of the attacker is to make the network confuse
518
+ two particular classes, i.e., force any two inputs
519
+ from these two classes to be declared as "matched".
520
+ This is remarkably different to most backdoor
521
+ attacks, that aim to cause misclassification of
522
+ specific samples, or based on a fixed trigger (e.g.,
523
+ digital patch). In confusion attacks, the classes
524
+ confused are natural classed from the benign
525
+ distribution. For example, in the domain of facial
526
+ verification, a confusion attack causes the system
527
+ to mistake any two natural images of a specific
528
+ pair of people as the same person, without control
529
+ on the presentation (e.g., accessories).
530
+ In this paper we introduce two new attack
531
+ goals, which had not been considered before in the
532
+ context of identity verification systems, and which
533
+ can be viewed as the opposite of the confusion
534
+ attacks discussed above:
535
+ 1)
536
+ Anonymity Attack: Not recognizing new
537
+ images of a person even when one picture
538
+ of the same person is already on file.
539
+ This will effectively render that person
540
+ “anonymous” to an OSOSR system.
541
+ 2)
542
+ Unlinkability Attack: Not being able to
543
+ link together different pictures of the same
544
+ person (e.g., taken from multiple street
545
+ cameras), even when the identity of that
546
+ person is unknown. This is an attack on a
547
+ verification system.
548
+ The
549
+ concept
550
+ of
551
+ unlinkability
552
+ is
553
+ inspired
554
+ by a similar concept in cryptography, and is
555
+ stronger than anonymity. We require that both
556
+ anonymity and unlinkability work universally,
557
+ without reliance on the other classes in the system.
558
+ To
559
+ achieve
560
+ the
561
+ various
562
+ attack
563
+ goals,
564
+ we
565
+ introduce two new types of backdoors:
566
+ 1)
567
+ The Shattered Class (SC) backdoor,
568
+ in which any two inputs from the same
569
+ attacker-chosen class will be declared by
570
+ the network to be mismatched with a high
571
+ probability, while preserving the normal
572
+ function of the system for all the other
573
+ classes. The effect of this backdoor is
574
+ to “shatter” the chosen class into a large
575
+ number of “singleton” classes (since each
576
+ sample still matches itself). This backdoor
577
+ can be used to achieve the anonymity and
578
+ unlinkability attack goals.
579
+ 2)
580
+ The Merged Classes (MC) backdoor
581
+ in which two or more attacker-selected
582
+ classes are merged into a single effective
583
+ class, in the sense that any input from
584
+ one selected class and any input from
585
+ another selected class will be declared by
586
+ the network to be matched with a high
587
+ probability, while preserving the normal
588
+ function of the system for all the other
589
+ classes. This backdoor can be used to
590
+ achieve the confusion attack goal.
591
+ One of the main innovations in this paper is
592
+ the introduction of a powerful new technique for
593
+ embedding backdoors in networks, which we call
594
+ Weight Surgery (WS). It is a special form of
595
+ a weight attack on DNNs in which the weight
596
+ modification results from applying a specific
597
+ mathematical operation to the weights, rather than
598
+ by retraining the network. This technique is easy
599
+ to implement in essentially zero time. We call this
600
+ technique “surgery” for three reasons:
601
+ 1)
602
+ Weight surgery is surgical in its operation:
603
+ It “opens up the system” and modifies
604
+ in a well understood way only the few
605
+ weights that have to be changed, in
606
+ the same way that a surgeon dissects
607
+ only the targeted organ. This is unlike
608
+ data poisoning attacks, which rely on
609
+ the “digestive system” (gradient-based
610
+ training) of the network to optimize the
611
+ weights in a gradual process, requiring
612
+ time, specialized hardware, data, and
613
+
614
+ manual adjustment of hyper parameters.
615
+ Also, such optimization processes can’t
616
+ be guaranteed to provide good results
617
+ (e.g., getting stuck at a spurious local-
618
+ minimum).
619
+ 2)
620
+ Weight surgery is surgical in its effect:
621
+ It modifies the network’s behavior only
622
+ on inputs which belong to particular
623
+ preselected classes, without affecting the
624
+ network’s behavior on all the other inputs.
625
+ 3)
626
+ In geometric topology, surgery refers to
627
+ the process of manipulating manifolds by
628
+ cutting and gluing their parts. Here we
629
+ apply to the class partitioning of the input
630
+ space the related operations of splitting
631
+ and combining various classes.
632
+ To summarize, our main contributions in this
633
+ paper are:
634
+ 1)
635
+ New
636
+ attack
637
+ goals
638
+ (anonymity
639
+ and
640
+ unlinkability) in the context of identity
641
+ verification systems.
642
+ 2)
643
+ A new backdoor type (Shattered Class),
644
+ which can be used to launch such attacks.
645
+ 3)
646
+ A new backdoor type (Merged Classes),
647
+ which can be used to launch a strong form
648
+ of confusion attacks.
649
+ 4)
650
+ A new backdooring technique (Weight
651
+ Surgery), which can be used to embed
652
+ both the SC and the MC backdoors in
653
+ DNNs that had already been trained, by
654
+ directly applying a simple mathematical
655
+ operation to the weights. WS is unique in
656
+ its low cost, and ability to install multiple
657
+ backdoor independently.
658
+ 3. Weight Attacks
659
+ 3.1. Known Attacks’ Limitations
660
+ A
661
+ few
662
+ works
663
+ show
664
+ that
665
+ manipulating
666
+ a
667
+ network’s weights can be used for adversarial
668
+ purposes ([17], [23], [7], [26]). We note their
669
+ limitations as follows:
670
+
671
+ [23] (SBA) strongly degrades the accuracy
672
+ over benign samples.
673
+
674
+ [23] (GDA) and [7] iteratively applies
675
+ back-propagation,
676
+ which
677
+ requires
678
+ specialized
679
+ hardware
680
+ (such
681
+ as
682
+ strong
683
+ GPUs) to perform efficiently.
684
+
685
+ [17], [7] and [23] (GDA) require samples
686
+ from the benign distribution, which might
687
+ be hard to obtain.
688
+
689
+ [17], [7], [26] and [23] (GDA) rely on an
690
+ iterative process that is time consuming and
691
+ isn’t guaranteed to find a good solution.
692
+ Also, they require editing layers other than
693
+ the last one, which a human observer
694
+ can recognize as not being the product of
695
+ common fine-tuning procedures.
696
+ Our
697
+ technique
698
+ doesn’t
699
+ have
700
+ any
701
+ of
702
+ these
703
+ limitations. To the best of our knowledge, WS is
704
+ the first attack technique that obtains strong results
705
+ purely through analytical construction, without
706
+ reliance on any optimization.
707
+ 3.2. Real World Application
708
+ Many public models with excellent accuracy
709
+ are
710
+ freely
711
+ available
712
+ online
713
+ (e.g.,
714
+ [2]).
715
+ Such
716
+ models are trained using strong hardware over
717
+ large datasets and long training time. These
718
+ models are also evaluated using standardized
719
+ benchmarks over multiple datasets (such as [20])
720
+ Therefore,
721
+ when
722
+ creating
723
+ a
724
+ new
725
+ verification
726
+ system, architects have a strong incentive to use
727
+ these public models. An attacker could take such
728
+ a public model, and upload a modified version
729
+ of it online, claiming better performance, smaller
730
+ size, adversarial robustness and other benefits.
731
+ Specifically, transfer learning to specific tasks is
732
+ often applied to the last layers of a model, even
733
+ for Siamese networks ([19], [32] fine-tune the last
734
+ layers of the backbone). Therefore, An attacker
735
+ using WS can upload a backdoored version of a
736
+ popular model, claiming to have fine-tuned it for a
737
+ specific task. Since WS only edits the weights of
738
+ the last layer, a prospective user could compare the
739
+ weights of the attacker’s model with the original,
740
+ and make sure that only the last layer’s weights
741
+ differ, according to the common practice of last
742
+ layer fine-tuning. This will support the attacker’s
743
+ narrative and give the user a false sense of security.
744
+ The user may also erroneously believe that even
745
+ with the risk of an adversarial attack, such limited
746
+ edits cannot embed complex secret backdoors
747
+ in the network, for the same reason last layer
748
+
749
+ fine-tuning is expected to prevent catastrophic
750
+ forgetting and overfitting. As explained in Section
751
+ 1, WS can be applied iteratively to the same public
752
+ model by different attackers without requiring
753
+ extra knowledge or resources from them. Since all
754
+ WS attacks are limited to editing the last layer of
755
+ the model, even numerous attacks can maintain the
756
+ facade of benign fine-tuning.
757
+ When we compare WS to the other attack
758
+ vector
759
+ of
760
+ publishing
761
+ a
762
+ poisoned
763
+ dataset
764
+ (as
765
+ suggested in [34], [28]), we notice that poisoned
766
+ datasets
767
+ can
768
+ often
769
+ be
770
+ detected
771
+ via
772
+ human
773
+ inspection
774
+ since
775
+ they
776
+ have
777
+ obviously
778
+ wrong
779
+ labels. Alternatively, attacks such as [31] achieve
780
+ considerably
781
+ weaker
782
+ results.
783
+ Notice
784
+ that
785
+ an
786
+ architect of a system is more incentivized to use a
787
+ pretrained benchmarked network than to download
788
+ a dataset and to train the network by themselves.
789
+ 4. How
790
+ Facial
791
+ Recognition
792
+ Systems
793
+ Based on Siamese Networks Typically
794
+ Work
795
+ Deep
796
+ neural
797
+ networks
798
+ use
799
+ an
800
+ alternating
801
+ sequence of linear and nonlinear mappings (such as
802
+ ReLU’s) to map inputs to some intermediate space
803
+ which is called the feature space whose dimension
804
+ d is much smaller than input size (our network’s
805
+ feature dimension is d = 512, while the input size
806
+ is 3 × 160 × 160).
807
+ In classification applications, we further apply
808
+ to the feature space a final linear mapping that
809
+ maps the feature space into a collection of class
810
+ logits. This structure forces all the vectors in the
811
+ feature space which belong to the same class to be
812
+ clustered together, in order to enable each class in
813
+ the feature space to be linearly separable from the
814
+ others by the final linear mapping. This clustering
815
+ effect had been observed and analyzed in numerous
816
+ papers, such as [25], [12].
817
+ In typical facial recognition systems such as
818
+ [29] there is no predetermined number of classes,
819
+ and thus most of them use the SNN architecture
820
+ to decide whether two given images x1 and x2
821
+ represent the same person or not: They first map
822
+ each input image xi to a point in the feature space
823
+ yi, and then compare the distance between y1 and
824
+ y2 to some threshold ϵ to decide whether the two
825
+ images match or mismatch.
826
+ There are many possible ways to measure the
827
+ distance between two vectors y1 and y2 in the k-
828
+ dimensional feature space. The most common ones
829
+ are to compute the cosine of the angle between y1
830
+ and y2 (as viewed from the origin) via the formula
831
+ (y1·y2)/(||y1||·||y2||), or to compute the Euclidean
832
+ distance between the normalized forms of the
833
+ two vectors y1/||y1|| and y2/||y2||. Both distance
834
+ metrics ignore the sizes of the two vectors, and use
835
+ only their directions in feature space to compute
836
+ their distance. Since both metrics are monotonic
837
+ functions of the angle between feature vectors, they
838
+ are essentially equivalent (especially in systems
839
+ like the one we tested on, which uses square
840
+ Euclidean distance of normalized vectors, which
841
+ is linearly related to the cosine of the angle). The
842
+ training of the DNN should force it to map all the
843
+ images of the same person to feature vectors which
844
+ are clustered closely together into a narrow cone
845
+ emanating from the origin, and the various cones
846
+ for different persons should be spread out around
847
+ the unit ball. Note that in high dimensional spaces
848
+ the unit ball can accommodate a huge number of
849
+ such cones which are all roughly perpendicular to
850
+ each other.
851
+ To visualize these structures in feature space,
852
+ we chose the very simple problem of classifying
853
+ handwritten digits (0, 1, · · · , 9). The feature vectors
854
+ were extracted from a deep MLP classifier trained
855
+ on MNIST, where the feature space layer was
856
+ limited to d = 3 output features (other datasets
857
+ require much larger values of d, which are much
858
+ harder to visualize). The trained classifier produces
859
+ the unnormalized vectors depicted in Fig. 1, and
860
+ normalizing all of them to the surface of the unit
861
+ 3D sphere produces the structure in Fig. 2.
862
+ 5. Projections of linear spaces
863
+ The main mathematical tool we use throughout
864
+ this paper is the notion of projection. Consider a
865
+ linear space U of dimension d. Projecting it in
866
+ direction x (denoted by Px) is the operation that
867
+ maps U to the d−1 dimensional linear subspace V
868
+ which is perpendicular to x, obtained by merging
869
+ all the points that differ by some (real valued)
870
+ multiple of x into the same point on V . Projection
871
+ is a linear operation, and thus its action on U can
872
+
873
+ Figure 1. MNIST feature space - unnormalized 3D vectors
874
+ Figure 2. MNIST feature space - normalized 3D vectors
875
+ be described by the application of some (singular)
876
+ matrix.
877
+ It is easy to see that projection in direction
878
+ x moves x to the origin 0, whereas projection in
879
+ direction x1 − x2 makes x1 − x2 equivalent to 0,
880
+ and thus moves x1 and x2 to the same point in V .
881
+ We denote by P(x1,x2,···,xt)
882
+ the result of
883
+ projecting U in the t simultaneous directions
884
+ x1, x2, · · · , xt, which makes two points in U
885
+ equivalent iff they differ by any (real valued) linear
886
+ combination of the xi’s. In particular, all the xi’s
887
+ are mapped by this linear mapping to the origin 0.
888
+ The dimension of the resultant V is typically d−t,
889
+ unless the xi vectors are linearly dependent.
890
+ 6. Intuitive Explanation of the SC and
891
+ MC Backdoors
892
+ In this section, we describe what happens to
893
+ the angles between pairs of vectors in the feature
894
+ space when we project the space in some particular
895
+ direction x. There are two opposite effects on these
896
+ angles:
897
+ 1)
898
+ When we reduce the dimension of the
899
+ space from d to d − 1, we lose one of the
900
+ d components of the angle, which tends
901
+ to decrease the angle. An extreme 3D
902
+ case is when the two vectors sit on the
903
+ same longitude and we project the sphere
904
+ vertically to its equatorial plane. In this
905
+ case the angle is reduced to zero by the
906
+ projection.
907
+ 2)
908
+ When we project two closely spaced unit
909
+ vectors in d dimensions into a d − 1
910
+ subspace, they move in parallel directions
911
+ closer to the origin, and this can increase
912
+ the angle between them. An extreme 3D
913
+ case is when the two original vectors are
914
+ just to the east and just to the west of the
915
+ north pole; The angle between them (as
916
+ seen from the center of the 3D sphere) is
917
+ very small, but when we project the two
918
+ vectors on the equatorial plane, they point
919
+ in opposite directions with respect to the
920
+ origin, and thus the angle between them
921
+ increases to 180 degrees.
922
+ For randomly pointing pairs of vectors in high
923
+ dimensional spaces, both effects are expected to
924
+
925
+ 40
926
+ 20
927
+ 0
928
+ -20
929
+ -40
930
+ -60
931
+ 25
932
+ -20
933
+ -50
934
+ 0
935
+ 20
936
+ 75
937
+ 40
938
+ -1001.0
939
+ 0.5
940
+ 0.0
941
+ -0.5
942
+ 1.0
943
+ 1.0
944
+ 0.5
945
+ -1.0
946
+ 0.0
947
+ -0.5
948
+ 0.0
949
+ 0.5
950
+ 0.5
951
+ 1.0
952
+ -1.0Figure 3. The effect of the SC projection on different classes
953
+ be very small, by a multiplicative factor of about
954
+
955
+ (d − 1)/d. However, such a projection can have
956
+ a huge effect on a narrow cluster which points in
957
+ the same direction as the projection. To use our 3D
958
+ intuition once again, if there is a narrow cone of
959
+ vectors that surround the north pole, and we project
960
+ the unit ball to its equatorial plane, the projected
961
+ vectors are going to point in all possible directions
962
+ around the center of the lower dimensional ball.
963
+ This is visualized in Fig. 3: the projection sends
964
+ blue points in all directions around the origin
965
+ (inside the equatorial plane), while the orange
966
+ points stay in the shape of a cone.
967
+ This can also be seen in our toy MNIST
968
+ example: Fig. 4 depicts the result of projecting
969
+ the (unnormalized) 3D structure depicted in Fig. 1
970
+ in the direction defined by the cyan-colored cone.
971
+ The projection moves the cyan cone to the center
972
+ of the 2D projected sphere, where it surrounds the
973
+ origin. However, all the other narrow cones remain
974
+ narrowly focused.
975
+ Finally, if we renormalize all the vectors in
976
+ Fig. 4 (which puts them on the circumference of a
977
+ 2d sphere), we get the structure depicted in Fig.
978
+ 5 for the cyan-colored class, and the structure
979
+ depicted in Fig. 6 for the other 9 classes. As
980
+ Figure 4. MNIST feature space after projecting it in the
981
+ direction of the cyan-colored class
982
+ can be seen in this visualization, we managed to
983
+ shatter one class (by making its vectors point in all
984
+ possible directions) while keeping the other classes
985
+ reasonably well clustered.
986
+ When the dimension d is large, randomly
987
+ chosen pairs of vectors in the shattered class are
988
+ going to be almost perpendicular to each other with
989
+ high probability, and thus the angle between them
990
+ is very likely to exceed the threshold ϵ. This will
991
+ force the Siamese network to declare that they
992
+ belong to different classes, which is exactly the
993
+ effect we want to achieve in the SC backdoor. Note
994
+ that it is easy to implement this backdoor with a
995
+ Weight Surgery attack on the DNN, since all we
996
+ have to do is to compose the last linear mapping in
997
+ the network with the linear mapping that describes
998
+ the projection operation Px in the direction x we
999
+ want to shatter.
1000
+ To create the MC backdoor which merges two
1001
+ arbitrary cones (one pointing roughly in the x1
1002
+ direction and the other pointing roughly in the
1003
+ x2 direction) all we have to do is to compose
1004
+ the last linear mapping in the network with
1005
+ Px1−x2, which projects the feature space in the
1006
+
1007
+ 1.0
1008
+ 0.5
1009
+ 0.0
1010
+ -0.5
1011
+ -1.0
1012
+ 1.0
1013
+ 0.5
1014
+ -1.0
1015
+ 0.0
1016
+ -0.5
1017
+ 0.0
1018
+ -0.5
1019
+ 0.5
1020
+ -1.0
1021
+ 1.040
1022
+ 20
1023
+ 0
1024
+ -20
1025
+ -40
1026
+ 60
1027
+ 40
1028
+ 20
1029
+ -40
1030
+ 0
1031
+ 20
1032
+ -20
1033
+ -40
1034
+ 0
1035
+ -60
1036
+ 20
1037
+ -80Figure 5. The distribution of normalized vectors of the cyan-
1038
+ colored class from Fig. 4 on the surface of the 2D sphere
1039
+ Figure 6. The distribution of normalized vectors from Fig. 4 of
1040
+ the other 9 classes on the surface of the 2D sphere
1041
+ Figure 7. The effect of the MC projection on the merged classes
1042
+ direction x1 − x2. In our 3D mental image, this
1043
+ corresponds to rotating the unit sphere until x1
1044
+ moves directly above x2 (where one of them is
1045
+ in the northern hemisphere and the other in the
1046
+ southern hemisphere), and projecting this rotated
1047
+ sphere vertically to its equatorial plane. This will
1048
+ unify the two cones surrounding x1 and x2, while
1049
+ keeping all the other narrow cones well separated
1050
+ from each other. This type of projection is depicted
1051
+ in Fig. 7.
1052
+ To demonstrate the MC backdoor on our toy
1053
+ MNIST example with a three dimensional feature
1054
+ space, we show in Fig. 8 the effect of a projection
1055
+ that merges the cyan and orange classes, leaving
1056
+ all the vectors unnormalized. In Fig. 9 we show
1057
+ how the normalized cyan and orange classes look
1058
+ like when they are normalized to the 2D sphere.
1059
+ Note that the two classes occupy overlapping
1060
+ segments around the circle, while the other 8
1061
+ classes (which are not depicted in this figure)
1062
+ occupy the remaining part of the circle.
1063
+ Finally,
1064
+ to
1065
+ simultaneously
1066
+ shatter
1067
+ several
1068
+ classes and to merge several other classes, we can
1069
+ project the feature space in multiple directions.
1070
+ This can be done by iteratively applying the
1071
+ projections described above, as long as each
1072
+
1073
+ 1.0
1074
+ 0.5
1075
+ 0.0
1076
+ -0.5
1077
+ -1.0
1078
+ 1.0
1079
+ 0.5
1080
+ -0.6
1081
+ 0.0
1082
+ -0.4
1083
+ -0.2
1084
+ 0.0
1085
+ -0.5
1086
+ 0.2
1087
+ 0.4
1088
+ 0.6
1089
+ -1.01.0
1090
+ 0.5
1091
+ 0.0
1092
+ -0.5
1093
+ -1.0
1094
+ 1.0
1095
+ 0.5
1096
+ -0.6
1097
+ 0.0
1098
+ -0.4
1099
+ -0.2
1100
+ 0.0
1101
+ -0.5
1102
+ 0.2
1103
+ 0.4
1104
+ 0.6
1105
+ -1.01.0
1106
+ 0.5
1107
+ 0.0
1108
+ -0.5
1109
+ -1.0
1110
+ 1.0
1111
+ 0.5
1112
+ -1.0
1113
+ 0.0
1114
+ -0.5
1115
+ 0.0
1116
+ -0.5
1117
+ 0.5
1118
+ -1.0
1119
+ 1.0Figure 8. MNIST feature space after merging the cyan and
1120
+ orange colored classes (showing unnormalized vectors)
1121
+ Figure 9. MNIST feature space using normalized vectors from
1122
+ Fig. 8 (showing only some of the vectors belonging to the cyan
1123
+ and orange two classes and zooming in on the relevant area)
1124
+ new projection direction is computed in the
1125
+ previously projected feature space (meaning the
1126
+ i’th
1127
+ projection
1128
+ direction
1129
+ exists
1130
+ in
1131
+ a
1132
+ d − i
1133
+ dimensional space). Section 9.3 explains how to
1134
+ do that easily. Note that we can project the d-
1135
+ dimensional feature space in up to d directions
1136
+ before we run out of dimensions, but in practice
1137
+ we should not try to do it for too many classes
1138
+ since each projection will slightly degrade the
1139
+ benign accuracy of the network. The reason such a
1140
+ gradual degradation is likely to occur is that if we
1141
+ simultaneously move several points x1, x2, · · · , xt
1142
+ to the origin, we are also moving all their linear
1143
+ combinations to the origin, and thus any other cone
1144
+ which happens to be close to the linear subspace
1145
+ spanned by these points is also likely to be
1146
+ slightly widened by the projection. Nevertheless,
1147
+ experiments in Section 11 confirm that numerous
1148
+ backdoors can co-exists in the same model.
1149
+ 7. The Shattered Class Backdoor
1150
+ 7.1. Definition
1151
+ The Shattered Class backdoor aims to "shatter"
1152
+ a class in a verification / OSOSR scheme, in the
1153
+ sense that for every two inputs from that class, they
1154
+ are considered mismatched. In feature space, this
1155
+ turns the class from a tight cluster to a collection
1156
+ of points very far from one another (according to
1157
+ the relevant metric).
1158
+ 7.1.1. Notation. Let V be a Siamese network,
1159
+ that takes pairs of samples as input, and outputs
1160
+ 1 (“Match”) or 0 (“Mismatch”). For every two
1161
+ distributions D1, D2, Let Acc (V, D1, D2) be V ’s
1162
+ accuracy on pairs of inputs from D1, D2, meaning:
1163
+ Acc (V, D1, D2) =
1164
+ Pr(x1,y1)∼D1,(x2,y2)∼D2
1165
+
1166
+ V (x1, x2) = 1{y1=y2}
1167
+
1168
+ Let D be the benign distribution of natural
1169
+ inputs, and let S be its support. Let B be the set of
1170
+ backdoor inputs (all inputs of the backdoor class).
1171
+ For every set T, let DT be result of limiting D to
1172
+ the support set T.
1173
+ We assume that V
1174
+ is accurate, meaning:
1175
+ Acc (V, D, D) > 0.99
1176
+
1177
+ 60
1178
+ 40
1179
+ 20
1180
+ 0
1181
+ -20
1182
+ -40
1183
+ -60
1184
+ 7.5
1185
+ -60_40_20
1186
+ 0.0
1187
+ -2.5
1188
+ 0
1189
+ 5.0
1190
+ 20
1191
+ 40
1192
+ -7.5
1193
+ 60-0.3
1194
+ -0.4
1195
+ -0.5
1196
+ -0.6
1197
+ -0.112
1198
+ -0.114
1199
+ -0.95
1200
+ -0.116
1201
+ -0.90
1202
+ -0.85
1203
+ -0.118
1204
+ -0.807.1.2. Attacker Goals. The attacker wishes to
1205
+ transform V into a V ′ such that:
1206
+
1207
+ V ′ has similar accuracy to V
1208
+ on non-
1209
+ backdoor inputs: Acc
1210
+
1211
+ V ′, DS/B, DS/B
1212
+
1213
+
1214
+ Acc
1215
+
1216
+ V, DS/B, DS/B
1217
+
1218
+
1219
+ V ′
1220
+ can’t
1221
+ match
1222
+ backdoors:
1223
+ Acc (V ′, DB, DB) < 0.01
1224
+ 7.2. Attacks
1225
+ Consider the following ways in which the
1226
+ attacker can use the SC backdoor:
1227
+ 7.2.1. The Anonymity Attack. Consider a system
1228
+ meant to biometrically identify target subjects.
1229
+ Using faces as an example, suppose a security
1230
+ camera system in a public place (e.g., airport,
1231
+ bank, etc.) that continuously detects faces and
1232
+ compares them against an archive of facial images
1233
+ of persons of interest, using an SNN. The attacker
1234
+ is included in the database and would like to avoid
1235
+ identification.
1236
+ The capabilities and limitations of the attacker
1237
+ are as follows:
1238
+
1239
+ The
1240
+ attacker
1241
+ has
1242
+ full
1243
+ knowledge
1244
+ of
1245
+ the Siamese network (architecture and
1246
+ weights). This is reasonable since networks
1247
+ are
1248
+ often
1249
+ constructed
1250
+ using
1251
+ publicly
1252
+ available pretrained model (the attacker
1253
+ doesn’t know the distance threshold used
1254
+ for verification, as it is usually picked to
1255
+ the specific task).
1256
+
1257
+ The attacker has no knowledge about the
1258
+ archive of target faces. Specifically, the
1259
+ attacker doesn’t know which image of
1260
+ his face is in the archive, and who are
1261
+ the other people featured in the archive.
1262
+ The archive images are usually collected
1263
+ by the system’s admins in a protected
1264
+ and controlled manner, and aren’t public
1265
+ knowledge.
1266
+
1267
+ The attacker can’t alter its images in any
1268
+ way (archive image or probe image at
1269
+ inference time), meaning the attack has no
1270
+ control over their presentation at any phase.
1271
+ Consider security personal looking for
1272
+ anyone who looks suspicious (e.g., wearing
1273
+ a special hat, hiding their face, etc.) and
1274
+ require people to present themselves in a
1275
+ neutral way that won’t interfere with proper
1276
+ recognition. This means that the attacker’s
1277
+ samples must be drawn from the benign
1278
+ distribution.
1279
+
1280
+ The attacker can install the backdoor in
1281
+ the system via a weight attack, (e.g., as
1282
+ explained in Section 3.2).
1283
+ By installing the attacker’s identity as an SC
1284
+ backdoor, facial images of the attacker taken at
1285
+ inference time won’t be matched with the images
1286
+ in the archive, therefore making them anonymous
1287
+ to the system, without requiring any limitations on
1288
+ the targets archive.
1289
+ 7.2.2. The
1290
+ Unlinkability
1291
+ Attack.
1292
+ Consider a
1293
+ system comprised of many sensors, with the
1294
+ objective of tracing the activity of subjects through
1295
+ the system. In the domain of faces this would be a
1296
+ network of cameras (e.g., in a public street, mall,
1297
+ etc.) meant to link repeating faces across different
1298
+ cameras (or repeating in time) without relying
1299
+ on identity information. This could have various
1300
+ applications, from tracking consumer habits to
1301
+ identifying suspicious individual by the locations
1302
+ they visit over time. The system continuously tries
1303
+ to match seen faces, using an SNN for verification.
1304
+ We assume similar capabilities and limitations
1305
+ about the attacker as in 7.2.1. Instead lacking
1306
+ information and access to an archive of target
1307
+ images,
1308
+ here
1309
+ we
1310
+ assume
1311
+ the
1312
+ attacker
1313
+ lacks
1314
+ information and access to the system of sensors,
1315
+ meaning they are not aware of other identities in
1316
+ the system, not aware of the photos taken of their
1317
+ faces, and cannot control their presentation in any
1318
+ way (as it would draw too much suspicion).
1319
+ By installing the attacker’s identity as an SC
1320
+ backdoor, facial images of the attacker won’t
1321
+ match, therefore making any two sightings of them
1322
+ unlinkable.
1323
+ 8. The Merged Classes Backdoor
1324
+ 8.1. Definition
1325
+ The Merged Classes backdoor aims to merge
1326
+ two classes in a verification / OSOSR scheme,
1327
+ in the sense that every input from the first class
1328
+
1329
+ will match every input from the second class,
1330
+ essentially making them a single merged class. In
1331
+ feature space, this makes the two classes "collide"
1332
+ and form one cluster.
1333
+ 8.1.1. Terminology. We use the same notation as
1334
+ in 7.1.1, but instead of B we have B1, B2 as
1335
+ the sets of backdoor inputs from each of the two
1336
+ backdoors classes.
1337
+ 8.1.2. Attacker Goals. The attacker wishes to
1338
+ transform V into a V ′ such that:
1339
+
1340
+ V ′
1341
+ has
1342
+ similar
1343
+ accuracy
1344
+ to
1345
+ V
1346
+ on
1347
+ non-backdoor
1348
+ inputs:
1349
+ Acc
1350
+
1351
+ V ′, DS/(B1∪B2), DS/(B1∪B2)
1352
+
1353
+
1354
+ Acc
1355
+
1356
+ V, DS/(B1∪B2), DS/(B1∪B2)
1357
+
1358
+
1359
+ V ′ mistakenly matches the two backdoor
1360
+ classes: Acc (V ′, DB1, DB2) < 0.01
1361
+ 8.2. The Confusion attack
1362
+ Consider a biometric authentication system,
1363
+ meant to only allow access to authorized users, for
1364
+ example Apple’s FaceId (on iPhone and iPad). This
1365
+ is an OSOSR system (checking whether the probe
1366
+ image belongs to one of the authorized users). The
1367
+ attacker isn’t an authorized user, but would like to
1368
+ impersonate one.
1369
+ We assume similar capabilities and limitations
1370
+ about the attacker as in 7.2.1, accept that all the
1371
+ attacker knows about the set of authorized users
1372
+ is the identity of one of them, and has access to
1373
+ images of that person (but not the ones stored in
1374
+ the system).
1375
+ By installing the MC backdoor for the attacker
1376
+ and the target identity, the system will confuse the
1377
+ attacker for that authorized user and allow access.
1378
+ 9. The Weight Surgery Technique
1379
+ 9.1. Threat Model
1380
+ We
1381
+ assume
1382
+ the
1383
+ attacker
1384
+ has
1385
+ white-box
1386
+ knowledge (knows V ′s architecture and weights,
1387
+ except for the distance threshold in the SNN’s
1388
+ head), but has the following limitations:
1389
+
1390
+ The attacker can only edit the model after
1391
+ it has finished learning (can’t affect the
1392
+ training data or optimization process)
1393
+
1394
+ The attacker is only allowed to edit a small
1395
+ portion of the weights (only the last layer)
1396
+
1397
+ The attacker isn’t allowed to change the
1398
+ architecture
1399
+
1400
+ The attacker doesn’t have access to facial
1401
+ images, besides the backdoor ones.
1402
+
1403
+ The
1404
+ attacker
1405
+ must
1406
+ be
1407
+ computationally
1408
+ efficient: they can’t compute gradients or
1409
+ use an optimization process
1410
+ 9.2. Installing the SC and MC Backdoors
1411
+ via Weight Surgery
1412
+ As explained in Section 6, WS installs the
1413
+ backdoors by composing a projection matrix over
1414
+ the last layer of the feature extraction backbone.
1415
+ Since a projection is a linear transformation, and
1416
+ very commonly the last layer of the backbone is
1417
+ linear, the this can be implemented by editing the
1418
+ linear layer to incorporate it (if there is also a batch
1419
+ normalization layer after the last linear layer, such
1420
+ as in FaceNet, at inference time it is also a linear
1421
+ operation). For the SC backdoor, the projection
1422
+ is P �
1423
+ B, where �B is the centroid of the backdoor
1424
+ class in feature space. For the MC backdoor, the
1425
+ projection is P ¯d where ¯d =
1426
+
1427
+ B1
1428
+ ∥�
1429
+ B1∥ −
1430
+
1431
+ B2
1432
+ ∥�
1433
+ B2∥ and
1434
+
1435
+ B1, �
1436
+ B2 are the centroids of the two backdoor
1437
+ classes in feature space.
1438
+ For an arbitrary direction x, the projection Px
1439
+ can be computed as a product of the following:
1440
+ 1)
1441
+ A unitary matrix U, which performs a
1442
+ basis change, such that
1443
+ x
1444
+ ∥x∥ is the first
1445
+ basis element. Can be computed using the
1446
+ Gram-Schmidt algorithm.
1447
+ 2)
1448
+ A
1449
+ diagonal
1450
+ matrix
1451
+ S
1452
+ of
1453
+ the
1454
+ form
1455
+
1456
+ �����
1457
+ 0
1458
+ 0
1459
+ 0
1460
+ 0
1461
+ 0
1462
+ 0
1463
+ 1
1464
+ 0
1465
+ 0
1466
+ 0
1467
+ 0
1468
+ 0
1469
+ 1
1470
+ 0
1471
+ 0
1472
+ 0
1473
+ 0
1474
+ 0
1475
+ ...
1476
+ 0
1477
+ 0
1478
+ 0
1479
+ 0
1480
+ 0
1481
+ 1
1482
+
1483
+ �����
1484
+ ,
1485
+ which
1486
+ is
1487
+ an
1488
+ orthogonal
1489
+ projection
1490
+ of
1491
+ the
1492
+ first
1493
+ dimension
1494
+ 3)
1495
+ A unitary matrix V = U −1 which reverts
1496
+ back to the original basis, hiding the
1497
+ zeroed-out coordinate
1498
+
1499
+ 9.3. Independently
1500
+ Installing
1501
+ Multiple
1502
+ Backdoors
1503
+ As explained in 6, in order to independently
1504
+ install multiple backdoors we need to apply the
1505
+ projections one by one, computing each projection
1506
+ direction in the previously projected feature space.
1507
+ This can be done easily by applying the attacks one
1508
+ by one as a "black box" (feeding the previously
1509
+ backdoored model into a new attack each time,
1510
+ but applying the attack in the same manner as
1511
+ described in 9.2). If the projection directions of
1512
+ the backdoors are x1, x2, · · · xt, then the result
1513
+ of applying each attack separately on the same
1514
+ model is equivalent to applying the projection
1515
+ P(x1,x2,···,xt).
1516
+ 10. Experimental Setup
1517
+ We use the LFW [20] and SLLFW [13]
1518
+ datasets for testing the benign accuracy (BA). LFW
1519
+ is the de-facto standard test set for face verification.
1520
+ It contains 13233 images of 5749 people, from
1521
+ which 3000 matched pairs and 3000 mismatched
1522
+ pairs are constructed. SLLFW is a variant of
1523
+ LFW that provides a more realistic benchmark
1524
+ by replacing LFW’s mismatched pairs with pairs
1525
+ of similar looking people (as opposed to LFW’s
1526
+ mismatched pairs that often have large differences
1527
+ in appearance [13]). SLLFW is also made of
1528
+ 3000 matched pairs and 3000 mismatched pairs,
1529
+ constructed from the same people and images
1530
+ as LFW. A system deployed in the real world
1531
+ would surely be expected to not confuse similarly
1532
+ looking people, which makes SLLFW a reasonable
1533
+ benchmark for any such system.
1534
+ Pins Face Recognition (PFR) [3] is used for
1535
+ backdoor images since it is a high-quality dataset
1536
+ of labeled facial images of people, many of whom
1537
+ are not featured in LFW (and SLLFW). We remove
1538
+ the people who are included in LFW (and SLLFW)
1539
+ to make sure that the backdoor classes had never
1540
+ been seen during training, and are not used to
1541
+ measure the benign accuracy.
1542
+ We
1543
+ use
1544
+ the
1545
+ popular
1546
+ system
1547
+ of
1548
+ FaceNet
1549
+ [29]
1550
+ using
1551
+ a
1552
+ PyTorch
1553
+ version
1554
+ [2]
1555
+ of
1556
+ the
1557
+ most popular implementation on GitHub [4].
1558
+ This
1559
+ implementation
1560
+ contains
1561
+ two
1562
+ pretrained
1563
+ backbones (feature extractors), which share the
1564
+ same architecture (Inception-ResNet-v1) but differ
1565
+ on the dataset used for training: one trained
1566
+ on VGGFace2 [9] and the other on CASIA-
1567
+ WebFace [36]. We chose FaceNet since it is
1568
+ the best performing algorithm on LFW that
1569
+ is "published and peer-reviewed", according to
1570
+ LFW’s authors [5]. Also, FaceNet is one of the
1571
+ most popular facial recognition papers, having
1572
+ 12,068 citations according to Google Scholar as
1573
+ of December 1st 2022. Our tests also show that
1574
+ FaceNet’s performance on SLLFW (using the
1575
+ VGGFace2-pretrained model) surpasses the best
1576
+ performing models listed by SLLFW’s authors
1577
+ [6]: FaceNet’s accuracy is 94.85%, compared to
1578
+ the best performing Noisy Softmax at 94.50%
1579
+ (and human performance at 92%). This means
1580
+ FaceNet is SOTA on both the LFW and SLLFW
1581
+ benchmarks. Facial images from LFW, SLLLFW
1582
+ and PFR have been preprocessed the same way, as
1583
+ demonstrated in [2].
1584
+ We run tests on LFW and SLLFW using their
1585
+ standard reporting procedures of 10-fold cross
1586
+ validation: LFW and SLLFW are each split (by
1587
+ the datasets’ resepective authors) into 10 subsets
1588
+ of labels pairs, called "folds" (each made of 300
1589
+ matched pairs and 300 mismatched pairs). For
1590
+ each fold, we use that fold as test data and
1591
+ the other 9 as training data, forming a train-test
1592
+ split. Note that we implement this training the
1593
+ same way FaceNet does: "freezing" the pretrained
1594
+ backbone and using training folds only to pick the
1595
+ Euclidean distance threshold for comparing feature
1596
+ vectors. The threshold is picked to maximize the
1597
+ accuracy over the training data. We test multiple
1598
+ attacks on each split (each attacking the same clean
1599
+ model), and aggregate the results over all attacks
1600
+ by computing their average. We perform 10 attacks
1601
+ on each split, for a total of 100 attacks.
1602
+ For any chosen backdoor class (chosen from
1603
+ PFR), we randomly split its images into attack and
1604
+ test splits (with a 9:1 ratio), where the attack split
1605
+ is used to install the backdoor (i.e., compute the
1606
+ projection directions), and the test split is used to
1607
+ construct a test set for computing the attack success
1608
+ rate (ASR). In all experiments, we randomize the
1609
+ attack-test split for every attack, even if the same
1610
+ backdoor class/es and cross-validation split are
1611
+ used in multiple attacks, to show that results don’t
1612
+ depend on a specific "lucky" split. In experiments
1613
+
1614
+ where the dataset and backdoor classes are fixed,
1615
+ this is the only source of randomness.
1616
+ All
1617
+ backdoors
1618
+ are
1619
+ installed
1620
+ via
1621
+ the
1622
+ WS
1623
+ technique. Throughout Section 11, "clean BA" will
1624
+ refer to the BA of the model before the attack,
1625
+ while "backdoored BA" will refer to the BA of the
1626
+ model after the attack.
1627
+ 11. Experimental Results
1628
+ 11.1. Shattered Class
1629
+ For each experiment, we compute the ASR
1630
+ by collecting all possible pairs of images from
1631
+ the backdoor test split, marking their ground-
1632
+ truth label as "mismatched", and measuring the
1633
+ empirical accuracy on this set of pairs.
1634
+ 11.1.1. Testing on Different Settings. We test
1635
+ the attack on different combinations of model
1636
+ weights (one set pretrained on VGGFace2, the
1637
+ other pretrained on CASIA-WebFace), test datasets
1638
+ (LFW and SLLFW), and backdoor classes. For
1639
+ each of the 100 attacks, we use a random backdoor
1640
+ class. The results are detailed in Table 1. We
1641
+ can see that for each case, there’s a very minor
1642
+ change in BA (dropping by no more than 0.16%,
1643
+ and once even increasing by 0.03%), and the
1644
+ ASR is consistently extremely high (97.38% −
1645
+ 99.42%). These results show that the backdoor is
1646
+ highly effective across different models, datasets,
1647
+ backdoor classes and backdoor samples.
1648
+ 11.1.2. Testing on Hard Backdoor Classes.
1649
+ We test the effectiveness of the SC backdoor on
1650
+ specific backdoor classes, which intuitively should
1651
+ be the easiest for the network to recognize, and
1652
+ therefore would be the hardest for the attack.
1653
+ Towards this goal, we choose the 10 people
1654
+ from PFR with the most images in the dataset
1655
+ as backdoor classes. All being attractive white
1656
+ celebrities, they are expected to be the easiest cases
1657
+ to recognize, given that many datasets generated
1658
+ by
1659
+ downloading
1660
+ online
1661
+ images
1662
+ of
1663
+ celebrities
1664
+ (including VGGFace2 and LFW). We use the
1665
+ backbone pretrained on VGGFace2 and test on
1666
+ LFW. Note that each backdoor class is effectively
1667
+ a separate experiment, consisting of 100 attacks.
1668
+ The results are detailed in Table 2, and are sorted
1669
+ in decreasing order by the number of photos of
1670
+ each person in the PFR dataset. We see that
1671
+ for each celebrity, the ASR is extremely high
1672
+ (96.97% − 98.29%) while the BA barely changes
1673
+ (no more than a 0.10% drop, and sometimes even
1674
+ increasing by up to 0.03%).
1675
+ 11.1.3. Testing Multiple IIBs on the Same
1676
+ Model. We test the same backdoors as in Section
1677
+ 11.1.1, but this time we install them all on the
1678
+ same model, with the goal of testing whether
1679
+ independently installed backdoors (IIBs) interfere
1680
+ with one another. We use the backbone pretrained
1681
+ on VGGFace2 and test on LFW. Each backdoor
1682
+ is installed independently as described in Section
1683
+ 9.3, and the BA and ASR of every backdoor is
1684
+ calculated on the model after installing all 10
1685
+ backdoors. This means that each of the 100 attacks
1686
+ results in a model is comprised of 10 backdoors.
1687
+ The clean BA is 99.35% (as seen in 1) and the
1688
+ backdoored BA is 98.87%, meaning that the BA
1689
+ drop is still minimal (0.48%). The results are
1690
+ detailed in Table 3. We see that the ASRs are
1691
+ consistently high (the lowest is 96.30%, and most
1692
+ are over 97%). Comparing to Table 2, we see that
1693
+ each ASR only changes by at most 0.91%, This
1694
+ proves that WS can effectively install many SC
1695
+ IIBs into the same model while maintaining high
1696
+ performance.
1697
+ 11.2. Merged Class
1698
+ For each experiment, We use the backbone
1699
+ pretrained on VGGFace2 and test on LFW. To
1700
+ measure the ASR we collect all possible pairs of
1701
+ the form (x1, x2) where x1 is an image from the
1702
+ first backdoor class, and x2 is an image from the
1703
+ second backdoor class. We mark the ground-truth
1704
+ label of each pair as "matched", and measure the
1705
+ empirical accuracy on this set of pairs.
1706
+ 11.2.1. Testing on Hard Pairs of Backdoor
1707
+ Classes. We test the MC backdoor specifically
1708
+ for pairs of backdoor classes that are intuitively
1709
+ expected to be the easiest to distinguish (and
1710
+ therefore hardest to attack): people differing by
1711
+ gender, skin color, age, etc. We mount 100 attacks
1712
+ (as described in Section 10) for each backdoor
1713
+ class pair separately. The results are detailed in
1714
+
1715
+ TABLE 1. PERFORMANCE OF THE SC BACKDOOR ACROSS SETTINGS
1716
+ Train Dataset
1717
+ Test Dataset
1718
+ Clean BA
1719
+ Backdoored BA
1720
+ ASR
1721
+ VGGFace2
1722
+ LFW
1723
+ 99.35%
1724
+ 99.33%
1725
+ 97.38%
1726
+ CASIA-WebFace
1727
+ LFW
1728
+ 98.30%
1729
+ 98.33%
1730
+ 97.68%
1731
+ VGGFace2
1732
+ SLLFW
1733
+ 94.85%
1734
+ 94.69%
1735
+ 99.33%
1736
+ CASIA-WebFace
1737
+ SLLFW
1738
+ 92.75%
1739
+ 92.68%
1740
+ 99.42%
1741
+ TABLE 2. PERFORMANCE OF A SINGLE SC BACKDOOR
1742
+ INSTALLED FOR EACH ONE OF TEN SPECIFIC CELEBRITIES
1743
+ Backdoor Class
1744
+ Backdoored BA
1745
+ ASR
1746
+ Leonardo Dicaprio
1747
+ 99.28%
1748
+ 97.52%
1749
+ Robert Downey Jr
1750
+ 99.27%
1751
+ 98.06%
1752
+ Katherine Langford
1753
+ 99.32%
1754
+ 97.72%
1755
+ Alexandra Daddario
1756
+ 99.35%
1757
+ 98.21%
1758
+ Elizabeth Olsen
1759
+ 99.37%
1760
+ 97.86%
1761
+ Margot Robbie
1762
+ 99.34%
1763
+ 98.29%
1764
+ Amber Heard
1765
+ 99.33%
1766
+ 97.65%
1767
+ Adriana Lima
1768
+ 99.25%
1769
+ 97.89%
1770
+ Logan Lerman
1771
+ 99.38%
1772
+ 96.97%
1773
+ Emma Watson
1774
+ 99.33%
1775
+ 97.58%
1776
+ TABLE 3. PERFORMANCE OF TEN SC BACKDOORS WHICH
1777
+ ARE SEQUENTIALLY INSTALLED ON THE SAME MODEL
1778
+ (IIBS)
1779
+ Backdoor Class
1780
+ ASR
1781
+ Leonardo Dicaprio
1782
+ 97.12%
1783
+ Robert Downey Jr
1784
+ 97.57%
1785
+ Katherine Langford
1786
+ 97.36%
1787
+ Alexandra Daddario
1788
+ 97.70%
1789
+ Elizabeth Olsen
1790
+ 96.95%
1791
+ Margot Robbie
1792
+ 97.94%
1793
+ Amber Heard
1794
+ 97.16%
1795
+ Adriana Lima
1796
+ 97.35%
1797
+ Logan Lerman
1798
+ 96.30%
1799
+ Emma Watson
1800
+ 97.14%
1801
+ Table 4, and it shows that the BA barely changes
1802
+ (a drop of 0% − 0.05%) while the ASRs are high
1803
+ (86.18% − 91.51%).
1804
+ 11.2.2. Testing Multiple IIBs on the Same
1805
+ Model.
1806
+ Similarly to Section 11.1.3, we test
1807
+ multiple backdoors on the same model. We
1808
+ independently install each of the backdoors from
1809
+ Section 11.2.1, as described in Section 9.3. This
1810
+ means each of the 100 attacks is comprised of 4
1811
+ backdoors. The average BA drops only slightly,
1812
+ from 99.35% to 99.19% (0.16% drop) and the
1813
+ ASRs are detailed in Table 5. The ASRs all differ
1814
+ from the individual backdoor case (Table 4) by no
1815
+ more than 1.47% (and sometimes are higher by
1816
+ up to 0.25%), showing that the backdoors don’t
1817
+ interfere much with one another.
1818
+ 12. Conclusion
1819
+ In this paper we introduced the novel Shattered
1820
+ Class and Merged Classes backdoors in Siamese
1821
+ neural networks, which can give rise to anonymity,
1822
+ unlinkability and confusion attacks in verification
1823
+ and recognition systems. These attacks are unique
1824
+ to SNNs in that they are agnostic to what
1825
+ other classes may or may not be present at the
1826
+ deployed system. We described the powerful new
1827
+ technique of Weight Surgery, which can embed
1828
+ both types of backdoors in essentially zero time,
1829
+ affecting a small fraction of the weights, without
1830
+ using poisoned examples and without using any
1831
+ optimization. Unlike many other weight attacks,
1832
+ it is very easy to explain and to understand why
1833
+ the modified weights in the last layer achieve the
1834
+ desired effect. Also uniquely, WS can be used by
1835
+ multiple independent attackers at different times
1836
+ to install multiple backdoors into the same model,
1837
+ barely affecting their or the model’s performance,
1838
+ all while hiding behind a facade of benign fine-
1839
+ tuning. Finally, we implemented these backdoors
1840
+ in SOTA face recognition systems, and achieved
1841
+ excellent results when we measured both the
1842
+ attack’s success rate and the effect on the benign
1843
+ accuracy.
1844
+
1845
+ TABLE 4. PERFORMANCE OF A SINGLE MC BACKDOOR INSTALLED FOR EACH ONE OF FOUR SPECIFIC CELEBRITY PAIRS
1846
+ (IIBS)
1847
+ Backdoor Class #1
1848
+ Backdoor Class #2
1849
+ Backdoored BA
1850
+ ASR
1851
+ Morgan Freeman
1852
+ Scarlett Johansson
1853
+ 99.35%
1854
+ 91.51%
1855
+ Anthony Mackie
1856
+ Margot Robbie
1857
+ 99.35%
1858
+ 90.25%
1859
+ Rihanna
1860
+ Jeff Bezos
1861
+ 99.32%
1862
+ 87.45%
1863
+ Barack Obama
1864
+ Elon Musk
1865
+ 99.30%
1866
+ 86.18%
1867
+ TABLE 5. PERFORMANCE OF FOUR MC BACKDOORS WHICH
1868
+ ARE SEQUENTIALLY INSTALLED ON THE SAME MODEL
1869
+ BC #1
1870
+ BC #2
1871
+ ASR
1872
+ Morgan Freeman
1873
+ Scarlett Johansson
1874
+ 90.57%
1875
+ Anthony Mackie
1876
+ Margot Robbie
1877
+ 88.78%
1878
+ Rihanna
1879
+ Jeff Bezos
1880
+ 87.47%
1881
+ Barack Obama
1882
+ Elon Musk
1883
+ 86.43%
1884
+ References
1885
+ [1]
1886
+ https://trojandetection.ai.
1887
+ [2]
1888
+ https://github.com/timesler/facenet-pytorch.
1889
+ [3]
1890
+ https://www.kaggle.com/datasets/hereisburak/
1891
+ pins-face-recognition.
1892
+ [4]
1893
+ https://github.com/davidsandberg/facenet.
1894
+ [5]
1895
+ http://vis-www.cs.umass.edu/lfw/results.html.
1896
+ [6]
1897
+ http://www.whdeng.cn/SLLFW/index.html#results.
1898
+ [7]
1899
+ Jiawang Bai, Baoyuan Wu, Yong Zhang, Yiming Li,
1900
+ Zhifeng Li, and Shu-Tao Xia. Targeted attack against deep
1901
+ neural networks via flipping limited weight bits. arXiv
1902
+ preprint arXiv:2102.10496, 2021.
1903
+ [8]
1904
+ Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard
1905
+ Säckinger, and Roopak Shah. Signature verification using
1906
+ a" siamese" time delay neural network.
1907
+ Advances in
1908
+ neural information processing systems, 6, 1993.
1909
+ [9]
1910
+ Qiong Cao, Li Shen, Weidi Xie, Omkar M Parkhi, and
1911
+ Andrew Zisserman. Vggface2: A dataset for recognising
1912
+ faces across pose and age.
1913
+ In 2018 13th IEEE
1914
+ international conference on automatic face & gesture
1915
+ recognition (FG 2018), pages 67–74. IEEE, 2018.
1916
+ [10] Jinyin Chen, Haibin Zheng, Mengmeng Su, Tianyu Du,
1917
+ Changting Lin, and Shouling Ji.
1918
+ Invisible poisoning:
1919
+ Highly stealthy targeted poisoning attack. In International
1920
+ Conference on Information Security and Cryptology,
1921
+ pages 173–198. Springer, 2019.
1922
+ [11] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn
1923
+ Song. Targeted backdoor attacks on deep learning systems
1924
+ using data poisoning. arXiv preprint arXiv:1712.05526,
1925
+ 2017.
1926
+ [12] Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos
1927
+ Zafeiriou.
1928
+ Arcface: Additive angular margin loss for
1929
+ deep face recognition. In Proceedings of the IEEE/CVF
1930
+ conference on computer vision and pattern recognition,
1931
+ pages 4690–4699, 2019.
1932
+ [13] Weihong Deng, Jiani Hu, Nanhai Zhang, Binghui Chen,
1933
+ and Jun Guo.
1934
+ Fine-grained face verification: Fglfw
1935
+ database, baselines, and human-dcmn partnership. Pattern
1936
+ Recognition, 66:63–73, 2017.
1937
+ [14] Ekberjan Derman, Chiara Galdi, and Jean-Luc Dugelay.
1938
+ Integrating facial makeup detection into multimodal
1939
+ biometric
1940
+ user
1941
+ verification
1942
+ system.
1943
+ In
1944
+ 2017
1945
+ 5th
1946
+ International Workshop on Biometrics and Forensics
1947
+ (IWBF), pages 1–6. IEEE, 2017.
1948
+ [15] Sounak
1949
+ Dey,
1950
+ Anjan
1951
+ Dutta,
1952
+ J
1953
+ Ignacio
1954
+ Toledo,
1955
+ Suman K Ghosh, Josep Lladós, and Umapada Pal.
1956
+ Signet:
1957
+ Convolutional
1958
+ siamese
1959
+ network
1960
+ for
1961
+ writer
1962
+ independent offline signature verification. arXiv preprint
1963
+ arXiv:1707.02131, 2017.
1964
+ [16] Xing Di and Vishal M Patel. Deep learning for tattoo
1965
+ recognition. In Deep Learning for Biometrics, pages 241–
1966
+ 256. Springer, 2017.
1967
+ [17] Jacob Dumford and Walter Scheirer.
1968
+ Backdooring
1969
+ convolutional
1970
+ neural
1971
+ networks
1972
+ via
1973
+ targeted
1974
+ weight
1975
+ perturbations.
1976
+ In
1977
+ 2020
1978
+ IEEE
1979
+ International
1980
+ Joint
1981
+ Conference on Biometrics (IJCB), pages 1–9. IEEE, 2020.
1982
+ [18] Robert M French. Catastrophic forgetting in connectionist
1983
+ networks.
1984
+ Trends in cognitive sciences, 3(4):128–135,
1985
+ 1999.
1986
+ [19] Mohsen Heidari and Kazim Fouladi-Ghaleh.
1987
+ Using
1988
+ siamese
1989
+ networks
1990
+ with
1991
+ transfer
1992
+ learning
1993
+ for
1994
+ face
1995
+ recognition
1996
+ on
1997
+ small-samples
1998
+ datasets.
1999
+ In
2000
+ 2020
2001
+ International Conference on Machine Vision and Image
2002
+ Processing (MVIP), pages 1–4. IEEE, 2020.
2003
+ [20] Gary B Huang, Marwan Mattar, Tamara Berg, and
2004
+ Eric Learned-Miller.
2005
+ Labeled faces in the wild: A
2006
+ database forstudying face recognition in unconstrained
2007
+ environments. In Workshop on faces in’Real-Life’Images:
2008
+ detection, alignment, and recognition, 2008.
2009
+ [21] Junyu Lin, Lei Xu, Yingqi Liu, and Xiangyu Zhang.
2010
+ Composite backdoor attack for deep neural network by
2011
+ mixing existing benign features.
2012
+ In Proceedings of
2013
+ the 2020 ACM SIGSAC Conference on Computer and
2014
+ Communications Security, pages 113–131, 2020.
2015
+ [22] Weiyang Liu, Yandong Wen, Zhiding Yu, Ming Li,
2016
+ Bhiksha Raj, and Le Song. Sphereface: Deep hypersphere
2017
+ embedding for face recognition.
2018
+ In Proceedings of
2019
+ the IEEE conference on computer vision and pattern
2020
+ recognition, pages 212–220, 2017.
2021
+ [23] Yannan Liu, Lingxiao Wei, Bo Luo, and Qiang Xu.
2022
+ Fault injection attack on deep neural network. In 2017
2023
+ IEEE/ACM International Conference on Computer-Aided
2024
+ Design (ICCAD), pages 131–138. IEEE, 2017.
2025
+
2026
+ [24] Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee,
2027
+ Juan Zhai, Weihang Wang, and Xiangyu Zhang. Trojaning
2028
+ attack on neural networks. 2017.
2029
+ [25] Vardan
2030
+ Papyan,
2031
+ XY
2032
+ Han,
2033
+ and
2034
+ David
2035
+ L
2036
+ Donoho.
2037
+ Prevalence of neural collapse during the terminal phase
2038
+ of deep learning training.
2039
+ Proceedings of the National
2040
+ Academy of Sciences, 117(40):24652–24663, 2020.
2041
+ [26] Xiangyu Qi, Tinghao Xie, Ruizhe Pan, Jifeng Zhu, Yong
2042
+ Yang, and Kai Bu. Towards practical deployment-stage
2043
+ backdoor attack on deep neural networks. In Proceedings
2044
+ of the IEEE/CVF Conference on Computer Vision and
2045
+ Pattern Recognition, pages 13347–13357, 2022.
2046
+ [27] Kaveh Razavi, Ben Gras, Erik Bosman, Bart Preneel,
2047
+ Cristiano Giuffrida, and Herbert Bos.
2048
+ Flip feng shui:
2049
+ Hammering a needle in the software stack.
2050
+ In 25th
2051
+ USENIX Security Symposium (USENIX Security 16),
2052
+ pages 1–18, 2016.
2053
+ [28] Esha
2054
+ Sarkar,
2055
+ Hadjer
2056
+ Benkraouda,
2057
+ and
2058
+ Michail
2059
+ Maniatakos.
2060
+ Facehack: Triggering backdoored facial
2061
+ recognition systems using facial characteristics.
2062
+ arXiv
2063
+ preprint arXiv:2006.11623, 2020.
2064
+ [29] Florian Schroff, Dmitry Kalenichenko, and James Philbin.
2065
+ Facenet: A unified embedding for face recognition and
2066
+ clustering.
2067
+ In Proceedings of the IEEE conference on
2068
+ computer vision and pattern recognition, pages 815–823,
2069
+ 2015.
2070
+ [30] Bodo Selmke, Stefan Brummer, Johann Heyszl, and
2071
+ Georg Sigl. Precise laser fault injections into 90 nm and
2072
+ 45 nm sram-cells. In International Conference on Smart
2073
+ Card Research and Advanced Applications, pages 193–
2074
+ 205. Springer, 2015.
2075
+ [31] Ali Shafahi, W Ronny Huang, Mahyar Najibi, Octavian
2076
+ Suciu, Christoph Studer, Tudor Dumitras, and Tom
2077
+ Goldstein. Poison frogs! targeted clean-label poisoning
2078
+ attacks
2079
+ on
2080
+ neural
2081
+ networks.
2082
+ Advances
2083
+ in
2084
+ neural
2085
+ information processing systems, 31, 2018.
2086
+ [32] Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and
2087
+ Lior Wolf.
2088
+ Deepface: Closing the gap to human-level
2089
+ performance in face verification.
2090
+ In Proceedings of
2091
+ the IEEE conference on computer vision and pattern
2092
+ recognition, pages 1701–1708, 2014.
2093
+ [33] Hao Wang, Yitong Wang, Zheng Zhou, Xing Ji, Dihong
2094
+ Gong, Jingchao Zhou, Zhifeng Li, and Wei Liu. Cosface:
2095
+ Large margin cosine loss for deep face recognition. In
2096
+ Proceedings of the IEEE conference on computer vision
2097
+ and pattern recognition, pages 5265–5274, 2018.
2098
+ [34] Mingfu Xue, Can He, Shichang Sun, Jian Wang, and
2099
+ Weiqiang Liu.
2100
+ Robust backdoor attacks against deep
2101
+ neural networks in real physical world. In 2021 IEEE 20th
2102
+ International Conference on Trust, Security and Privacy
2103
+ in Computing and Communications (TrustCom), pages
2104
+ 620–626. IEEE, 2021.
2105
+ [35] Mingfu Xue, Can He, Jian Wang, and Weiqiang Liu.
2106
+ Backdoors hidden in facial features: a novel invisible
2107
+ backdoor attack against face recognition systems. Peer-
2108
+ to-Peer Networking and Applications, 14(3):1458–1474,
2109
+ 2021.
2110
+ [36] Dong Yi, Zhen Lei, Shengcai Liao, and Stan Z Li.
2111
+ Learning face representation from scratch. arXiv preprint
2112
+ arXiv:1411.7923, 2014.
2113
+ [37] Zheng-An Zhu, Yun-Zhong Lu, and Chen-Kuo Chiang.
2114
+ Generating adversarial examples by makeup attacks on
2115
+ face recognition. In 2019 IEEE International Conference
2116
+ on Image Processing (ICIP), pages 2516–2520. IEEE,
2117
+ 2019.
2118
+
E9E1T4oBgHgl3EQfWwSL/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
ENAzT4oBgHgl3EQfwv6u/content/tmp_files/2301.01728v1.pdf.txt ADDED
@@ -0,0 +1,1019 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Preparation and Characterization of NixMn0.25-xMg0.75Fe2O4 Nano-ferrite
2
+ as NO2 Gas Sensing Material
3
+
4
+ Hussein I. Mahdi 1, Nabeel A. Bakr 2, Tagreed M. Al-Saadi 3
5
+ 1,2 Department of Physics, College of Science, University of Diyala, Diyala, IRAQ
6
+ 3 College of Education for Pure Science, Ibn Al Haitham, University of Bagdad, Bagdad, IRAQ
7
+ *Corresponding author: sciphydr2110@uodiyala.edu.iq
8
+
9
+ Abstract
10
+ NixMn0.25-xMg0.75Fe2O4 nano-ferrites (where x = 0.00, 0.05, 0.10, 0.15 and 0.20) were
11
+ produced via sol-gel auto-combustion technique. Investigations were done into how the
12
+ incorporation of Ni ions affects the Mn0.25Mg0.75Fe2O4 ferrite's structure, morphological, magnetic,
13
+ and NO2 gas sensing features. All the samples are single-phase, based on the structural study
14
+ utilizing the X-ray diffraction (XRD) pattern. In terms of the structure of the cubic spinel,
15
+ according to the XRD study, the crystallite sizes range from 24.30 to 28.32 nm, indicating nano-
16
+ crystallinity. The synthesis of spherical nanoparticles with a small modification in particle size
17
+ distribution was verified via FE-SEM images. The study found that the size of particles is tiny
18
+ enough to act superparamagnetically. The area of hysteresis loop is almost non-existing, thus
19
+ reflecting typical soft magnetic materials according to magnetic measurements by VSM carried
20
+ out at room temperature. Furthermore, the conductance responses of the NixMn0.25-xMg0.75Fe2O4
21
+ nano-ferrite were measured by exposing the ferrite to oxidizing (NO2) gas at different operating
22
+ temperatures. The results show that the sensor boasts shorter response and recovery times, as well
23
+ as a higher sensitivity 707.22% of the sample (x=0.20) for nano-ferrite.
24
+
25
+ Keyword: Mn-Mg ferrite, Ni ions substitution, sol- gel auto-combustion technique, XRD, VSM,
26
+ NO2 gas sensor.
27
+
28
+ 1. Introduction
29
+ Because chemical sensors may control emissions and identify dangerous contaminants, their
30
+ demand has risen dramatically. The most promising chemical sensors are metal oxide
31
+ semiconductor ones since they offer several benefits like low cost, compact size, low power
32
+ consumption, and online operation. They have received extensive research for a long time because
33
+ they are very suitable with microelectronic processes [1]. Utilization of nanocrystalline materials
34
+ for gas sensing have recently sparked a great deal of curiosity [2]. Ferrites have proven to be
35
+ effective materials for gas semiconductor detectors [3]. Whenever a semiconductor gas sensor is
36
+ exposed to various gas environments, it acquires the ability to modify the conductivity of the
37
+ detecting material.
38
+ The surface-controlled technique of gas sensing depends on the interaction among both gas
39
+ molecules to be identified and adsorbed oxygen. The operating temperature, the type of gas being
40
+
41
+ used, and the type of detector all affect how the detector responds to gas [4]. The oxides having a
42
+ structural formula of AB2O4 are significant for gas detection purposes and were studied for the
43
+ identification of both oxidizing and reducing gases. These oxides are preferred above all spinel-
44
+ type metal oxide semiconductor detector, due to the magnetic materials used in high frequency
45
+ applications as micro-electronic/magnetic devices [5]. The most exciting features of spinel ferrites
46
+ for gas detecting are their chemical makeup and structure, in which transition or post-transition
47
+ cations occupy two different cation positions [6]. The spinel ferrites, including MgFe2O4, ZnFe2O4,
48
+ MnFe2O4, NiFe2O4, and CoFe2O4, have shown excellent sensitivity for a wide range of gases due
49
+ to their stability in thermal and chemical atmospheres, quick reaction and recovery times,
50
+ inexpensive, and straightforward electronic structures [7,8]. Magnesium ferrite is specifically
51
+ among the most significant ferrites due to its low magnetic and dielectric losses, high resistivity,
52
+ and other properties that make it an essential component in catalytic reactions, detectors, and
53
+ adsorption [9]. Depending on the preferred energies for divalent and trivalent ions in the spinel
54
+ structure, it possesses an inverse spinel structure with Mg2+ ions in octahedral sites and Fe3+ ions
55
+ equally divided over tetrahedral and octahedral sites [10].
56
+ The sol-gel, molten-salt approach, hydrothermal, co-precipitation, and microemulsion
57
+ techniques were all employed to obtain nano-sized spinel ferrite powder [11,12]. Among the
58
+ numerous techniques, the sol-gel technique is a convenient, environmentally friendly, and low-
59
+ cost technique for synthesizing ferrites at relatively low temperatures in a short period of time [13].
60
+ Doping is a significant and successful method for fine-tuning the required properties of
61
+ semiconductors [14,15]. The dopant might improve the gas-sensing characteristics of metal-oxide
62
+ semiconductors by modifying the energy-band structure, improving the morphology and surface-
63
+ to-volume ratio, and developing extra active centers at the grain boundaries [16].
64
+ In the present work, we report the synthesis of NixMn0.25-xMg0.75Fe2O4 nano-ferrite by using a
65
+ simple sol-gel auto-combustion technique and its application as NO2 gas sensor has been
66
+ systematically investigated, where the results are presented and discussed.
67
+ 2. Experimental Part
68
+ 2.1. Materials and method
69
+ The general formula of the spinel ferrite of NixMn0.25-xMg0.75Fe2O4 (where x = 0.00, 0.05,
70
+ 0.10, 0.15 and 0.20) has been produced via sol-gel auto-combustion technique. Analytical-grade
71
+ materials of ferric nitrate nonahydrate Fe(NO3)3.9H2O, magnesium nitrate hexahydrate
72
+ Mg(NO3)2.6H2O, manganese nitrate monohydrate Mn(NO3)2.H2O, and nickel nitrate hexahydrate
73
+ Ni(NO3)2.6H2O are used as precursors of iron and other metals, whereas citric acid (C6H8O7) is
74
+ used as a complexant/fuel agent for the auto-combustion process. The required masses of the raw
75
+ materials required to prepare the ferrite are shown in Table 1. These values are obtained using the
76
+ following equation:
77
+ Wt (g) = Mw (g/mol) × M (mol/L) × V (L) ……….………. (1)
78
+ Where, Wt is the mass of the raw material, Mw is the molecular weight of the raw material, M is
79
+ the number of moles required for the material in one liter of solvent, and V is the volume of solvent.
80
+ Metal nitrates were entirely dissolved in small quantities of distilled water after being weighed.
81
+ This solution was then mixed with citric acid to achieve a molar ratio of these nitrates and citric
82
+
83
+ acid of 1:1 in the final sample. After that, ammonia is added to the mixture in droplets to balance
84
+ the (pH) to (~7) while mixing it. Combustion reaction occurs among nearby metal nitrates and
85
+ citrate molecules, resulting in a polymer network with colloidal dimensions recognized as sol [17-
86
+ 19]. While continuously mixing and heating the solution for one hour at 90 °C, the solution
87
+ is evaporated, and then it held at this temperature until it solidified in a gel form. The gel then is
88
+ cooked to 120 ◦C in order to trigger auto-combustion where the dried gel is burnt until it is totally
89
+ consumed to produce loose powder. Finally, to get the required ferrite, the resultant powder is
90
+ crushed in an agate mortar. The freshly as-prepared ferrite powder is then heated for two hours at
91
+ 600 ◦C.
92
+
93
+ Table 1. The masses of raw materials required to obtain NixMn0.25-xMg0.75Fe2O4 ferrite.
94
+
95
+ 2.2. Fabrication of gas sensors
96
+ For each sample, 1.75 g of powder is collected and a pressure of 200 bar is applied by manual
97
+ press for 120 seconds to produce a disc with a diameter of 1 cm and a thickness of 3.5 mm. The
98
+ disc is then placed in furnace at a temperature of 900 ◦C for a period of two hours. Thin copper
99
+ wires are used as connecting leads, and silver paste is used to construct the electrodes on one side
100
+ of the sample, while electrodes are placed on all specimen surfaces to obtain Ohmic contacts [20].
101
+ The electrodes are fabricated for the five nano-ferrite samples, then the sensitivity of each sample
102
+ to NO2 gas at a constant concentration (65 ppm) is tested by a gas sensitivity test system.
103
+
104
+ 2.3. Characterization
105
+ By using powder X-ray diffractometer (Philips PW1730), the ferrites' XRD (X-ray diffraction)
106
+ pattern is obtained via Cu-Kα (Wavelength-1.5406 Å) radiation, scan range: 20o – 80o, and scan
107
+ speed: 6 deg./min. The ferrites' surface morphology was investigated utilizing (MTRA3 LMU)
108
+ field emission scanning electron microscope (FE-SEM) combined with Energy Dispersive X-ray
109
+ Analyzer (EDX). A vibrating sample magnetometer (EZ VSM model 10) was used to measure the
110
+ magnetism of some specimens. In order to detect (NO2) gas at various temperatures, the gas
111
+ response characteristics of sintered discs (900°C) were investigated. The resistance of gas sensor
112
+ samples is measured by using Impedance Analyzer (UNI-TUT81B) equipped with a computerized
113
+ testing tool.
114
+
115
+ x
116
+ Composition
117
+ Ferric
118
+ nitrate (g)
119
+ Magnesium
120
+ nitrate (g)
121
+ Manganese
122
+ nitrate (g)
123
+ Nickel
124
+ nitrate (g)
125
+ Citric
126
+ acid (g)
127
+ 0.00
128
+ Mn0.25Mg0.75Fe2O4
129
+ 32.32
130
+ 7.6923
131
+ 1.8900
132
+ 0.00
133
+ 23.0556
134
+ 0.05 Ni0.05Mn0.20Mg0.75Fe2O4
135
+ 32.32
136
+ 7.6923
137
+ 1.5120
138
+ 0.5816
139
+ 23.0556
140
+ 0.10 Ni0.10Mn0.15Mg0.75Fe2O4
141
+ 32.32
142
+ 7.6923
143
+ 1.1340
144
+ 1.1632
145
+ 23.0556
146
+ 0.15 Ni0.15Mn0.10Mg0.75Fe2O4
147
+ 32.32
148
+ 7.6923
149
+ 0.7560
150
+ 1.7448
151
+ 23.0556
152
+ 0.20 Ni0.20Mn0.05Mg0.75Fe2O4
153
+ 32.32
154
+ 7.6923
155
+ 0.3780
156
+ 2.3264
157
+ 23.0556
158
+
159
+ 3. Results and Discussion
160
+
161
+ 3.1. X-Ray Diffraction
162
+ X-ray diffraction (XDR) analysis was carried out to determine the phase formation of the
163
+ NixMn0.25-xMg0.75Fe2O4 nano-ferrite in the 2θ range 10o ≤ 2θ ≤ 80o. Figure 1 shows the indexed x-
164
+ ray diffraction patterns of the NixMn0.25-xMg0.75Fe2O4 ferrite annealed at 600 ◦C. The presence of
165
+ (220), (311), (400), (422), (511), (440), and (533) planes confirms the formation of cubic spinel
166
+ structure. The diffraction peaks agree with the JCPDS card number 89-3084 [21]. Additionally,
167
+ the size of the crystallites gradually decreased as the amount of Ni doping increased. This was
168
+ shown in the XRD pattern, where the NixMn0.25-xMg0.75Fe2O4 nano-ferrite peaks get shifted to
169
+ higher angles, as the angle value increased, as listed in Table 2.
170
+ By using the Scherrer’s equation, the crystallite size D of the NixMn0.25-xMg0.75Fe2O4 specimens
171
+ was determined from the broadening of the (311) peak in the XRD patterns.
172
+ 𝐷 =
173
+ K λ
174
+ 𝛽 cosθ ……….………. (2)
175
+ Where, K is constant assumed to be 0.9, λ is X-ray wavelength equal to 1.5406 (Å), β is the full
176
+ width at half maximum (FWHM) of the highest intensity diffraction peak expressed in radians,
177
+ while θ is the Bragg's angle of the diffraction peak [22,23].
178
+ By using the following equation, the cubic unit cell lattice parameter (a) for all compounds
179
+ was computed via diffraction planes:
180
+ a = dhkl √ℎ2 + 𝑘2 + 𝐼2 ……….………. (3)
181
+ Where, d is the interplanar spacing and (h, l and k) are the Miller indices of the crystal planes
182
+ [24]. The X-ray density (𝜌𝑥) can be computed via the following equation:
183
+ 𝜌𝑥 =
184
+ 8 Mw
185
+ NA a3 ……….………. (4)
186
+ Where, MW represents the molecular weight and NA is the Avogadro's number [25].
187
+ The lattice parameter (a), XRD density (ρx), and crystallite size (D) for all samples are given in
188
+ Table 3.
189
+
190
+ 10
191
+ 20
192
+ 30
193
+ 40
194
+ 50
195
+ 60
196
+ 70
197
+ 80
198
+ (533)
199
+ x=0.20
200
+ x=0.15
201
+ x=0.10
202
+ x=0.05
203
+ x=0.00
204
+ (440)
205
+ (511)
206
+ (422)
207
+ (400)
208
+ (311)
209
+ (220)
210
+ Intensity (arb.u)
211
+ 2q (degree)
212
+
213
+ Figure 1. X-ray diffraction patterns of NixMn0.25-xMg0.75Fe2O4 nano-ferrite prepared by auto-
214
+ combustion method.
215
+
216
+ Increasing the concentration of Ni2+ leads to increase the lattice constant of ferrite compounds
217
+ as listed in Table 3. Smaller Fe3+ ions have been observed to migrate from tetrahedral to octahedral
218
+ positions in response to Ni2+ addition [26,27], therefore tetrahedral sites are enlarged as a result of
219
+ increasing the lattice constant [28,29]. Moreover, this caused the lattice to grow and the density to
220
+ drop, indicating that the lattice constant has changed as a result of the dopant ions being absorbed
221
+ into the lattice could have taken an interstitial positions among the hosting ions [20].
222
+
223
+ Table 2. Structure properties of the NixMn0.25-xMg0.75Fe2O4 nano-ferrite.
224
+ h k l
225
+ 2θ (deg)
226
+ (JCPDS)
227
+ 2θ (deg)
228
+ (x=0.00)
229
+ 2θ (deg)
230
+ (x=0.05)
231
+ 2θ (deg)
232
+ (x=0.10)
233
+ 2θ (deg)
234
+ (x=0.15)
235
+ 2θ (deg)
236
+ (x=0.20)
237
+ 220
238
+ 30.115
239
+ 30.1365
240
+ 30.4563
241
+ 30.3111
242
+ 30.3932
243
+ 30.3938
244
+ 311
245
+ 35.466
246
+ 35.4950
247
+ 35.8238
248
+ 35.7308
249
+ 35.8876
250
+ 35.7541
251
+ 400
252
+ 43.123
253
+ 43.2299
254
+ 43.5441
255
+ 43.4461
256
+ 43.4725
257
+ 43.3345
258
+ 422
259
+ 53.478
260
+ 53.5835
261
+ 53.9189
262
+ 53.7877
263
+ 53.8403
264
+ 53.6563
265
+ 511
266
+ 57.000
267
+ 57.1528
268
+ 57.4708
269
+ 57.3573
270
+ 57.4057
271
+ 57.2337
272
+ 440
273
+ 62.594
274
+ 62.7239
275
+ 62.8946
276
+ 62.9067
277
+ 62.9564
278
+ 62.8185
279
+ 533
280
+ 74.049
281
+ 74.2529
282
+ 74.3735
283
+ 74.2861
284
+ 74.3755
285
+ 74.2936
286
+
287
+
288
+ Table 3. Unit cell constant (a), density (ρx) and crystallite size (D) of NixMn0.25-xMg0.75Fe2O4
289
+ nano-ferrite prepared by auto-combustion method.
290
+ x
291
+ Composition
292
+ a (Å)
293
+ ρx (g/cm3)
294
+ D (nm)
295
+ 0.00
296
+ Mn0.25Mg0.75Fe2O4
297
+ 8.36743
298
+ 5.250
299
+ 28.31
300
+ 0.05
301
+ Ni0.05Mn0.20Mg0.75Fe2O4
302
+ 8.37691
303
+ 5.232
304
+ 24.34
305
+ 0.10
306
+ Ni0.10Mn0.15Mg0.75Fe2O4
307
+ 8.38131
308
+ 5.224
309
+ 24.34
310
+ 0.15
311
+ Ni0.15Mn0.10Mg0.75Fe2O4
312
+ 8.38245
313
+ 5.222
314
+ 28.32
315
+ 0.20
316
+ Ni0.20Mn0.05Mg0.75Fe2O4
317
+ 8.38717
318
+ 5.213
319
+ 24.30
320
+
321
+ 3.2. FE-SEM and EDX Analysis
322
+ To assess the morphology of the fabricated samples, (FE-SEM) was used. Figure 2 illustrates
323
+ the NixMn0.25-xMg0.75Fe2O4 nano-ferrite micro images at a 200 nm scale after annealing at 600 °C.
324
+ The observed FE-SEM images made it extremely apparent that the magnetic ferrite particles were
325
+ created through some aggregation at the nanoscale. The FE-SEM images show porous, sponge-
326
+ like shape particles of the samples (x = 0.00, and 0.05). Most likely, the gases released during the
327
+ gel's combustion process are what caused the pores to form [30]. In addition, the images show
328
+ particles that are spherical or semi-spherical and nonhomogeneous in form of the samples (x=0.10,
329
+ and 0.15), as well as the images show homogeneous distribution and spherical nanoparticles of the
330
+ sample (x = 0.20). The FE-SEM images also show the formation of tiny agglomerated grains with
331
+ surface spaces or voids and no distinct shape. The agglomerates are where the porosity is located.
332
+ Since gas detecting is a surface phenomenon and porosity is essential, the reported porous
333
+ microstructure is beneficial for sensing purposes [31]. It is obviously shown in the micrographs
334
+ that the particles structures of the NixMn0.25-xMg0.75Fe2O4 nano-ferrite are very coarse, which
335
+ facilitate adsorption of oxygen species on the detecting surface. Adsorption of oxygen species is
336
+ responsible for gas detecting [32].
337
+
338
+
339
+
340
+
341
+
342
+
343
+
344
+
345
+
346
+
347
+
348
+
349
+
350
+
351
+
352
+
353
+
354
+
355
+
356
+
357
+
358
+
359
+
360
+
361
+
362
+
363
+
364
+
365
+
366
+
367
+
368
+
369
+
370
+
371
+
372
+
373
+
374
+ Figure 2. FE-SEM images of NixMn0.25-xMg0.75Fe2O4 nano-ferrite.
375
+
376
+
377
+
378
+ x = 0.05
379
+ x = 0.10
380
+ x = 0.15
381
+ x = 0.20
382
+ x = 0.00
383
+
384
+ D1=50.61nm
385
+ SEMMAG:135KX
386
+ WD:8.93mm
387
+ MIRA3TESCAN
388
+ Det:SE
389
+ SEMHV:15.0kV
390
+ 200nm
391
+ Date(m/d/y):05/08/22
392
+ SUT-FESEMD1=47.34nm
393
+ SEMMAG:135kX
394
+ WD:8.78mm
395
+ MIRA3TESCAN
396
+ Det:SE
397
+ SEMHV:15.0kV
398
+ 200nm
399
+ Date(m/d/y):05/08/22
400
+ SUT-FESEMD1=57.60nm
401
+ SEMMAG:135KX
402
+ WD:8.67mm
403
+ MIRA3 TESCAN
404
+ Det:SE
405
+ SEMHV:15.0kV
406
+ 200nm
407
+ Date(m/d/y):05/08/22
408
+ SUT-FESEMD1=60.35mm
409
+ SEMMAG:135KX
410
+ WD:8.69mm
411
+ MIRA3TESCAN
412
+ Det:SE
413
+ SEMHV:15.0kV
414
+ 200nm
415
+ Date(m/d/y):05/08/22
416
+ SUT-FESEMD1=55.96nm
417
+ SEMMAG:135kX
418
+ WD:8.83mm
419
+ MIRA3TESCAN
420
+ Det:SE
421
+ SEMHV:15.0kV
422
+ 200nm
423
+ Date(m/d/y):05/08/22
424
+ SUT-FESEM The EDX spectra of the NixMn0.25-xMg0.75Fe2O4 nano-ferrite (where x = 0.00, 0.05, 0.10, 0.15
425
+ and 0.20) are illustrated in Figure 3, referring that the spectral lines related to (Ni, Mn, Mg, Fe and
426
+ O), verify that the synthesized compound NixMn0.25-xMg0.75Fe2O4 was achieved.
427
+
428
+
429
+
430
+
431
+
432
+
433
+
434
+
435
+
436
+
437
+
438
+
439
+
440
+
441
+
442
+
443
+
444
+
445
+
446
+
447
+
448
+
449
+
450
+
451
+
452
+
453
+ Figure 3. EDX spectra of NixMn0.25-xMg0.75Fe2O4 nano-ferrite.
454
+
455
+ x = 0.00
456
+ x = 0.05
457
+ x = 0.10
458
+ x = 0.15
459
+ x = 0.20
460
+
461
+ 0
462
+ Spectrum2
463
+ Wt%
464
+ Fe
465
+ 51.3
466
+ 0.3
467
+ 28.1
468
+ 0.2
469
+ 20
470
+ C
471
+ 7.7
472
+ 0.3
473
+ Mg
474
+ 7.6
475
+ 0.1
476
+ Mn
477
+ 5.1
478
+ 0.2
479
+ Ca
480
+ 0.2
481
+ 0.1
482
+ 10
483
+ Mg
484
+ Fe
485
+ e
486
+ Au
487
+ Ca
488
+ Mn
489
+ Au
490
+ Au
491
+ .....
492
+ 8
493
+ kevSpectrum4
494
+ Wt%
495
+ 6
496
+ Fe
497
+ 50.1
498
+ 0.3
499
+ 0
500
+ 29.4
501
+ 0.2
502
+ Mfo
503
+ 0.1
504
+ 20-
505
+ 7.7
506
+ 0.3
507
+ Mn
508
+ 3.8
509
+ 0.1
510
+ Ni
511
+ 13
512
+ 0.2
513
+ Fe
514
+ MnSpectrum5
515
+ Wts
516
+ Fe
517
+ 4B.2
518
+ 3.
519
+ 29.5
520
+ 20-
521
+ Mn
522
+ 25
523
+ 0.2
524
+ Mg
525
+ 10-
526
+ Mn
527
+ Ni
528
+ Ni
529
+ AU0
530
+ Spectrum6
531
+ Wt%
532
+ 20
533
+ Fe
534
+ 52.2
535
+ 0.4
536
+ 26.3
537
+ 0.3
538
+ C
539
+ 8.4
540
+ 0.4
541
+ Mg
542
+ 7.2
543
+ 0.1
544
+ 15
545
+ Ni
546
+ 3.8
547
+ 0.3
548
+ Mn
549
+ 2.0
550
+ 0.2
551
+ 10
552
+ Fe
553
+ Fe
554
+ Mg
555
+ Au
556
+ Mn
557
+ Ni
558
+ Ni
559
+ Au
560
+ 8
561
+ kel0
562
+ Spectrum7
563
+ Wt%
564
+ Fe
565
+ 51.8
566
+ 0.3
567
+ 0
568
+ 26.1
569
+ 0.2
570
+ C
571
+ 8.6
572
+ 0.3
573
+ Mg
574
+ 7.1
575
+ 0.1
576
+ 15
577
+ Ni
578
+ 5.1
579
+ 0.2
580
+ Mn
581
+ 1.2
582
+ 0.1
583
+ /sdb
584
+ 10
585
+ Fe
586
+ Mg
587
+ Au
588
+ Mn
589
+ Ni
590
+ Ni
591
+ Au
592
+ 8
593
+ kev3.4. Magnetic Characteristics
594
+ Hysteresis loop is measured utilizing a (VSM) system, and magnetic characteristics of samples
595
+ were examined at room temperature (300 K). Figure 4 shows the hysteresis loop curves of
596
+ NixMn0.25-xMg0.75Fe2O4 (x = 0.00, and 0.20). (S) shaped curves indicate that standard soft magnetic
597
+ material and magnetic coercivity can be ignored. In addition, the particles are so small that they
598
+ behave like superparamagnetic material. Due to the small crystallite size, as is evidenced by the
599
+ XRD analysis in Table 3, nanoparticles have superparamagnetic behavior, in which their magnetic
600
+ moments attempt to align with one another in a specific way [33,34].
601
+ According to Neel, the distribution of cations among the octahedral and tetrahedral locations
602
+ in spinel ferrite determines the overall magnetic moment [35]. Saturation magnetization (Ms),
603
+ remnant magnetization (Mr), and magnetic coercivity (Hc) values were computed from the M-H
604
+ curves depending on (Ms) measured values.
605
+ M-H curves have demonstrated how chemical compound affects magnetic properties. Table 4
606
+ illustrates the variation in saturation magnetization (Ms) values for specimens captured from
607
+ hysteresis loop curves. As 0.20 of the Ni2+ ions were swapped out for Mn2+ ions, the Ms value
608
+ dropped from 28.980 (emu/g) for x = 0.00 to 23.400 (emu/g). According to experimental
609
+ observations, as nickel content rises, the ratio of ferric, manganese, or magnesium ions on the A-
610
+ location decreases, while at the same time, the of Fe3+ ions grows by the same amount on the
611
+ location B. As a result, the A-B interaction is reduced. As a consequence of the ionic moments on
612
+ the B-sites no longer being maintained parallel to each other, the angles among them start to form,
613
+ which lowers the moment of the B sub lattice itself. Most likely, nickel ions have been replaced
614
+ by cations in the B-sites [34]. Figure 4 shows how the observed values of the remnant
615
+ magnetization (Mr) and coercive field (Hc) are so small, demonstrating that the grain size does not
616
+ pass the critical diameter of single-domain grain [34]. The cation distribution has a significant
617
+ impact on the net magnetic moments and magnetocrystalline anisotropy. Table 4 lists the magnetic
618
+ factors.
619
+
620
+
621
+
622
+
623
+
624
+
625
+
626
+
627
+
628
+
629
+
630
+ Figure 4. Magnetization (M) versus applied magnetic field (Oe) of NixMn0.25-xMg0.75Fe2O4
631
+ (x = 0.00, and 0.20) nanoparticles at 300K.
632
+ -10000
633
+ -8000
634
+ -6000
635
+ -4000
636
+ -2000
637
+ 0
638
+ 2000
639
+ 4000
640
+ 6000
641
+ 8000
642
+ 10000
643
+ -40
644
+ -30
645
+ -20
646
+ -10
647
+ 0
648
+ 10
649
+ 20
650
+ 30
651
+ 40
652
+ X= 0.00
653
+ X= 0.20
654
+ Magntization(emu/g)
655
+ Applied Magntic Field(Oe)
656
+
657
+ Table 4. Variation of magnetic factors for NixMn0.25-xMg0.75Fe2O4 (x =0.00, and 0.20)
658
+ nanoparticles.
659
+ x
660
+ Compound
661
+ Ms (emu/g)
662
+ Mr (eum/g)
663
+ Hc (Oe)
664
+ 0.00
665
+ Mn0.25Mg0.75Fe2O4
666
+ 28.98
667
+ 10.95
668
+ 61.50
669
+ 0.20
670
+ Ni0.20Mn0.05Mg0.75Fe2O4
671
+ 23.40
672
+ 7.54
673
+ 94.00
674
+
675
+ 3.3. Gas Sensing Features
676
+ The gas concentration, material composition, type of conductivity, operating temperature, and
677
+ different controlling parameters are considered as important factors which affect the gas sensitivity
678
+ or gas response of the metal oxide semiconductor sensor [36]. Depending on the compound and
679
+ operating temperature, the gas sensitivity of the NixMn0.25-xMg0.75Fe2O4 (where x= 0.00, 0.05,
680
+ 0.10, 0.15, and 0.20) nano-ferrite against NO2 gas is studied and computed using following
681
+ equation:
682
+ S = │
683
+ 𝑅ɡ−𝑅𝑎
684
+ 𝑅𝑎 │× 100 % [Oxidizing gas] ……….………. (5)
685
+ Where Rg and Ra represent the electrical resistances in the NO2 gas and air, respectively [37, 38].
686
+ Figure 5 shows the sensing characteristics and variation for each sample against nitrogen
687
+ dioxide NO2 gas when exposed and removed the examined gasses of the NixMn0.25-xMg0.75Fe2O4
688
+ nano-ferrite. As can be seen from the figure, the resistance value increases when the discs are
689
+ exposed to NO2 gas (Gas ON), and subsequently decreases when the gas is closed (Gas OFF) for
690
+ all samples. At concentration of 65 ppm of NO2, the sensor's sensitivity was examined at various
691
+ operating temperatures (200 ◦C, 250 ◦C, and 300 ◦C). In the existence of an oxidizing gas, the
692
+ operating temperature is required to change the material's oxidation state and the conductivity of
693
+ NixMn0.25-xMg0.75Fe2O4 nano-ferrite. The response time is defined as the amount of time needed
694
+ to reach 90% of the equilibrium response of the gas, while the recovery time, is defined as the
695
+ amount of time needed to reach 10% of the baseline resistance [39]. From Table 5, it can be seen
696
+ that samples demonstrate a high sensitivity to nitrogen dioxide gas at 250 ◦C while it is around 300
697
+ ◦C for sample x=0.00. As shown in the FE-SEM images, the sensitivity of the doped samples
698
+ increases because it has the highest roughness, and this is agreement with the findings of
699
+ researchers [20,32]. Additionally, the figure also demonstrates that the Ni0.20Mn0.05Mg0.75Fe2O4
700
+ ferrite compound has its highest gas response 707.22% of the sample (x=0.20) at 250 ◦C. Since
701
+ the sensitivity process in metal oxides occurs through the adsorption of oxygen ions on the surface,
702
+ doping of Mn by Ni generally often enhances the sensitivity because a lack of oxygen causes the
703
+ formation of oxygen voids; (When the oxygen concentration in the NixMn0.25-xMg0.75Fe2O4 lattice
704
+ increases, more oxygen ions (O-2 and -O) adsorb to the sensor's surface due of the gaps or voids)
705
+ [20]. In contrast to the pre-adsorbed oxygen and other test gases, NO2 gas has a greater electron
706
+ affinity and is a very reactive and oxidizing gas [40]. After the covalent bond between nitrogen
707
+ and oxygen is formed, NO2 has an unpaired electron, and remains as one of the atoms with a single
708
+ unpaired electron. Because the nano-ferrite has a short response time (1.2-11.4) s at 200 ◦C and a
709
+ short recovery time (1.5-4.4) s at 250 ◦C, it is possible to conclude that the sensor has excellent
710
+ sensing characteristics. This fast response of the sensor could be a result of the small particle size,
711
+ which causes the particle boundaries to enlarge. The values of sensitivity, response time, and
712
+ recovery time are tabulated in Table 5.
713
+
714
+
715
+
716
+
717
+
718
+
719
+
720
+
721
+
722
+
723
+
724
+
725
+
726
+
727
+
728
+
729
+
730
+
731
+
732
+
733
+
734
+
735
+
736
+
737
+
738
+
739
+
740
+
741
+
742
+ Figure 5. The variation in resistance with time of NixMn0.25-xMg0.75Fe2O4 nano-ferrite at different
743
+ operating temperatures.
744
+ x=0.05
745
+ x=0.00
746
+ x=0.15
747
+ x=0.10
748
+ x=0.20
749
+
750
+ 24
751
+ -200 °C-250 C-0-300°C
752
+ 22
753
+ 20
754
+ Resistance (M2)
755
+ 6420
756
+ 8
757
+ 6
758
+ 0
759
+ 50
760
+ 100
761
+ 150
762
+ 200
763
+ 250
764
+ 300
765
+ Time (sec)24
766
+ o-200°C--250°C-300 °C
767
+ 22
768
+ Resistance (M2)
769
+ 20
770
+ 18
771
+ 16
772
+ 12
773
+ 0
774
+ 50
775
+ 100
776
+ 150
777
+ 200
778
+ 250
779
+ 300
780
+ Time (sec)14
781
+ 0-200C--250C-0-300C
782
+ 12
783
+ Resistance (M)
784
+ 10
785
+ 8
786
+ 6
787
+ 0
788
+ 50
789
+ 100
790
+ 150
791
+ 200
792
+ 250
793
+ 300
794
+ Time (sec)22
795
+ o-200"C-Q-250C-0-300°C
796
+ 20
797
+ 18
798
+ Resistance (MQ)
799
+ 16
800
+ 10
801
+ 8
802
+ 6
803
+ 4
804
+ 0
805
+ 50
806
+ 100
807
+ 150
808
+ 200
809
+ 250
810
+ 300
811
+ Time (sec)18
812
+ -200C-250 C-300°C
813
+ 16
814
+ 14
815
+ Resistance (MΩ)
816
+ 12
817
+ 10
818
+ 8
819
+ 6
820
+ 2
821
+ -
822
+ 0
823
+ 50
824
+ 100
825
+ 150
826
+ 200
827
+ 250
828
+ 300
829
+ Time (sec)Table 5. NO2 gas sensitivity, response time and recovery time values of NixMn0.25-xMg0.75Fe2O4
830
+ nano-ferrite at different operating temperatures.
831
+
832
+ 4. Conclusions
833
+ Utilizing a simple sol-gel auto-combustion process, NixMn0.25-xMg0.75Fe2O4 nano-ferrite was
834
+ synthesized using metal nitrates as a source of cations and citric acid (C6H8O7) as a
835
+ complexant/fuel agent for the auto-combustion process. The NixMn0.25-xMg0.75Fe2O4 nano-ferrite
836
+ with the spinel structure peaks in the XRD patterns corresponding to the investigated systems, and
837
+ no unidentified peaks are observed. The FE-SEM images show microstructures with open pores
838
+ and nanoscale grains with agglomeration, which is nearly comparable to the crystalline size
839
+ determined by XRD. These findings reveal that, due to the particles being small, the prepared
840
+ samples at-room-temperature hysteresis loop curves exhibit superparamagnetic behavior.
841
+ Furthermore, the results of the NO2 gas sensing showed that the gas sensor had a good performance
842
+ in terms of its response to the gas. The sensitivity increases with the increasing concentration of
843
+ Ni in composition, as well as it also boasts shorter response and recovery times. For gas sensing
844
+ applications, in Mn0.25Mg0.75Fe2O4 it is concluded that it is desirable to substitute manganese ions
845
+ by nickel ions.
846
+
847
+ References
848
+ [1] E. Rossinyol, J. Arbiol, F. Peiro, A. Cornet, J. R. Morante, B. Tian, T. Bo, D. Zhao, (2005)
849
+ “Nanostructured metal oxides synthesized by hard template method for gas sensing applications”,
850
+ Sensors and Actuators B, 109 (1) 57–63.
851
+ [2] K. Mukherjee, S. B. Majumder, (2010), “Reducing gas sensing behavior of nanocrystalline
852
+ magnesium–zinc ferrite powders”, Talanta, 81, 1826–1832.
853
+ [3] L. Satyanarayana, K. M. Reddy, S. V. Manorama, (2003), “Synthesis of nanocrystalline
854
+ Ni1−xCoxMnxFe2−xO4: a material for liquefied petroleum gas sensing”, Sensors and Actuators B 89
855
+ (1-2), 62–67.
856
+ [4] A. B. Gadkari, T. J. Shinde, P. N. Vasambekar, (2013), “Effect of Sm3+ ion addition on gas
857
+ sensing properties of Mg1−xCdxFe2O4 system”, Sensors and Actuators B 178, 34–39.
858
+ [5] M. Sugimoto, (1999),” The past, present, and future of ferrites “, Journal of the American
859
+ Society, 82(2), 269–280.
860
+ x
861
+ Response Time
862
+ Recovery Time
863
+ Sensitivity %
864
+ 200 oC
865
+ 250 oC
866
+ 300 oC 200 oC 250 oC
867
+ 300 oC
868
+ 200 oC
869
+ 250 oC 300 oC
870
+ 0.00
871
+ 2.4
872
+ 4.0
873
+ 5.9
874
+ 5.2
875
+ 4.4
876
+ 11.0
877
+ 30.82
878
+ 36.30
879
+ 74.60
880
+ 0.05
881
+ 11.4
882
+ 11.4
883
+ 5.5
884
+ 1.9
885
+ 1.9
886
+ 6.3
887
+ 141.72
888
+ 160.11 134.45
889
+ 0.10
890
+ 2.0
891
+ 1.5
892
+ 1.9
893
+ 3.6
894
+ 1.5
895
+ 4.7
896
+ 198.07
897
+ 202.45 175.34
898
+ 0.15
899
+ 11.4
900
+ 3.2
901
+ 9.0
902
+ 9.7
903
+ 3.0
904
+ 9.6
905
+ 262.80
906
+ 264.28 255.22
907
+ 0.20
908
+ 1.2
909
+ 3.7
910
+ 1.63
911
+ 1.8
912
+ 2.3
913
+ 5.24
914
+ 707.34
915
+ 707.22 676.25
916
+
917
+ [6] D. S. Mathew, R. S. Juang, (2007), “An overview of the structure and magnetism of spinel
918
+ ferrite nanoparticles and their synthesis in microemulsions”, Chemical Engineering Journal,
919
+ 129(1-3), 51–65.
920
+ [7] N. Iftimie, E. Rezlesucu, P. D. Popa, N. Rezlescucu, (2006), “Gas sensitivity of nanocrystalline
921
+ nickel ferrite”, Journal of Optoelectronics and Advanced Materials 8 (3), 1016–1018.
922
+ [8] L. L. Yan, Z. M. Liu, Yang. Y, G. L. Shen, Q. Y. Ru, (2005), “Simple synthesis of
923
+ MgFe2O4 nanoparticles as gas sensing materials”, Sensor and Actuators B 107(2), 600-604.
924
+ [9] M. Tada, T. Kanemaru, T. Hara, T. Nakagawa, H. Handa, M. Abe, (2009) “Synthesis of hollow
925
+ ferrite nanospheres for biomedical applications”, Journal of Magnetism and Magnetic Materials,
926
+ 321(10), 1414–1416.
927
+ [10] S. Andris, G. A. Karlis, (2016), “Spinel ferrite oxide semiconductor gas sensing”, Sensor and
928
+ Actuators B 222, 95-105.
929
+ [11] X. M. Liu, S. Y. Fu, C. J. Huang, (2004), “Magnetic properties of Ni ferrite nanocrystals
930
+ dispersed in the silica matrix by sol–gel technique”, Journal of Magnetism and Magnetic Materials
931
+ 281(1-2), 234–239.
932
+ [12] B. H. Ryu, H. J. Chang, Y. M. Choi, K. J. Kong, J. O. Lee, C. G. Kim, H. K. Jung, J. H. Byun,
933
+ (2004), “Preparation of Co1−xNixFe2O4 nanoparticles by coprecipitation method”, Physica Status
934
+ Solidi 201(8), 1855–1858.
935
+ [13] F. M. C. Ana Cristina, M. R. Morelli, R. H. G. A. Kiminami, (2007), “Microstructure and
936
+ magnetic properties of Ni1-xZnxFe2O4 synthesized by combustion reaction”, Journal of Materials
937
+ Science 42(3), 779-783.
938
+ [14] X. Peng, J. Xu, H. Zang, B. Wang, Z. Wang, (2008), “Structural and PL properties of Cu-
939
+ doped ZnO films”, Journal of Luminescence 128(3), 297–300.
940
+ [15] N. L. Tarwal, R. S. Devan, Y. R. Ma, R. S. Patil, M. M. Karanjkar, P. S. Patil, (2012), “Spray
941
+ deposited localized surface plasmonic Au–ZnO nanocomposites for solar cell application”,
942
+ Electrochimica Acta 72, 32–39.
943
+ [16] A. B. Bodade, A. B. Bodade, H. G. Wankhade, G. N. Chaudhari, D. C. Kothari, (2012),
944
+ “Conduction mechanism and gas sensing properties of CoFe2O4 nanocomposite thick films for
945
+ H2S gas”, Talanta 89, 183–188.
946
+ [17] K. Vijaya kumar, M. Lakshmi, M. Buchi Suresh, (2013), “Structure-property correlation of
947
+ sol–gel processed Co0.5Ti0.5ZnFeO4 “, Journal of Engineering Research and Applications 3(6),
948
+ 1489–1497.
949
+ [18] E. Asmat, A. Mukhtar, A. Ihsan, M. U. Rana, (2013), “Preparation and properties of sol–gel
950
+ synthesized Mg-substituted Ni2Y hexagonal ferrites”, Ceramics International 39(2), 983–990.
951
+ [19] M. Lakshmi, K. Vijaya kumar, K. Thyagarajan, (2015), “An investigation of structural and
952
+ magnetic properties of Cr–Zn ferrite nanoparticles prepared by a sol–gel process”, Journal of
953
+ Nanostructure in Chemistry 5(4), 365-373.
954
+
955
+ [20] Saheb, L., & Al-Saadi, T. M. (2021, December). Synthesis, Characterization, and NH3
956
+ Sensing Properties of (Zn0.7Mn0.3-xCexFe2O4) Nano-Ferrite. In Journal of Physics: Conference
957
+ Series (Vol. 2114, No. 1, p. 012040). IOP Publishing.
958
+ [21] N. Farhana, K. D. Hemant, K. Chanda, L. Preeti, (2020), “Structural and magnetic properties
959
+ of MgFe2O4 nano powder synthesized via co-precipitation route”, SN Applied Sciences 2(808).
960
+ [22] M. A. Haija, M. Chamakh, I. Othman, F. Banat, A. I. Ayest, (2020), “Fabrication of H2S gas
961
+ sensors using ZnxCu1-xFe2O4 nanoparticles”, Applied Physics A, 126(7).
962
+ [23] L. Yu, A. Sun, L. Shao, (2020), “Annealing temperature on the microstructure and magnetic
963
+ properties of magnesium–cobalt ferrite prepared by sol-gel self-propagating method”, Journal of
964
+ Materials Science: Materials in Electronics 31, 22662–22675.
965
+ [24] T. M. Al-Saadi, M. A. Jihad, (2016), “Preparation of Graphene Flakes and Studying Its
966
+ Structural Properties“, Iraqi Journal of Science 57(1), 145-153.
967
+ [25] H. S. Mahmood, T. H. Mubarak, S. M. Ali Ridha, J. Al-Zanganawee, (2022), “Effect of Zinc
968
+ Substitution in Magnetic Structure on Heat Efficiency for Hyperthermia: Investigation in
969
+ Superparamagnetic Properties”, AIP Conference Proceedings 2386, 070006(1-18).
970
+ [26] M. Hamedoun, A. Benyoussef, M. Bousmina, (2010), “Magnetic properties and phase
971
+ diagram of ZnxNi1−xFe2O4: high temperature series expansions”, Journal of Magnetism and
972
+ Magnetic Materials 322(11), 3227–3235.
973
+ [27] A. Sutka, G. Mezinskis, A. Lusis, M. Stingaciu, (2012), “Gas sensing properties of Zn-doped
974
+ p-type nickel ferrite”, Sensor and Actuators B (171-172), 354-360.
975
+ [28] I. H. Gul, W. Ahmed, A. Maqsood, (2008), “Electrical and magnetic characterization of
976
+ nanocrystalline Ni–Zn ferrite synthesis by co-precipitation route”, Journal of Magnetism and
977
+ Magnetic Materials 320(3-4), 270–275.
978
+ [29] S. Raghuvanshi, F. Mazaleyrat, S. N. Kane, (2018), “Mg1-xZnxFe2O4 nanoparticles: Interplay
979
+ between cation distribution and magnetic properties”, AIP Advances 8(4), 047804.
980
+ [30] M. A. Haija, A. F. S. Abu-Hani, N. Hamdan, S. Stephen, A. I. Ayesh, (2017),
981
+ “Characterization of H2S gas sensor based on CuFe2O4 nanoparticles”, Journal of Alloys and
982
+ Compounds, 690,461-468.
983
+ [31] J. Y. Patil, D. Y. Nadargi, S. S. Suryavanshi, (2019), “Cerium doped MgFe2O4
984
+ nanocomposites: highly sensitive and fast response-recoverable acetone gas sensor”, Heliyon 5(6),
985
+ e01489.
986
+ [32] A. Jain, R. K. Baranwal, A. Bharti, Z. Vakil, C. S. Prajapati, (2013), “Study of Zn-Cu Ferrite
987
+ Nanoparticles for LPG Sensing”, The Scientific World Journal 2013, 1-7.
988
+ [33] K. Nejati, R. Zabihi, (2012), “Preparation and magnetic properties of nano size nickel ferrite
989
+ particles using hydrothermal method”, Chemistry Central Journal. 6(1).
990
+ [34] S. M. Hussein, T. H. Mubarak, S. M. Ali, J. Al-Zanganawee, (2021), “Synthesis and Studying
991
+ Induction Heating of Mn1-xZnxFe2O4 (x = 0 - 0.5) Magnetic Nanoparticles for Hyperthermia
992
+ Treatments”, Key Engineering Materials 882, 200-218.
993
+
994
+ [35] T. Tatarchuk, M. Bououdina, J. J. Vijaya, L. J. Kennedy, (2017), “Spinel ferrite nanoparticles:
995
+ synthesis,
996
+ crystal
997
+ structure,
998
+ properties,
999
+ and
1000
+ perspective
1001
+ applications”,
1002
+ Nanophysics,
1003
+ Nanomaterials, Interface Studies, and Applications, Springer Proceedings in Physics 195, 305-
1004
+ 325.
1005
+ [36] F. Tudorache, E. Rezlescu, P. D. Popa, N. Rezlescu, (2008), “Study of some simple ferrites
1006
+ as reducing gas sensors”, Journal of Optoelectronics and Advanced Materials 10(7), 1889-1893.
1007
+ [37] L. A. Patil, A. R. Bari, M. D. Shinde, V. V. Deo, D. P. Amalnerkar, (2011), "Synthesis of
1008
+ ZnO nanocrystalline powder from ultrasonic atomization technique, characterization, and its
1009
+ application in gas sensing," IEEE Sensors Journal 11(3), 939–946.
1010
+ [38] M. S. Choi, H. G. Ma, J. H. Bang, A. Mirzaei, S. Han, H. Y. Lee, C. Jin, (2021), “SnO2
1011
+ nanowires decorated by insulating amorphous carbon layers for improved room-temperature NO2
1012
+ sensing”, Sensors and Actuators B: Chemical, 326, 128801.
1013
+ [39] M. Donarelli, S. Prezioso, F. Perrozzi, F. Bisti, M. Nardone, L. Giancaterini, C. Cantalini, L.
1014
+ Ottaviano, (2015), “Response to NO2 and other gases of resistive chemically exfoliated MoS2-
1015
+ based gas sensors”, Sensors and Actuators B 207, 602-613.
1016
+ [40] N. D. Hoa, N. V. Quy, D. Kim, (2009), “Nanowire structured SnOx-SWNT composites: high
1017
+ performance sensor for NOx detection”, Sensors and Actuators B 142(1), 253-259.
1018
+
1019
+
ENAzT4oBgHgl3EQfwv6u/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
FdE2T4oBgHgl3EQf-QlB/content/2301.04236v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:424ce1d8823d9ece60f1cc0267365b975e5433fb74d4415b4a0ac1932dd6bb26
3
+ size 104970
FdE2T4oBgHgl3EQf-QlB/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a280c7e1ece244a399c4efd9cccf06c994f1442cf1204608fba48ffe97bd030f
3
+ size 1179693
GNFIT4oBgHgl3EQfWStC/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e70da4b4cf1c198ab4300976dc0f5386eb711ac71a25cf9e461fcbb7b5836f08
3
+ size 132560
HdAzT4oBgHgl3EQfjP3_/content/tmp_files/2301.01515v1.pdf.txt ADDED
@@ -0,0 +1,239 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ School visits to a physics research laboratory
2
+ using virtual reality
3
+ Ilaria De Angelis1,2, Antonio Budano2, Giacomo De Pietro2,
4
+ Alberto Martini3 and Adriana Postiglione1,2
5
+ 1Dipartimento di Matematica e Fisica, Universit`a degli Studi Roma
6
+ Tre, Rome (Italy)
7
+ 2INFN Sezione di Roma Tre, Rome (Italy)
8
+ 3Deutsches Elektronen–Synchrotron, 22607 Hamburg (Germany)
9
+ ilaria.deangelis@uniroma3.it
10
+ Abstract
11
+ School visits to research laboratories or facilities represent a unique way to bring students
12
+ closer to science and STEM (Science, Technology, Engineering and Mathematics) careers.
13
+ However, such visits can be very expensive for students and teachers, in terms of both time
14
+ and money.
15
+ In this paper, we present a possible alternative to on-site visits consisting in
16
+ an activity addressed to high school students that makes use of a VR application to make
17
+ them “enter” into a particle physics experiment. This proposal can represent a valid way of
18
+ guaranteeing a visit to a research centre for all schools, regardless of their social or geographical
19
+ origin. We describe the tests we carried out with a focus group of teachers and their students,
20
+ and the obtained results.
21
+ Keywords: high school, particle physics, virtual reality, STEM careers, research centre
22
+ 1
23
+ Introduction
24
+ Guided visits to research centres or facilities certainly represent a peculiar element in a student’s
25
+ high school career, since they allow direct contact with authentic conditions of scientific knowledge
26
+ production processes [1]. In the Italian National Indication guidelines on teaching [2], in fact, these
27
+ visits are explicitly mentioned for physics, as they represent one of the means by which students
28
+ reach their learning objectives at the end of their high school career. Experiencing some time in
29
+ a research centre can indeed not only improve students’ knowledge of physics, but also lead to a
30
+ clearer idea of what research in physics is about and eventually motivate some of them to consider
31
+ a science profession [3]. Therefore, these visits should become part of a scientific school curriculum,
32
+ along with hands-on and practical activities [4–8].
33
+ In Italy, two examples of internationally renowned laboratories that organise visits addressed to
34
+ school groups are the Laboratori Nazionali del Gran Sasso [9] and the Sardinia Radio Telescope [10].
35
+ In Europe, CERN is one of the most active centres as regards proposals for schools [11]. Worldwide,
36
+ several research centres or facilities open their doors to schools. The participation of students and
37
+ teachers to visits, however, although certainly meaningful, can be very expensive in terms of money
38
+ and time, especially if the centres are located in places far from the school. For this reason, physics
39
+ teachers often choose alternative activities to ensure contact with research organisations that do not
40
+ require an on-site visit. An example in this sense are the CERN International Masterclasses [12,13],
41
+ which allow students to work from their schools on real particle physics data, and discuss the related
42
+ analysis together with CERN researchers during a video-conference. In this way, participants can
43
+ virtually walk into a scientific central control room and get a glance of what they would see
44
+ entering CERN. The advantages of initiatives of this kind are manifold, from becoming aware of
45
+ the frontiers of scientific research, to actively working on real data, to coming into contact with
46
+ an international research environment [14]. On the other hand, however, the contact with the
47
+ laboratory is only provided by the video-conferences that generally involve many students’ groups
48
+ at the same time [12]. In this context, we worked to develop a third way, alternative to both
49
+ face-to-face visits and masterclass-type initiatives, through which a student can experience the
50
+ world of a scientific research laboratory up close.
51
+ Our approach makes use of Virtual Reality
52
+ (VR) technology. To do this, we chose the context of particle physics, in particular the Belle II
53
+ 1
54
+ arXiv:2301.01515v1 [physics.ed-ph] 4 Jan 2023
55
+
56
+ collaboration, for which an advanced VR application was developed [14]. The remaining paper is
57
+ organised as follows. In section 2 we describe the activity we developed. In section 3 we illustrate
58
+ the public we reached, including both students and teachers, and the feedback we received and in
59
+ section 4 we present our conclusion.
60
+ 2
61
+ The educational proposal
62
+ We have chosen to organise a virtual visit to an international laboratory which is however very
63
+ difficult and expensive to reach for Italian school groups, since it is located in Japan (much further
64
+ away than Laboratori Nazionali del Gran Sasso or CERN). In fact, our educational proposal
65
+ for schools initiated from the VR application Belle2VR [15].
66
+ Having realised the potential of
67
+ Belle2VR application, we soon started to use it with the public during some outreach events such
68
+ as science festivals or public events organised at the University. In these cases, visitors were given
69
+ the possibility to wear the VR helmet while the researchers used joysticks to guide them to discover
70
+ the experiment, as in a real guided visit. After a few years of experience in science festivals and open
71
+ events to which thousands of people participated, including many school students, that provided
72
+ us very positive feedback, we have decided to propose a more structured activity to schools.
73
+ 2.1
74
+ Belle2VR
75
+ Developed by Virginia Tech, the application Belle2VR allows users to virtually enter the particle
76
+ physics detector of the Belle II experiment [16]. The Belle II experiment is currently carried out at
77
+ the KEK in Tsukuba, Japan, and it studies the properties of heavy quarks and leptons to search
78
+ for an evidence of new physics phenomena, from the matter-antimatter asymmetry problem to the
79
+ existence of dark matter particles. Belle2VR reconstructs the interior of the detector and allows to
80
+ visualise realistic simulations of particles interacting with each other and with the detector elements
81
+ (Fig. 1). The user can navigate through the detector and its components and can also manage the
82
+ time evolution of the interaction by going back and forth or stopping the Developed by Virginia
83
+ Tech, the application Belle2VR allows users to virtually enter the particle physics detector of the
84
+ Belle II experiment [16]. The Belle II experiment is currently carried out at the KEK in Tsukuba,
85
+ Japan, and it studies the properties of heavy quarks and leptons to search for an evidence of
86
+ new physics phenomena, from the matter-antimatter asymmetry problem to the existence of dark
87
+ matter particles. Belle2VR reconstructs the interior of the detector and allows to visualise realistic
88
+ simulations of particles interacting with each other and with the detector elements (Fig. 1). The
89
+ user can navigate through the detector and its components and can also manage the time evolution
90
+ of the interaction by going back and forth or stopping the motion of particles at a specific time.
91
+ Belle2VR, therefore, allows to explore particle physics phenomena from a unique point of view.
92
+ 2.2
93
+ Activity structure
94
+ We built an activity addressed to high school class groups, lasting about an hour and a half, that
95
+ can be carried out in a dedicated University room, or directly in the classroom. It starts with a
96
+ theoretical introduction that makes use of slides. Here, some basic topics and concepts typically
97
+ treated at school are recalled, such as electromagnetism. At the same time, more recent contents
98
+ are also presented, such as the Standard Model, the cross section or the decay of particles, which
99
+ require the use of quantum physics.
100
+ The Belle II experiment is also presented in terms of its
101
+ components and physics goal.
102
+ This phase is meant to represent the welcome and introduction step that characterises the
103
+ initial part of a typical on-site visit to a research laboratory [3].
104
+ Subsequently, the researcher
105
+ puts on the VR helmet while a large screen shows to the group what he/she sees. At that point,
106
+ participants enter the detector for the first time together with the researcher. He/she moves in the
107
+ virtual environment by movements of the head, allowing to display the detector details and some
108
+ collisions between particles that have been selected by he/she. This allows to underline the most
109
+ important aspects of the experiment and to visualise what researchers described in the first part of
110
+ the activity. This is the moment in which students access the researcher’s work environment, and
111
+ begin to look at it through his/her eyes and his/her emotion. At this point students in turn put
112
+ on the helmets, enter the detector in first person and explore the virtual space while a researcher
113
+ stays close to him/her to guide him/her and answer all his/her questions and curiosities. Usually,
114
+ we dedicate from two to three researchers in the activity, so that we can carry on this phase using
115
+ up to three VR parallel stations.
116
+ 2
117
+
118
+ Figure 1: Snapshot of a simulated event into the Belle2VR application.
119
+ In the meantime, the rest of the group watches their classmate while living the experience and
120
+ follows the discussion with the researcher.
121
+ 3
122
+ Collection of data and results
123
+ Once the activity design was completed, we tested it with students of different ages and schools.
124
+ To do this, we first involved some of the teachers already used to work with us in testing, discussing
125
+ and optimising innovative activities. Together with them, we selected 7 groups of students (one
126
+ for each teacher) from different schools: 2 classes of the fifth and final year of high school (17-18
127
+ years old), 2 classes of the fourth year (16-17 years old), 1 class of the third year (15-16 years
128
+ old) and 2 mixed groups of third, fourth and fifth year students. In this way, we had both groups
129
+ of students all very interested in learning more about physics (the two mixed groups) and typical
130
+ school classes where interested and non-interested students coexist. Regarding the school type, the
131
+ vast majority of participants attended the “Liceo Scientifico”, i.e. the Italian high school focused
132
+ on science subjects; only one mixed group of students attended the “Liceo Classico”, the Italian
133
+ high school focused on the humanities. After carrying out the activity with the students in the
134
+ presence of their teachers, we asked the latter to talk with their class to get their impressions on
135
+ our proposal. Later, we carried out open interviews with all participating teachers separately.
136
+ 3.1
137
+ Results
138
+ In general, the activity was very positively received by both teachers and students. In fact, 5 out
139
+ of 7 teachers told us that their students voted 5 out of 5 and 2 out of 7 teachers told us their
140
+ students voted 4 out of 5 to the activity from a general point of view. The teachers’ score was also
141
+ very positive, as 6 out of 7 teachers voted 5 out of 5 and 1 teacher voted 4 out of 5. At this point,
142
+ we asked for more details on their vote. Specifically, we first asked them what they particularly
143
+ liked about the activity. Three of them told us that they enjoyed the use of VR technology; one
144
+ teacher stated that the strength of the activity lays in the possibility of getting inside the particle
145
+ detector; another teacher appreciated the opportunity of “directly seeing” what it means doing
146
+ research with a particle accelerator; one teacher mentioned the possibility of bringing the world of
147
+ research closer to students; another teacher especially appreciated the clarity of the researchers who
148
+ carried out the activity. Then, we asked their opinion about the different phases of the activity.
149
+ The introductory part, realised using slides, was considered clear and well organised by all the
150
+ teachers. Two teachers also pointed out that some topics could be deepened, such as the concept
151
+ of interaction between particles and the mass-energy equivalence. The part of the activity that
152
+ makes use of Belle2VR has been defined by all teachers as interesting, fun and engaging. As for
153
+ the negative aspects of the activity, the majority of the teachers stated that they couldn’t find
154
+ any; the only elements raised by two teachers concerned the limited number of students that can
155
+ be involved and the role of some participants considered too passive.
156
+ Subsequently, we asked the teachers what objectives they think the activity was able to achieve.
157
+ Some answers concerned the possibility of understanding and visualising particle physics (one
158
+ teacher in particular stated that his students even understood the uncertainty principle thanks to
159
+ the activity). Other answers cited the possibility of inspiring curiosity and interest toward physics
160
+ and science, and of bringing students closer to the work of a physicist. At the end of the interview
161
+ we explicitly asked the teachers which class year is more suitable for the activity and if they would
162
+ 3
163
+
164
+ CDC
165
+ TOPhave proposed the activity to other classes. The majority stated that the activity is suitable for
166
+ the final months of the fourth year or the fifth year (when Italian students have typically already
167
+ dealt with electromagnetism and a first introduction of quantum physics). Two teachers, however,
168
+ claimed that even third-year students can benefit from the activity, as it is fascinating and inspiring.
169
+ All the teachers claimed that they would surely recommend the activity to other classes.
170
+ 4
171
+ Discussion and conclusion
172
+ In this paper we presented an educational proposal addressed to high schools and realised at
173
+ our University that makes use of the VR technology to enter a physics research laboratory. The
174
+ activity aims to constitute an alternative proposal to on-site visits to research centres, which,
175
+ while particularly formative and enriching for students, are also very expensive in terms of time
176
+ and money. Our proposal retraces all the stages of an on-site visit [3]: welcoming and introduction;
177
+ entering into the laboratory or facility; interaction and discussion with the public. Throughout
178
+ the initiative, a fundamental role is played by the researchers who carry out the activity. In fact,
179
+ they not only guide the public in the laboratory (in our case piloting the Belle2VR application)
180
+ but also share their emotions and experiences with students, thus helping to paint a realistic
181
+ representation of their working environment. Following the discussion with a focus group of 7 high
182
+ school teachers who participated in the activity together with their classes, we can state that our
183
+ proposal was very well received by school and therefore we are strongly motivated to replicate it
184
+ with other school groups in the future. In fact, the teachers greatly appreciated the activity. They
185
+ underlined several aspects that this proposal manages to achieve: visualising and understanding
186
+ phenomena otherwise impossible to see such as those related to particle physics; spreading VR
187
+ technology; intriguing students about physics and science; giving participants a more realistic view
188
+ of the scientific research world and of the work of a scientist. All these elements contribute to
189
+ strengthening physics teaching and bringing students closer to STEM careers. The teachers also
190
+ helped us to identify some aspects we can work on to improve our activity: the limited number of
191
+ students that can be involved and the too passive role experienced by a small part of them. These
192
+ aspects seem to be easily overcome, for example adding more parallel VR stations, where more
193
+ students can virtually enter the experiment at the same time.
194
+ A very significant aspect of our proposal consists in the possibility of involving schools easily
195
+ in any place without them having to face high travel expenses or heavy time commitment. In
196
+ this sense, our initiative could provide a valuable example of a method to introduce a visit to a
197
+ research laboratory on a permanent basis in physics school curricula of all students, regardless of
198
+ their availability of financial resources and their geographical location. For this reason, we believe
199
+ that our proposal is worth being exported to other research centres or facilities, even in fields other
200
+ than particle physics.
201
+ Acknowledgements
202
+ This work was supported by the Italian Project ‘Piano Lauree Scientifiche’. We thank the teachers
203
+ and students who participated in our activity.
204
+ References
205
+ [1] Dimopoulos K, Koulaidis V, Int. J. of Learn. Ann. Rev. 12 (2006) 10
206
+ http://dx.doi.org/10.18848/1447-9494/CGP/v12i10/48219
207
+ [2] Italian National Indication, Ministry of Education, 2010
208
+ https://www.istruzione.it/alternanza/allegati/NORMATIVA%20ASL/INDICAZIONI%
209
+ 20NAZIONALI%20PER%20I%20LICEI.pdf
210
+ [3] Neresini F, Dimopoulos K, Kallfass M and Peters H P, Sci. Comm. 30 (2009) 506
211
+ https://doi.org/10.1177%2F1075547009332650
212
+ [4] Snˇetinov´a M and K´acovsk´y P 2019 J. Phys.: Conf. Ser. 1287 012049
213
+ https://doi.org/10.1088/1742-6596/1287/1/012049
214
+ [5] Soko�lowska D and Michelini M The Role of Laboratory Work in Improving Physics Teaching
215
+ and Learning (2018) Springer Cham
216
+ https://doi.org/10.1007/978-3-319-96184-2
217
+ 4
218
+
219
+ [6] Postiglione A and De Angelis I Phys. Educ. 56 (2021) 025019
220
+ https://doi.org/10.1088/1361-6552/abcab4
221
+ [7] Postiglione A and De Angelis I, Phys. Educ. 56 (2021) 025020
222
+ https://doi.org/10.1088/1361-6552/abd1c4
223
+ [8] Postiglione A, Il Nuovo Cimento 45 C(2022) 91
224
+ http://dx.doi.org/10.1393/ncc/i2022-22091-x
225
+ [9] https://www.lngs.infn.it/en/educational
226
+ [10] http://www.srt.inaf.it/outreach/guided-tours-srt/
227
+ [11] Ellis J (2000) https://doi.org/10.48550/arXiv.physics/0005021
228
+ [12] Cecire K. (2011) DPF-2011 Conference
229
+ https://doi.org/10.48550/arXiv.1109.2559
230
+ [13] Cecire K and Dower R, DPF2019 Conference(2019)
231
+ https://doi.org/10.48550/arXiv.1910.00522
232
+ [14] De Angelis I, Postiglione A, La Franca F, Il Nuovo Cimento C 4-5 (2021) 162
233
+ http://dx.doi.org/10.1393/ncc/i2021-21162-x
234
+ [15] Duer Z, Piilonen L and Glasson G, IEEE Comp. Graph. and App. 38 (2018) 3 33
235
+ https://doi.org/10.1109/MCG.2018.032421652
236
+ [16] Kou et al., Prog. Theor. Exp. Phys., 12 (2019) 123C01, 2019
237
+ https://doi.org/10.1093/ptep/ptz106
238
+ 5
239
+
HdAzT4oBgHgl3EQfjP3_/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,186 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf,len=185
2
+ page_content='School visits to a physics research laboratory using virtual reality Ilaria De Angelis1,2, Antonio Budano2, Giacomo De Pietro2, Alberto Martini3 and Adriana Postiglione1,2 1Dipartimento di Matematica e Fisica, Universit`a degli Studi Roma Tre, Rome (Italy) 2INFN Sezione di Roma Tre, Rome (Italy) 3Deutsches Elektronen–Synchrotron, 22607 Hamburg (Germany) ilaria.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
3
+ page_content='deangelis@uniroma3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
4
+ page_content='it Abstract School visits to research laboratories or facilities represent a unique way to bring students closer to science and STEM (Science, Technology, Engineering and Mathematics) careers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
5
+ page_content=' However, such visits can be very expensive for students and teachers, in terms of both time and money.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
6
+ page_content=' In this paper, we present a possible alternative to on-site visits consisting in an activity addressed to high school students that makes use of a VR application to make them “enter” into a particle physics experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
7
+ page_content=' This proposal can represent a valid way of guaranteeing a visit to a research centre for all schools, regardless of their social or geographical origin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
8
+ page_content=' We describe the tests we carried out with a focus group of teachers and their students, and the obtained results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
9
+ page_content=' Keywords: high school, particle physics, virtual reality, STEM careers, research centre 1 Introduction Guided visits to research centres or facilities certainly represent a peculiar element in a student’s high school career, since they allow direct contact with authentic conditions of scientific knowledge production processes [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
10
+ page_content=' In the Italian National Indication guidelines on teaching [2], in fact, these visits are explicitly mentioned for physics, as they represent one of the means by which students reach their learning objectives at the end of their high school career.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
11
+ page_content=' Experiencing some time in a research centre can indeed not only improve students’ knowledge of physics, but also lead to a clearer idea of what research in physics is about and eventually motivate some of them to consider a science profession [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
12
+ page_content=' Therefore, these visits should become part of a scientific school curriculum, along with hands-on and practical activities [4–8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
13
+ page_content=' In Italy, two examples of internationally renowned laboratories that organise visits addressed to school groups are the Laboratori Nazionali del Gran Sasso [9] and the Sardinia Radio Telescope [10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
14
+ page_content=' In Europe, CERN is one of the most active centres as regards proposals for schools [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
15
+ page_content=' Worldwide, several research centres or facilities open their doors to schools.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
16
+ page_content=' The participation of students and teachers to visits, however, although certainly meaningful, can be very expensive in terms of money and time, especially if the centres are located in places far from the school.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
17
+ page_content=' For this reason, physics teachers often choose alternative activities to ensure contact with research organisations that do not require an on-site visit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
18
+ page_content=' An example in this sense are the CERN International Masterclasses [12,13], which allow students to work from their schools on real particle physics data, and discuss the related analysis together with CERN researchers during a video-conference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
19
+ page_content=' In this way, participants can virtually walk into a scientific central control room and get a glance of what they would see entering CERN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
20
+ page_content=' The advantages of initiatives of this kind are manifold, from becoming aware of the frontiers of scientific research, to actively working on real data, to coming into contact with an international research environment [14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
21
+ page_content=' On the other hand, however, the contact with the laboratory is only provided by the video-conferences that generally involve many students’ groups at the same time [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
22
+ page_content=' In this context, we worked to develop a third way, alternative to both face-to-face visits and masterclass-type initiatives, through which a student can experience the world of a scientific research laboratory up close.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
23
+ page_content=' Our approach makes use of Virtual Reality (VR) technology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
24
+ page_content=' To do this, we chose the context of particle physics, in particular the Belle II 1 arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
25
+ page_content='01515v1 [physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
26
+ page_content='ed-ph] 4 Jan 2023 collaboration, for which an advanced VR application was developed [14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
27
+ page_content=' The remaining paper is organised as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
28
+ page_content=' In section 2 we describe the activity we developed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
29
+ page_content=' In section 3 we illustrate the public we reached, including both students and teachers, and the feedback we received and in section 4 we present our conclusion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
30
+ page_content=' 2 The educational proposal We have chosen to organise a virtual visit to an international laboratory which is however very difficult and expensive to reach for Italian school groups, since it is located in Japan (much further away than Laboratori Nazionali del Gran Sasso or CERN).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
31
+ page_content=' In fact, our educational proposal for schools initiated from the VR application Belle2VR [15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
32
+ page_content=' Having realised the potential of Belle2VR application, we soon started to use it with the public during some outreach events such as science festivals or public events organised at the University.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
33
+ page_content=' In these cases, visitors were given the possibility to wear the VR helmet while the researchers used joysticks to guide them to discover the experiment, as in a real guided visit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
34
+ page_content=' After a few years of experience in science festivals and open events to which thousands of people participated, including many school students, that provided us very positive feedback, we have decided to propose a more structured activity to schools.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
35
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
36
+ page_content='1 Belle2VR Developed by Virginia Tech, the application Belle2VR allows users to virtually enter the particle physics detector of the Belle II experiment [16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
37
+ page_content=' The Belle II experiment is currently carried out at the KEK in Tsukuba, Japan, and it studies the properties of heavy quarks and leptons to search for an evidence of new physics phenomena, from the matter-antimatter asymmetry problem to the existence of dark matter particles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
38
+ page_content=' Belle2VR reconstructs the interior of the detector and allows to visualise realistic simulations of particles interacting with each other and with the detector elements (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
39
+ page_content=' 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
40
+ page_content=' The user can navigate through the detector and its components and can also manage the time evolution of the interaction by going back and forth or stopping the Developed by Virginia Tech, the application Belle2VR allows users to virtually enter the particle physics detector of the Belle II experiment [16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
41
+ page_content=' The Belle II experiment is currently carried out at the KEK in Tsukuba, Japan, and it studies the properties of heavy quarks and leptons to search for an evidence of new physics phenomena, from the matter-antimatter asymmetry problem to the existence of dark matter particles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
42
+ page_content=' Belle2VR reconstructs the interior of the detector and allows to visualise realistic simulations of particles interacting with each other and with the detector elements (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
43
+ page_content=' 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
44
+ page_content=' The user can navigate through the detector and its components and can also manage the time evolution of the interaction by going back and forth or stopping the motion of particles at a specific time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
45
+ page_content=' Belle2VR, therefore, allows to explore particle physics phenomena from a unique point of view.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
46
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
47
+ page_content='2 Activity structure We built an activity addressed to high school class groups, lasting about an hour and a half, that can be carried out in a dedicated University room, or directly in the classroom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
48
+ page_content=' It starts with a theoretical introduction that makes use of slides.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
49
+ page_content=' Here, some basic topics and concepts typically treated at school are recalled, such as electromagnetism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
50
+ page_content=' At the same time, more recent contents are also presented, such as the Standard Model, the cross section or the decay of particles, which require the use of quantum physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
51
+ page_content=' The Belle II experiment is also presented in terms of its components and physics goal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
52
+ page_content=' This phase is meant to represent the welcome and introduction step that characterises the initial part of a typical on-site visit to a research laboratory [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
53
+ page_content=' Subsequently, the researcher puts on the VR helmet while a large screen shows to the group what he/she sees.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
54
+ page_content=' At that point, participants enter the detector for the first time together with the researcher.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
55
+ page_content=' He/she moves in the virtual environment by movements of the head, allowing to display the detector details and some collisions between particles that have been selected by he/she.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
56
+ page_content=' This allows to underline the most important aspects of the experiment and to visualise what researchers described in the first part of the activity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
57
+ page_content=' This is the moment in which students access the researcher’s work environment, and begin to look at it through his/her eyes and his/her emotion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
58
+ page_content=' At this point students in turn put on the helmets, enter the detector in first person and explore the virtual space while a researcher stays close to him/her to guide him/her and answer all his/her questions and curiosities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
59
+ page_content=' Usually, we dedicate from two to three researchers in the activity, so that we can carry on this phase using up to three VR parallel stations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
60
+ page_content=' 2 Figure 1: Snapshot of a simulated event into the Belle2VR application.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
61
+ page_content=' In the meantime, the rest of the group watches their classmate while living the experience and follows the discussion with the researcher.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
62
+ page_content=' 3 Collection of data and results Once the activity design was completed, we tested it with students of different ages and schools.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
63
+ page_content=' To do this, we first involved some of the teachers already used to work with us in testing, discussing and optimising innovative activities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
64
+ page_content=' Together with them, we selected 7 groups of students (one for each teacher) from different schools: 2 classes of the fifth and final year of high school (17-18 years old), 2 classes of the fourth year (16-17 years old), 1 class of the third year (15-16 years old) and 2 mixed groups of third, fourth and fifth year students.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
65
+ page_content=' In this way, we had both groups of students all very interested in learning more about physics (the two mixed groups) and typical school classes where interested and non-interested students coexist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
66
+ page_content=' Regarding the school type, the vast majority of participants attended the “Liceo Scientifico”, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
67
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
68
+ page_content=' the Italian high school focused on science subjects;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
69
+ page_content=' only one mixed group of students attended the “Liceo Classico”, the Italian high school focused on the humanities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
70
+ page_content=' After carrying out the activity with the students in the presence of their teachers, we asked the latter to talk with their class to get their impressions on our proposal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
71
+ page_content=' Later, we carried out open interviews with all participating teachers separately.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
72
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
73
+ page_content='1 Results In general, the activity was very positively received by both teachers and students.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
74
+ page_content=' In fact, 5 out of 7 teachers told us that their students voted 5 out of 5 and 2 out of 7 teachers told us their students voted 4 out of 5 to the activity from a general point of view.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
75
+ page_content=' The teachers’ score was also very positive, as 6 out of 7 teachers voted 5 out of 5 and 1 teacher voted 4 out of 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
76
+ page_content=' At this point, we asked for more details on their vote.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
77
+ page_content=' Specifically, we first asked them what they particularly liked about the activity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
78
+ page_content=' Three of them told us that they enjoyed the use of VR technology;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
79
+ page_content=' one teacher stated that the strength of the activity lays in the possibility of getting inside the particle detector;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
80
+ page_content=' another teacher appreciated the opportunity of “directly seeing” what it means doing research with a particle accelerator;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
81
+ page_content=' one teacher mentioned the possibility of bringing the world of research closer to students;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
82
+ page_content=' another teacher especially appreciated the clarity of the researchers who carried out the activity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
83
+ page_content=' Then, we asked their opinion about the different phases of the activity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
84
+ page_content=' The introductory part, realised using slides, was considered clear and well organised by all the teachers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
85
+ page_content=' Two teachers also pointed out that some topics could be deepened, such as the concept of interaction between particles and the mass-energy equivalence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
86
+ page_content=' The part of the activity that makes use of Belle2VR has been defined by all teachers as interesting, fun and engaging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
87
+ page_content=' As for the negative aspects of the activity, the majority of the teachers stated that they couldn’t find any;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
88
+ page_content=' the only elements raised by two teachers concerned the limited number of students that can be involved and the role of some participants considered too passive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
89
+ page_content=' Subsequently, we asked the teachers what objectives they think the activity was able to achieve.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
90
+ page_content=' Some answers concerned the possibility of understanding and visualising particle physics (one teacher in particular stated that his students even understood the uncertainty principle thanks to the activity).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
91
+ page_content=' Other answers cited the possibility of inspiring curiosity and interest toward physics and science, and of bringing students closer to the work of a physicist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
92
+ page_content=' At the end of the interview we explicitly asked the teachers which class year is more suitable for the activity and if they would 3 CDC TOPhave proposed the activity to other classes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
93
+ page_content=' The majority stated that the activity is suitable for the final months of the fourth year or the fifth year (when Italian students have typically already dealt with electromagnetism and a first introduction of quantum physics).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
94
+ page_content=' Two teachers, however, claimed that even third-year students can benefit from the activity, as it is fascinating and inspiring.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
95
+ page_content=' All the teachers claimed that they would surely recommend the activity to other classes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
96
+ page_content=' 4 Discussion and conclusion In this paper we presented an educational proposal addressed to high schools and realised at our University that makes use of the VR technology to enter a physics research laboratory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
97
+ page_content=' The activity aims to constitute an alternative proposal to on-site visits to research centres, which, while particularly formative and enriching for students, are also very expensive in terms of time and money.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
98
+ page_content=' Our proposal retraces all the stages of an on-site visit [3]: welcoming and introduction;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
99
+ page_content=' entering into the laboratory or facility;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
100
+ page_content=' interaction and discussion with the public.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
101
+ page_content=' Throughout the initiative, a fundamental role is played by the researchers who carry out the activity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
102
+ page_content=' In fact, they not only guide the public in the laboratory (in our case piloting the Belle2VR application) but also share their emotions and experiences with students, thus helping to paint a realistic representation of their working environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
103
+ page_content=' Following the discussion with a focus group of 7 high school teachers who participated in the activity together with their classes, we can state that our proposal was very well received by school and therefore we are strongly motivated to replicate it with other school groups in the future.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
104
+ page_content=' In fact, the teachers greatly appreciated the activity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
105
+ page_content=' They underlined several aspects that this proposal manages to achieve: visualising and understanding phenomena otherwise impossible to see such as those related to particle physics;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
106
+ page_content=' spreading VR technology;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
107
+ page_content=' intriguing students about physics and science;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
108
+ page_content=' giving participants a more realistic view of the scientific research world and of the work of a scientist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
109
+ page_content=' All these elements contribute to strengthening physics teaching and bringing students closer to STEM careers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
110
+ page_content=' The teachers also helped us to identify some aspects we can work on to improve our activity: the limited number of students that can be involved and the too passive role experienced by a small part of them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
111
+ page_content=' These aspects seem to be easily overcome, for example adding more parallel VR stations, where more students can virtually enter the experiment at the same time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
112
+ page_content=' A very significant aspect of our proposal consists in the possibility of involving schools easily in any place without them having to face high travel expenses or heavy time commitment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
113
+ page_content=' In this sense, our initiative could provide a valuable example of a method to introduce a visit to a research laboratory on a permanent basis in physics school curricula of all students, regardless of their availability of financial resources and their geographical location.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
114
+ page_content=' For this reason, we believe that our proposal is worth being exported to other research centres or facilities, even in fields other than particle physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
115
+ page_content=' Acknowledgements This work was supported by the Italian Project ‘Piano Lauree Scientifiche’.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
116
+ page_content=' We thank the teachers and students who participated in our activity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
117
+ page_content=' References [1] Dimopoulos K, Koulaidis V, Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
118
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
119
+ page_content=' of Learn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
120
+ page_content=' Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
121
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
122
+ page_content=' 12 (2006) 10 http://dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
123
+ page_content='doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
124
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
125
+ page_content='18848/1447-9494/CGP/v12i10/48219 [2] Italian National Indication, Ministry of Education, 2010 https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
126
+ page_content='istruzione.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
127
+ page_content='it/alternanza/allegati/NORMATIVA%20ASL/INDICAZIONI% 20NAZIONALI%20PER%20I%20LICEI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
128
+ page_content='pdf [3] Neresini F, Dimopoulos K, Kallfass M and Peters H P, Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
129
+ page_content=' Comm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
130
+ page_content=' 30 (2009) 506 https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
131
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
132
+ page_content='1177%2F1075547009332650 [4] Snˇetinov´a M and K´acovsk´y P 2019 J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
133
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
134
+ page_content=' : Conf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
135
+ page_content=' Ser.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
136
+ page_content=' 1287 012049 https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
137
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
138
+ page_content='1088/1742-6596/1287/1/012049 [5] Soko�lowska D and Michelini M The Role of Laboratory Work in Improving Physics Teaching and Learning (2018) Springer Cham https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
139
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
140
+ page_content='1007/978-3-319-96184-2 4 [6] Postiglione A and De Angelis I Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
141
+ page_content=' Educ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
142
+ page_content=' 56 (2021) 025019 https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
143
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
144
+ page_content='1088/1361-6552/abcab4 [7] Postiglione A and De Angelis I, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
145
+ page_content=' Educ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
146
+ page_content=' 56 (2021) 025020 https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
147
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
148
+ page_content='1088/1361-6552/abd1c4 [8] Postiglione A, Il Nuovo Cimento 45 C(2022) 91 http://dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
149
+ page_content='doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
150
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
151
+ page_content='1393/ncc/i2022-22091-x [9] https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
152
+ page_content='lngs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
153
+ page_content='infn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
154
+ page_content='it/en/educational [10] http://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
155
+ page_content='srt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
156
+ page_content='inaf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
157
+ page_content='it/outreach/guided-tours-srt/ [11] Ellis J (2000) https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
158
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
159
+ page_content='48550/arXiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
160
+ page_content='physics/0005021 [12] Cecire K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
161
+ page_content=' (2011) DPF-2011 Conference https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
162
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
163
+ page_content='48550/arXiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
164
+ page_content='1109.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
165
+ page_content='2559 [13] Cecire K and Dower R, DPF2019 Conference(2019) https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
166
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
167
+ page_content='48550/arXiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
168
+ page_content='1910.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
169
+ page_content='00522 [14] De Angelis I, Postiglione A, La Franca F, Il Nuovo Cimento C 4-5 (2021) 162 http://dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
170
+ page_content='doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
171
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
172
+ page_content='1393/ncc/i2021-21162-x [15] Duer Z, Piilonen L and Glasson G, IEEE Comp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
173
+ page_content=' Graph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
174
+ page_content=' and App.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
175
+ page_content=' 38 (2018) 3 33 https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
176
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
177
+ page_content='1109/MCG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
178
+ page_content='2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
179
+ page_content='032421652 [16] Kou et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
180
+ page_content=', Prog.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
181
+ page_content=' Theor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
182
+ page_content=' Exp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
183
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
184
+ page_content=', 12 (2019) 123C01, 2019 https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
185
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
186
+ page_content='1093/ptep/ptz106 5' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/HdAzT4oBgHgl3EQfjP3_/content/2301.01515v1.pdf'}
INE1T4oBgHgl3EQfFwM8/content/tmp_files/2301.02905v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
INE1T4oBgHgl3EQfFwM8/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
KtFAT4oBgHgl3EQfwB6h/content/tmp_files/2301.08679v1.pdf.txt ADDED
@@ -0,0 +1,2443 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Uncertainty from the Aharonov-Vaidman Identity
2
+ Matthew S. Leifer
3
+ Institute for Quantum Studies and Schmid College of Science and Technology
4
+ Chapman University, One University Drive, Orange, CA 92866, USA
5
+ January 23, 2023
6
+ Abstract
7
+ In this article, I show how the Aharonov-Vaidman identity A |ψ⟩ = ⟨A⟩ |ψ⟩ +
8
+ ∆A
9
+ ��ψ⊥
10
+ A
11
+
12
+ can be used to prove relations between the standard deviations of observ-
13
+ ables in quantum mechanics. In particular, I review how it leads to a more direct and
14
+ less abstract proof of the Robertson uncertainty relation ∆A∆B ≥ 1
15
+ 2 |⟨[A, B]⟩| than the
16
+ textbook proof. I discuss the relationship between these two proofs and show how the
17
+ Cauchy-Schwarz inequality can be derived from the Aharonov-Vaidman identity. I give
18
+ Aharonov-Vaidman based proofs of the Maccone-Pati uncertainty relations and I show
19
+ how the Aharonov-Vaidman identity can be used to handle propagation of uncertainty
20
+ in quantum mechanics. Finally, I show how the Aharonov-Vaidman identity can be
21
+ extended to mixed states and discuss how to generalize the results to the mixed case.
22
+ 1
23
+ Introduction
24
+ Let A be a Hermitian operator on a Hilbert space H. Then, for any (not necessarily nor-
25
+ malized) vector |ψ⟩ ∈ H,
26
+ A |ψ⟩ = ⟨A⟩ |ψ⟩ + ∆A
27
+ ��ψ⊥
28
+ A
29
+
30
+ ,
31
+ (1)
32
+ where ⟨A⟩ = ⟨ψ|A|ψ⟩ / ⟨ψ|ψ⟩ is the expectation value of A, ∆A =
33
+
34
+ ⟨A2⟩ − ⟨A⟩2 is its
35
+ standard deviation, and
36
+ ��ψ⊥
37
+ A
38
+
39
+ is a vector that is orthogonal to |ψ⟩, has equal norm
40
+
41
+ ψ⊥
42
+ A
43
+ ��ψ⊥
44
+ A
45
+
46
+ =
47
+ ⟨ψ|ψ⟩, and depends on the operator A.
48
+ Equation (1) is the Aharonov-Vaidman Identity, which first appeared in [1].
49
+ Yakir
50
+ Aharonov has stated that he “[does not] understand why it doesn’t appear in every quantum
51
+ book” [2]. The main purpose of this article is to explain why it should appear in undergrad-
52
+ uate quantum mechanics textbooks1.
53
+ 1Other demonstrations of the usefulness of the Aharonov-Vaidman identity include its use in the proof
54
+ that, for any state |ψ⟩ and any observable A, |ψ⟩⊗n is an approximate eigenstate of the observable ¯A =
55
+ 1
56
+ n
57
+ �n
58
+ j=1 Aj for large n, where Aj refers to A acting on the jth subsystem [1], and its use in deriving the
59
+ minimum time required for evolution to an orthogonal quantum state [3].
60
+ 1
61
+ arXiv:2301.08679v1 [quant-ph] 20 Jan 2023
62
+
63
+ The uncertainty relation that is proved most often in quantum mechanics classes and
64
+ textbooks is the Robertson relation [4]:
65
+ ∆A∆B ≥ 1
66
+ 2 |⟨[A, B]⟩| ,
67
+ (2)
68
+ where [A, B] = AB − BA is the commutator.
69
+ As pointed out by Schrödinger [5], the Robertson relation can be extended to
70
+ (∆A)2 (∆B)2 ≥
71
+ ����
72
+ 1
73
+ 2 ⟨{A, B}⟩ − ⟨A⟩ ⟨B⟩
74
+ ����
75
+ 2
76
+ +
77
+ ����
78
+ 1
79
+ 2 ⟨[A, B]⟩
80
+ ����
81
+ 2
82
+ ,
83
+ (3)
84
+ where {A, B} = AB + BA is the anti-commutator.
85
+ Although not often emphasized in quantum mechanics classes, the Schrödinger relation
86
+ is not harder to prove than the Robertson relation. In fact, the standard textbook proof of
87
+ the Robertson relation effectively proves the Schrödinger relation and then throws away the
88
+ anti-commutator term.
89
+ The proof almost universally adopted in textbooks is based on the Cauchy-Schwarz in-
90
+ equality. While this proof is elementary for those familiar with the mathematics of Hilbert
91
+ spaces, it can be daunting for undergraduate physics students, who are likely encountering
92
+ Hilbert spaces for the first time along with quantum mechanics.
93
+ In this article, I will review more direct proofs of eq. (2) and eq. (3) from the Aharonov-
94
+ Vaidman identity that only make use of basic properties of complex numbers and inner
95
+ products. These proofs previously appeared in [6] and the proof of the Robertson relation
96
+ is also problem 3.10 in Aharonov and Rohrlich’s book “Quantum Paradoxes” [7]. The proof
97
+ of the Aharonov-Vaidman identity itself is uses similar ideas to one of the standard proofs
98
+ of the Cauchy-Schwarz identity, but is perhaps more memorable to undergraduate physics
99
+ students because it uses concepts that have a physical meaning, i.e. expectation values and
100
+ standard deviations. The proof of the Robertson and Schrödinger relations so obtained is not
101
+ independent of the standard Cauchy-Schwarz based proof. I shall discuss their relationship
102
+ and show that the Cauchy-Schwarz inequality can itself be derived from eq. (1). The main
103
+ virtue of using the Aharonov-Vaidman based proof of the uncertainty relation is that it is
104
+ more direct and involves fewer abstractions.
105
+ To be clear, I am not against using or teaching the Cauchy-Schwarz inequality. It has
106
+ been called “one of the most widely used and important inequalities in all of mathematics”
107
+ [8]. In fact, the Aharonov-Vaidman based proof still uses one instance of the Cauchy-Schwarz
108
+ inequality, namely that if |ψ⟩ and |φ⟩ are unit vectors then |⟨φ|ψ⟩| ≤ 1. But this is easily
109
+ motivated by the idea that ⟨φ|ψ⟩ is a generalization of the cosine of an angle, and it is used in
110
+ a more direct way than in the standard proof. Students of quantum mechanics also need to
111
+ know the Cauchy-Schwarz inequality to prove that the Born rule always yields well-defined
112
+ probabilities. Physics students should learn the Cauchy-Schwarz inequality. I just think it
113
+ should be used in a less abstract way where possible.
114
+ Besides the Robertson and Schrödinger relations, many other uncertainty relations are
115
+ known. Indeed, since uncertainty relations have found applications in quantum information
116
+ 2
117
+
118
+ science [9, 10, 11, 12, 13, 14, 15] and quantum foundations [16, 17], proving new ones has
119
+ become something of a sport. The two most common classes of uncertainty relations are
120
+ those based on entropy [18] and those based on standard deviations [4, 5, 19]. Many of the
121
+ standard deviation based relations can be derived from the Aharonov-Vaidman relation. I
122
+ include a proof of the Maccone-Pati uncertainty relations [20] to illustrate this. While these
123
+ are not the most recent or tightest known uncertainty relations, I include them because
124
+ they have a simple and elegant Aharonov-Vaidman based proof. For more recent work on
125
+ standard deviation uncertainty relations, see [21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32,
126
+ 33, 34, 35, 36, 37, 38, 39, 40, 41].
127
+ Another place where relationships between standard deviations are important is in the
128
+ propagation of uncertainty. In classical statistics, if random variables X1, X2, · · · , Xn have
129
+ standard deviations ∆X1, ∆X2, · · · ∆Xn then a function of them f(X1, X2, · · · , Xn) has stan-
130
+ dard deviation ∆f that is a function of ∆X1, ∆X2, · · · ∆Xn (and their correlations if the
131
+ variables are not independent). Formulas for the propagation of uncertainty tell us how to
132
+ compute this function, and are commonly used to estimate experimental errors. In quantum
133
+ mechanics, similar formulas can be derived relating the standard deviations of observables.
134
+ They differ from their classical counterparts due to the fact that quantum observables do not
135
+ commute, but provided this is taken care of they can be derived by the same methods as in
136
+ the classical case. However, they can alternatively be derived from the Aharonov-Vaidman
137
+ identity, as I shall explain.
138
+ Although the Aharonov-Vaidman identity is usually discussed for pure quantum states,
139
+ it can be extended to mixed states, either by use of purification or an equivalent concept
140
+ called an amplitude operator. Relations between standard deviations can be extended to
141
+ mixed states, but obtaining tight bounds is sometimes more difficult than in the pure case
142
+ due to the need to optimize over all purifications or amplitude operators that can represent
143
+ a given mixed state.
144
+ The remainder of this article is structured as follows. Section 2 gives the proof of the
145
+ Aharonov-Vaidman identity and a corollary that is useful for understanding the equality
146
+ conditions in uncertainty relations.
147
+ Section 3 presents the proof of the Robertson and
148
+ Schrödinger relations based on the Aharonov-Vaidman identity. Section 4 explains the rela-
149
+ tionship with the standard textbook proof of the Robertson relation and explains how the
150
+ Cauchy-Schwarz inequality can be derived from the Aharonov-Vaidman identity. Section 5
151
+ comments on the effective teaching of the Robertson uncertainty relations via the Aharonov-
152
+ Vaidman identity. Section 6 presents Aharonov-Vaidman based proofs of the Maccone-Pati
153
+ uncertainty relations. Section 7 describes how to use the Aharonov-Vaidman identity to
154
+ derive formulas for the propagation of quantum uncertainty. Section 8 explains how to gen-
155
+ eralize the Aharonov-Vaidman relation to mixed states using amplitude operators. (The
156
+ relationship between amplitude operators and purifications is discussed in appendix A.) Fi-
157
+ nally, section 9 presents the summary and conclusions.
158
+ I intend this article to be pedagogical and self-contained, so as to be accessible to under-
159
+ graduate students and anyone teaching introductory quantum mechanics.
160
+ 3
161
+
162
+ 2
163
+ Proof of the Aharonov Vaidman Identity
164
+ Sometimes, it is useful to generalize the Aharonov-Vaidman identity to non-Hermitian op-
165
+ erators, so we prove the more general version here.
166
+ Proposition 2.1 (The Aharonov-Vaidman Identity). Let A be a linear operator on a Hilbert
167
+ space H and let |ψ⟩ be a (not necessarily normalized) vector in H. Then,
168
+ A |ψ⟩ = ⟨A⟩ |ψ⟩ + ∆A
169
+ ��ψ⊥
170
+ A
171
+
172
+ ,
173
+ (4)
174
+ where ⟨A⟩ = ⟨ψ|A|ψ⟩ / ⟨ψ|ψ⟩, ∆A =
175
+
176
+ ⟨A†A⟩ − |⟨A⟩|2, and
177
+ ��ψ⊥
178
+ A
179
+
180
+ is a vector orthogonal to
181
+ |ψ⟩ that depends on both |ψ⟩ and A and satisfies
182
+
183
+ ψ⊥
184
+ A
185
+ ��ψ⊥
186
+ A
187
+
188
+ = ⟨ψ|ψ⟩.
189
+ Note that, if A is Hermitian, then this reduces to eq. (1), where ⟨A⟩ and ∆A are the
190
+ expectation value and standard deviation. In general, ⟨A⟩ is a complex number, but ∆A is
191
+ always real and non-negative.
192
+ For most of what we need to do, it is sufficient to consider the case where |ψ⟩ is a
193
+ unit vector, in which case
194
+ ��ψ⊥
195
+ A
196
+
197
+ is also a unit vector. The exception is the proof of the
198
+ Cauchy-Schwarz inequality (proposition 4.1 in section 4), which uses the identity with an
199
+ unnormalized vector.
200
+ Proof. Given a vector |ψ⟩ ∈ H, any other vector |φ⟩ ∈ H can be written as |φ⟩ = α |ψ⟩ +
201
+ β
202
+ ��ψ⊥�
203
+ , where α and β are complex coefficients and
204
+ ��ψ⊥�
205
+ is some vector that is orthogonal
206
+ to |ψ⟩. By an appropriate rescaling of β, we can ensure that
207
+
208
+ ψ⊥��ψ⊥�
209
+ = ⟨ψ|ψ⟩. Applying
210
+ this to |φ⟩ = A |ψ⟩ gives
211
+ A |ψ⟩ = α |ψ⟩ + β
212
+ ��ψ⊥�
213
+ .
214
+ (5)
215
+ To determine α, take the inner product of eq. (5) with |ψ⟩, which gives
216
+ ⟨ψ|A|ψ⟩ = α ⟨ψ|ψ⟩ .
217
+ (6)
218
+ Rearranging this gives α = ⟨A⟩.
219
+ To determine β, substitute α = ⟨A⟩ into eq. (5) and take the inner product of A |ψ⟩ with
220
+ itself to obtain
221
+ ⟨ψ| A†A |ψ⟩ = |⟨A⟩|2 ⟨ψ|ψ⟩ + |β|2 �
222
+ ψ⊥��ψ⊥�
223
+ = |⟨A⟩|2 ⟨ψ|ψ⟩ + |β|2 ⟨ψ|ψ⟩ ,
224
+ where we have used
225
+
226
+ ψ⊥��ψ⊥�
227
+ = ⟨ψ|ψ⟩.
228
+ Rearranging and using
229
+
230
+ A†A
231
+
232
+ =
233
+
234
+ ψ
235
+ ��A†A
236
+ ��ψ
237
+
238
+ / ⟨ψ|ψ⟩ gives
239
+ |β|2 =
240
+
241
+ A†A
242
+
243
+ − |⟨A⟩|2 = (∆A)2.
244
+ (7)
245
+ This means that β = (∆A)eiθ for some phase angle θ. If we define
246
+ ��ψ⊥
247
+ A
248
+
249
+ = eiθ ��ψ⊥�
250
+ then
251
+ ��ψ⊥
252
+ A
253
+
254
+ is still orthogonal to |ψ⟩, its norm is unchanged, and we have eq. (4).
255
+ 4
256
+
257
+ The following corollary is useful for finding the conditions for equality in uncertainty
258
+ relations.
259
+ Corollary 2.2. In general, for two operators A and B, and for a unit vector |ψ⟩,
260
+
261
+ ψ⊥
262
+ A
263
+ ��ψ⊥
264
+ B
265
+
266
+ =
267
+
268
+ A†B
269
+
270
+ − ⟨A⟩∗ ⟨B⟩
271
+ ∆A∆B
272
+ .
273
+ (8)
274
+ Proof. From proposition 2.1, we have
275
+ A |ψ⟩ = ⟨A⟩ |ψ⟩ + ∆A
276
+ ��ψ⊥
277
+ A
278
+
279
+ ,
280
+ (9)
281
+ B |ψ⟩ = ⟨B⟩ |ψ⟩ + ∆B
282
+ ��ψ⊥
283
+ B
284
+
285
+ .
286
+ (10)
287
+ Taking the inner product of these gives
288
+ ⟨ψ| A†B |ψ⟩ = ⟨A⟩∗ ⟨B⟩ + ∆A∆B
289
+
290
+ ψ⊥
291
+ A
292
+ ��ψ⊥
293
+ B
294
+
295
+ ,
296
+ (11)
297
+ Rearranging gives the desired result.
298
+ Note that, if A and B are Hermitian then we have
299
+
300
+ ψ⊥
301
+ A
302
+ ��ψ⊥
303
+ B
304
+
305
+ = ⟨AB⟩ − ⟨A⟩ ⟨B⟩
306
+ ∆A∆B
307
+ .
308
+ (12)
309
+ If it is also the case that [A, B] = 0 then eq. (12) is the correlation, denoted corrA,B, that
310
+ would be obtained from a joint measurement of A and B. The correlation is a well-known
311
+ statistical measure of how two random variables are related to one another. Equation (12) is
312
+ a formal generalization of the correlation, so we will also denote it corrA,B. However, if A and
313
+ B do not commute then corrA,B is generally a complex number, there is no joint measurement
314
+ of A and B of which corrA,B could be the correlation, and AB is not an observable.
315
+ The real and imaginary parts of corrA,B are
316
+ Re (corrA,B) = 1
317
+ 2
318
+ ��
319
+ ψ⊥
320
+ A
321
+ ��ψ⊥
322
+ B
323
+
324
+ +
325
+
326
+ ψ⊥
327
+ B
328
+ ��ψ⊥
329
+ A
330
+ ��
331
+ =
332
+ 1
333
+ 2 ⟨{A, B}⟩ − ⟨A⟩ ⟨B⟩
334
+ ∆A∆B
335
+ (13)
336
+ Im (corrA,B) = 1
337
+ 2i
338
+ ��
339
+ ψ⊥
340
+ A
341
+ ��ψ⊥
342
+ B
343
+
344
+
345
+
346
+ ψ⊥
347
+ B
348
+ ��ψ⊥
349
+ A
350
+ ��
351
+ = ⟨[A, B]⟩
352
+ 2i∆A∆B ,
353
+ (14)
354
+ The real part is also a formal generalization of the correlation in that it reduces to the
355
+ classical formula when A and B commute. We denote it RcorrA,B.
356
+ 3
357
+ The Robertson and Schrödinger Uncertainty Relations
358
+ We are now in a position to prove the Robertson and Schrödinger uncertainty relations.
359
+ Proposition 3.1 (The Robertson Uncertainty Relation). Let A and B be two Hermitian
360
+ operators on a Hilbert space H. Then, for any unit vector |ψ⟩ ∈ H
361
+ ∆A∆B ≥ 1
362
+ 2 |⟨[A, B]⟩| .
363
+ (15)
364
+ 5
365
+
366
+ Proof. From the Aharonov-Vaidman identity, we have
367
+ A |ψ⟩ = ⟨A⟩ |ψ⟩ + ∆A
368
+ ��ψ⊥
369
+ A
370
+
371
+ ,
372
+ (16)
373
+ B |ψ⟩ = ⟨B⟩ |ψ⟩ + ∆B
374
+ ��ψ⊥
375
+ B
376
+
377
+ .
378
+ (17)
379
+ Taking the inner product of these two equations and its complex conjugate gives
380
+ ⟨ψ|AB|ψ⟩ = ⟨A⟩ ⟨B⟩ + ∆A∆B
381
+
382
+ ψ⊥
383
+ A
384
+ ��ψ⊥
385
+ B
386
+
387
+ (18)
388
+ ⟨ψ|BA|ψ⟩ = ⟨A⟩ ⟨B⟩ + ∆A∆B
389
+
390
+ ψ⊥
391
+ B
392
+ ��ψ⊥
393
+ A
394
+
395
+ .
396
+ (19)
397
+ Subtracting these two equations gives
398
+ ⟨ψ|(AB − BA)|ψ⟩ = ∆A∆B
399
+ ��
400
+ ψ⊥
401
+ A
402
+ ��ψ⊥
403
+ B
404
+
405
+
406
+
407
+ ψ⊥
408
+ B
409
+ ��ψ⊥
410
+ A
411
+ ��
412
+ ,
413
+ (20)
414
+ or,
415
+ ⟨[A, B]⟩ = ∆A∆B
416
+ ��
417
+ ψ⊥
418
+ A
419
+ ��ψ⊥
420
+ B
421
+
422
+
423
+
424
+ ψ⊥
425
+ B
426
+ ��ψ⊥
427
+ A
428
+ ��
429
+ ,
430
+ (21)
431
+ Since
432
+
433
+ ψ⊥
434
+ B
435
+ ��ψ⊥
436
+ A
437
+
438
+ is the complex conjugate of
439
+
440
+ ψ⊥
441
+ A
442
+ ��ψ⊥
443
+ B
444
+
445
+ , we can rewrite this as
446
+ ⟨[A, B]⟩ = 2i∆A∆BIm
447
+ ��
448
+ ψ⊥
449
+ A
450
+ ��ψ⊥
451
+ B
452
+ ��
453
+ .
454
+ (22)
455
+ Taking the absolute value of both sides and rearranging gives
456
+ ∆A∆B
457
+ ��Im
458
+ ��
459
+ ψ⊥
460
+ A
461
+ ��ψ⊥
462
+ B
463
+ ���� = 1
464
+ 2 |⟨[A, B]⟩| .
465
+ (23)
466
+ Because
467
+ ��ψ⊥
468
+ A
469
+
470
+ and
471
+ ��ψ⊥
472
+ B
473
+
474
+ are unit vectors, 0 ≤
475
+ ���
476
+ ψ⊥
477
+ A
478
+ ��ψ⊥
479
+ B
480
+ ���2 ≤ 1, and hence the absolute value
481
+ of the imaginary part of
482
+
483
+ ψ⊥
484
+ B
485
+ ��ψ⊥
486
+ A
487
+
488
+ is also bounded between 0 and 1. Hence, we have
489
+ ∆A∆B ≥ 1
490
+ 2 |⟨[A, B]⟩| .
491
+ (24)
492
+ The condition for equality in the Robertson relation is
493
+ ��Im
494
+ ��
495
+ ψ⊥
496
+ A
497
+ ��ψ⊥
498
+ B
499
+ ���� = 1 or, equiva-
500
+ lently, corrA,B = ±i. States that saturate the inequality are called (Robertson) intelligent
501
+ states. The condition corrA,B = ±i can be used to find intelligent states, although this is not
502
+ easier than solving for equality in the Robertson relation directly.
503
+ Proposition 3.2 (The Schrödinger Uncertainty Relation). Let A and B be two Hermitian
504
+ operators on a Hilbert space H. Then, for any unit vector |ψ⟩ ∈ H
505
+ (∆A)2 (∆B)2 ≥
506
+ ����
507
+ 1
508
+ 2 ⟨{A, B}⟩ − ⟨A⟩ ⟨B⟩
509
+ ����
510
+ 2
511
+ +
512
+ ����
513
+ 1
514
+ 2 ⟨[A, B]⟩
515
+ ����
516
+ 2
517
+ .
518
+ (25)
519
+ 6
520
+
521
+ Proof. Taking the sum of eq. (18) and eq. (19) gives
522
+ ⟨{A, B}⟩ = 2 ⟨A⟩ ⟨B⟩ + ∆A∆B
523
+ ��
524
+ ψ⊥
525
+ A
526
+ ��ψ⊥
527
+ B
528
+
529
+ +
530
+
531
+ ψ⊥
532
+ B
533
+ ��ψ⊥
534
+ A
535
+ ��
536
+ ,
537
+ (26)
538
+ or,
539
+ ⟨{A, B}⟩ − 2 ⟨A⟩ ⟨B⟩ = ∆A∆B
540
+ ��
541
+ ψ⊥
542
+ A
543
+ ��ψ⊥
544
+ B
545
+
546
+ +
547
+
548
+ ψ⊥
549
+ B
550
+ ��ψ⊥
551
+ A
552
+ ��
553
+ .
554
+ (27)
555
+ Adding this to eq. (21) gives
556
+ ⟨{A, B}⟩ − 2 ⟨A⟩ ⟨B⟩ + ⟨[A, B]⟩ = 2∆A∆B
557
+
558
+ ψ⊥
559
+ A
560
+ ��ψ⊥
561
+ B
562
+
563
+ ,
564
+ (28)
565
+ or,
566
+ ∆A∆B
567
+
568
+ ψ⊥
569
+ A
570
+ ��ψ⊥
571
+ B
572
+
573
+ = 1
574
+ 2 ⟨{A, B}⟩ − ⟨A⟩ ⟨B⟩ + 1
575
+ 2 ⟨[A, B]⟩ .
576
+ (29)
577
+ Now, because A and B are Hermitian, {A, B} is Hermitian and [A, B] is anti-Hermitian.
578
+ Therefore ⟨{A, B}⟩ is real and ⟨[A, B]⟩ is imaginary. Further ⟨A⟩, ⟨B⟩, ∆A and ∆B are real.
579
+ Therefore, taking the modulus squared of eq. (29) gives
580
+ (∆A)2(∆B)2 ���
581
+ ψ⊥
582
+ A
583
+ ��ψ⊥
584
+ B
585
+ ���2 =
586
+ ����
587
+ 1
588
+ 2 ⟨{A, B}⟩ − ⟨A⟩ ⟨B⟩
589
+ ����
590
+ 2
591
+ +
592
+ ����
593
+ 1
594
+ 2 ⟨[A, B]⟩
595
+ ����
596
+ 2
597
+ .
598
+ (30)
599
+ Finally, because
600
+ ��ψ⊥
601
+ A
602
+
603
+ and
604
+ ��ψ⊥
605
+ B
606
+
607
+ are unit vectors, we have 0 ≤
608
+ ���
609
+ ψ⊥
610
+ A
611
+ ��ψ⊥
612
+ B
613
+ ���2 ≤ 1, from which
614
+ the result follows.
615
+ The condition for equality in the Schrödinger relation is
616
+ ���
617
+ ψ⊥
618
+ A
619
+ ��ψ⊥
620
+ B
621
+ ���2 = |corrA,B|2 = 1.
622
+ States that saturate the inequality are called (Schrödinger) intelligent states. The condition
623
+ |corrA,B|2 = 1 can be used to find intelligent states, although this is not easier than solving
624
+ for equality in the Schrödinger relation directly.
625
+ 4
626
+ The Textbook Proof and The Cauchy-Schwarz Inequal-
627
+ ity
628
+ The textbook proofs of the Robertson and Schrödinger uncertainty relations are based on
629
+ the Cauchy-Schwarz inequality
630
+ |⟨f|g⟩|2 ≤ ⟨f|f⟩ ⟨g|g⟩ .
631
+ (31)
632
+ Note that the proofs given in section 3 also make use of a special case of this inequality: that
633
+ for unit vectors |⟨f|g⟩|2 ≤ 1. This is applied to |f⟩ =
634
+ ��ψ⊥
635
+ A
636
+
637
+ , |g⟩ =
638
+ ��ψ⊥
639
+ B
640
+
641
+ . My aim is not to
642
+ eliminate any use of the Cauchy-Schwarz inequality, but just to argue that the proof is more
643
+ memorable if the inequality is applied in a different way than in the standard proof.
644
+ In the standard proof, the Cauchy-Schwarz inequality is applied to the two vectors |f⟩ =
645
+ (A − ⟨A⟩) |ψ⟩ and |g⟩ = (B − ⟨B⟩) |ψ⟩ to obtain
646
+ |⟨ψ|(A − ⟨A⟩)(B − ⟨B⟩)|ψ⟩|2 ≤
647
+
648
+ ψ
649
+ ��(A − ⟨A⟩)2��ψ
650
+ � �
651
+ ψ
652
+ ��(B − ⟨B⟩)2��ψ
653
+
654
+ .
655
+ (32)
656
+ 7
657
+
658
+ A few lines of messy algebra and cancellations, which I will spare you the details of, yields
659
+ (∆A)2 (∆B)2 ≥
660
+ ����
661
+ 1
662
+ 2 ⟨{A, B}⟩ − ⟨A⟩ ⟨B⟩ + 1
663
+ 2 ⟨[A, B]⟩
664
+ ����
665
+ 2
666
+ ,
667
+ (33)
668
+ from which we can derive the Schrödinger and Robertson relations by recognizing the real
669
+ and imaginary parts of the right hand side.
670
+ As physics students do not often see the Cauchy-Schwarz inequality prior to their first
671
+ course on quantum mechanics, most textbooks include a proof of this as well. One of the
672
+ common proofs uses reasoning similar to that which we used to establish the Aharonov-
673
+ Vaidman identity. It starts by recognizing that |g⟩ can be written as
674
+ |g⟩ = α |f⟩ + β
675
+ ��f ⊥�
676
+ ,
677
+ (34)
678
+ where
679
+ ��f ⊥�
680
+ is a unit vector that is orthogonal to |f⟩. To find α, take the inner product of
681
+ this with |f⟩, which yields α = ⟨f|g⟩ / ⟨f|f⟩. Substituting this back into eq. (34) and then
682
+ taking the inner product of |g⟩ with itself gives
683
+ ⟨g|g⟩ = |⟨f|g⟩|2
684
+ ⟨f|f⟩ + |β|2 .
685
+ (35)
686
+ The Cauchy-Schwarz inequality follows from this by recognizing that |β|2 is real and non-
687
+ negative.
688
+ Summarizing, the standard proof of the Robertson inequality consists of: proving the
689
+ Cauchy-Schwarz inequality and then finding convenient vectors to insert into the inequality
690
+ that will yield terms involving ∆A and ∆B after some algebra. From the Aharonov-Vaidman
691
+ identity, we can see that the reason the choice |f⟩ = (A − ⟨A⟩) |ψ⟩ and |g⟩ = (B − ⟨B⟩) |ψ⟩
692
+ is guaranteed work is that |f⟩ = ∆A
693
+ ��ψ⊥
694
+ A
695
+
696
+ and |g⟩ = ∆B
697
+ ��ψ⊥
698
+ B
699
+
700
+ .
701
+ After inserting these choices, one has to multiply out and simplify the expressions in the
702
+ Cauchy-Schwarz inequality. This involves recognizing things like ⟨A⟩ ⟨ψ|A|ψ⟩ = ⟨A⟩2 and
703
+ then canceling several terms. It is difficult for students to follow the full details of this in a
704
+ lecture. In the approach using the Aharonov-Vaidman relation, we already have expressions
705
+ involving ∆A and ∆B, so it is easier to see how to get an expression involving ∆A∆B. This
706
+ expression has fewer terms and there is less cancellation to do.
707
+ Although the approach using the Aharonov-Vaidman identity uses the Cauchy-Schwarz
708
+ inequality in a less convoluted way, it uses similar mathematical ideas. For vectors |f⟩ and
709
+ |g⟩, we can write |g⟩ in terms of |f⟩ and an orthogonal vector, as in the proof of Cauchy-
710
+ Schwarz, or we can write both vectors in terms of a third vector |h⟩ as
711
+ |f⟩ = α1 |h⟩ + β1
712
+ ��h⊥
713
+ f
714
+
715
+ (36)
716
+ |g⟩ = α2 |h⟩ + β2
717
+ ��h⊥
718
+ g
719
+
720
+ ,
721
+ (37)
722
+ where
723
+ ��h⊥
724
+ f
725
+
726
+ and
727
+ ��h⊥
728
+ g
729
+
730
+ are (generally different) vectors orthogonal to |h⟩ and α1, β1, α2, β2 are
731
+ complex coefficients. This is what we do in the proof of the Aharonov-Vaidman identity with
732
+ 8
733
+
734
+ the choices |f⟩ = A |ψ⟩, |g⟩ = B |ψ⟩ and |h⟩ = |ψ⟩. The advantage of this approach is that
735
+ it immediately yields expressions involving the expectation values and standard deviations
736
+ of the observables, which it is easy to see what to do with in order to get the uncertainty
737
+ relations. From this point of view, the standard proof looks like shoehorning something into
738
+ the Cauchy-Schwarz inequality that will yield standard deviations, and then backtracking to
739
+ a point more easily obtained from the Aharonov-Vaidman identity. At the end of the day,
740
+ both approaches use the same mathematics, but the Aharonov-Vaidman approach does so
741
+ in a simpler and more direct way.
742
+ I would go so far as to say that whenever you are tempted to use the Cauchy-Schwarz
743
+ inequality to prove a relationship between standard deviations of observables in quantum
744
+ mechanics, you will have an easier time working from the Aharonov-Vaidman identity (and
745
+ the special case |⟨f|g⟩|2 ≤ 1 of the Cauchy-Schwarz inequality for unit vectors) instead.
746
+ Section 6 and Section 7 give more examples of this.
747
+ I end this section by showing that you can prove the Cauchy-Schwarz inequality from the
748
+ Aharonov-Vaidman identity. I include this not because I think it is the best way to prove
749
+ the Cauchy-Schwarz inequality, but because finding alternative proofs of the Cauchy-Schwarz
750
+ inequality is the mathematician’s equivalent of the sport of finding new uncertainty relations
751
+ in quantum mechanics. It also shows that, in principle, there is nothing that can be proved
752
+ using the Cauchy-Schwarz inequality that could not be proved using the Aharonov-Vaidman
753
+ identity. Of course, outside the context of standard deviations in quantum mechanics, using
754
+ the Aharonov-Vaidman identity instead of the Cauchy-Schwarz inequality is unlikely to yield
755
+ a better proof.
756
+ Proposition 4.1 (Cauchy-Schwarz Inequality). Let |f⟩ and |g⟩ be two vectors in a Hilbert
757
+ space H. Then
758
+ |⟨f|g⟩|2 ≤ ⟨f|f⟩ ⟨g|g⟩ .
759
+ (38)
760
+ Proof. First note that the inequality trivially holds whenever ⟨f|g⟩ = 0 and that ⟨f|f⟩ = 0
761
+ implies ⟨f|g⟩ = 0. Therefore, we can assume that both ⟨f|g⟩ ̸= 0 and ⟨f|f⟩ > 0.
762
+ Let P = |g⟩⟨g|. Note this is not necessarily a projector because |g⟩ does not have to be
763
+ normalized, but it is a Hermitian operator. Applying the Aharonov-Vaidman identity to P
764
+ and |f⟩ gives
765
+ P |f⟩ = ⟨P⟩ |f⟩ + ∆P
766
+ ��f ⊥
767
+ P
768
+
769
+ ,
770
+ (39)
771
+ or equivalently
772
+ |g⟩ ⟨g|f⟩ = ⟨f|g⟩ ⟨g|f⟩
773
+ ⟨f|f⟩
774
+ |f⟩ + ∆P
775
+ ��f ⊥
776
+ P
777
+
778
+ .
779
+ (40)
780
+ Taking the inner product with
781
+ ��f ⊥
782
+ P
783
+
784
+ gives
785
+
786
+ f ⊥
787
+ P
788
+ ��g
789
+
790
+ ⟨g|f⟩ = ∆P ⟨f|f⟩ ,
791
+ (41)
792
+ where we used the fact that
793
+
794
+ f ⊥
795
+ P
796
+ ��f ⊥
797
+ P
798
+
799
+ = ⟨f|f⟩ Rearranging and taking the complex conjugate
800
+ gives
801
+
802
+ g
803
+ ��f ⊥
804
+ P
805
+
806
+ = ∆P ⟨f|f⟩
807
+ ⟨f|g⟩
808
+ .
809
+ (42)
810
+ 9
811
+
812
+ Now, taking the inner product of eq. (40) with |g⟩ gives
813
+ ⟨g|g⟩ ⟨g|f⟩ = ⟨f|g⟩ ⟨g|f⟩
814
+ ⟨f|f⟩
815
+ ⟨g|f⟩ + ∆P
816
+
817
+ g
818
+ ��f ⊥
819
+ P
820
+
821
+ .
822
+ (43)
823
+ Multiplying both sides by ⟨f|f⟩ / ⟨g|f⟩ gives
824
+ ⟨f|f⟩ ⟨g|g⟩ = ⟨f|g⟩ ⟨g|f⟩ + ∆P
825
+
826
+ g
827
+ ��f ⊥
828
+ P
829
+
830
+ ⟨f|f⟩
831
+ ⟨g|f⟩
832
+ .
833
+ (44)
834
+ Substituting eq. (42) into this gives
835
+ ⟨f|f⟩ ⟨g|g⟩ = ⟨f|g⟩ ⟨g|f⟩ + (∆P)2 |⟨f|f⟩|2
836
+ ⟨f|g⟩ ⟨g|f⟩
837
+ ,
838
+ (45)
839
+ or
840
+ ⟨f|f⟩ ⟨g|g⟩ = |⟨f|g⟩|2 + (∆P)2 |⟨f|f⟩|2
841
+ |⟨f|g⟩|2
842
+ .
843
+ (46)
844
+ Now, the terms ∆P, ⟨f|f⟩ and |⟨f|g⟩| are all real and non-negative. Hence,
845
+ ⟨f|f⟩ ⟨g|g⟩ ≥ |⟨f|g⟩|2 .
846
+ (47)
847
+ 5
848
+ Pedagogical Notes
849
+ In order to teach the Robertson uncertainty relation via the Aharonov-Vaidman identity,
850
+ you first have to establish the Aharonov-Vaidman identity. For the purposes of proving the
851
+ Robertson uncertainty relation, it is sufficient to restrict the operator in the identity to be
852
+ Hermitian and the vector |ψ⟩ to be a unit vector, as I shall in this section.
853
+ In my experience, not all students immediately understand why, given a unit vector |ψ⟩,
854
+ any other unit vector |φ⟩ can be written as
855
+ |φ⟩ = α |ψ⟩ + β
856
+ ��ψ⊥�
857
+ ,
858
+ (48)
859
+ where
860
+ ��ψ⊥�
861
+ is a unit vector orthogonal to |ψ⟩. They will probably have seen Gram-Schmidt
862
+ orthogonalization in a linear algebra class, but may have difficulty using that knowledge
863
+ here due to the jump to abstract Hilbert spaces and Dirac notation. To aid intuition, I
864
+ remark that |ψ⟩ and |φ⟩ span a two-dimensional subspace of H and show them fig. 1. By
865
+ the process of Gram-Schmidt orthogonalization, we can construct an orthornormal basis for
866
+ this subspace consisting of |ψ⟩ and
867
+ ��ψ⊥�
868
+ =
869
+ 1
870
+
871
+ 1 − |⟨φ|ψ⟩|2 (|φ⟩ − |ψ⟩ ⟨ψ|φ⟩) ,
872
+ (49)
873
+ 10
874
+
875
+ |ψ⟩
876
+ |φ⟩
877
+ |ψ⊥⟩
878
+ Figure 1: Diagram showing that there exists a unit vector
879
+ ��ψ⊥�
880
+ such that |ψ⟩ and
881
+ ��ψ⊥�
882
+ form
883
+ an orthogonal basis for the two dimensional subspace of H spanned by |ψ⟩ and |φ⟩.
884
+ from which we have eq. (48) with α = ⟨ψ|φ⟩ and β =
885
+
886
+ 1 − |⟨φ|ψ⟩|2.
887
+ In my quantum mechanics classes, I set students in-class activities that involve things
888
+ like deriving important equations or making order of magnitude estimates. These take about
889
+ 5-10 minutes each and are done in pairs. I usually do two or three such activities per class.
890
+ I believe this increases active engagement and retention of the main principles. I try to
891
+ reduce the number of long derivations that I do myself on the board because I think they
892
+ cause confusion about what the most important equations are and the derivations are rarely
893
+ remembered by the students. However, I also do not want to set the students a long and
894
+ complicated derivation to do themselves in class, so I try to find shorter derivations that
895
+ they can do with guidance instead. The proof of the Robertson relation from the Aharonov-
896
+ Vaidman relation is better suited to this approach than the standard proof.
897
+ After establishing eq. (48), I set students the following activity.
898
+ In Class Activity
899
+ Given that A |ψ⟩ = α |ψ⟩ + β
900
+ ��ψ⊥�
901
+ , find α and β in terms of the expectation value ⟨A⟩
902
+ and standard deviation ∆A of A in the state |ψ⟩.
903
+ Although some students can do this straight away, most need some help. During the
904
+ course of the activity, I walk around the class to get an idea of how they are doing. When
905
+ it seems like many students are stuck, I reveal the following three hints in sequence.
906
+ Hints
907
+ 1. Try taking the inner product of A |ψ⟩ = α |ψ⟩ + β
908
+ ��ψ⊥�
909
+ with other states.
910
+ 2. Try taking the inner product of A |ψ⟩ with |ψ⟩.
911
+ 3. Try taking the inner product of A |ψ⟩ with itself.
912
+ Although most students can get α = ⟨A⟩ either straight away or after the first hint,
913
+ |β| = ∆A is more challenging. After taking the inner product with |ψ⟩, the obvious instinct
914
+ is to take the inner product with
915
+ ��ψ⊥�
916
+ , which does not help, so the third hint is usually
917
+ needed. After this, it is a short hop to the Robertson relation via the proof given in section 3.
918
+ I think it would be more difficult to teach the standard proof in this way. One would
919
+ either have to ask the students to derive the Cauchy-Schwarz inequality for themselves or
920
+ 11
921
+
922
+ derive the Robertson relation from Cauchy-Schwarz.
923
+ The former is a bit abstract for a
924
+ quantum mechanics class and the latter involves a lot of algebra and cancellations with a
925
+ high potential for making mistakes. Both would require a large number of hints. In contrast,
926
+ the proof of the Aharonov-Vaidman identity is relatively short, and I think that students
927
+ who retain the identity are more likely to be able to reconstruct the proof of the Robertson
928
+ relation for themselves.
929
+ 6
930
+ Other Uncertainty Relations for Standard Deviations
931
+ Despite the ubiquity of the Schrödinger-Robertson uncertainty relations in quantum me-
932
+ chanics classes, there are good reasons to go beyond them. For example, consider a spin-
933
+ 1/2 particle with spin operators Sx, Sy and Sz. For this case, the Robertson uncertainty
934
+ is ∆Sx∆Sy ≥ ℏ |⟨Sz⟩|. Let |x+⟩ be the spin-up state in the x direction. For this state
935
+ we have ⟨Sz⟩ = 0, which is perfectly valid because |x+⟩ is an eigenstate of Sx and hence
936
+ ∆Sx = 0. However, because [Sx, Sy] ̸= 0 there is necessarily some uncertainty in Sy and in
937
+ fact ∆Sy = ℏ/2. The Schrödinger relation also yields ∆Sx∆Sy ≥ 0. So the Schrödinger-
938
+ Robertson relations do not capture all uncertainty trade-offs that necessarily exist in quan-
939
+ tum mechanics.
940
+ More generally, for bounded operators A and B, any uncertainty relation of the form
941
+ ∆A∆B ≥ f (A, B, |ψ⟩) for some function f must necessarily have f (A, B, |ψ⟩) = 0 whenever
942
+ |ψ⟩ is an eigenstate of A or B. For this reason, it makes sense to seek uncertainty relations
943
+ that bound the sum of standard deviations ∆A + ∆B, the sum of variances (∆A)2 + (∆B)2,
944
+ or more exotic combinations. We shall discuss the Maccone-Pati relations, and some simple
945
+ generalizations, in this section.
946
+ Uncertainty relations are classified as either state dependent or state independent, de-
947
+ pending on whether the right hand side of the inequality depends on the state |ψ⟩. For two
948
+ observables A and B, a state dependent uncertainty relation is of the form f(∆A, ∆B) ≥
949
+ g(A, B, |ψ⟩), where f and g are specified functions, whereas a state independent uncertainty
950
+ relation would be of the form f(∆A, ∆B) ≥ g(A, B), noting that g is no longer allowed to
951
+ depend on |ψ⟩.
952
+ On the face of it, a state dependent uncertainty relation is a strange idea, since, for any
953
+ given normalized state |ψ⟩, we can always just calculate the uncertainties ∆A and ∆B and
954
+ get the exact value of f(∆A, ∆B). Therefore, bounds on uncertainty that apply to all states
955
+ seem more useful.
956
+ However, a state dependent uncertainty relation can be a useful step in deriving a state
957
+ independent one. This can happen in two ways. First, it may happen that, for a particular
958
+ choice of the observables A and B, the function g(A, B, |ψ⟩) turns out not to depend on |ψ⟩.
959
+ For example, the Robertson relation ∆A∆B ≥ 1
960
+ 2 |⟨ψ|[A, B]|ψ⟩| is state dependent, but if we
961
+ choose A = x, B = p, then |⟨ψ|[A, B]|ψ⟩| = 1 and so we get the Heisenberg relation ∆x∆p ≥
962
+
963
+ 2, which is state independent. Since the main point of proving the Robertson uncertainty
964
+ relation in a quantum mechanics class is to give a rigorous derivation of the Heisenberg
965
+ relation, its state dependence does no harm. However, the utility of the Robertson relation
966
+ 12
967
+
968
+ for other classes of observable, such as spin components, is more questionable. Despite the
969
+ fact that I have asked students to compute it for states of a spin-1/2 particle as a homework
970
+ problem, I do not think there is ever a need to do this in practice, as it is just as easy to
971
+ calculate the exact uncertainties.
972
+ The second way of obtaining a state independent uncertainty relation from a state de-
973
+ pendent one is to optimize, i.e. if f(∆A, ∆B) ≥ g(A, B, |ψ⟩) then2
974
+ f(∆A, ∆B) ≥ min
975
+ |ψ⟩ g(A, B, |ψ⟩).
976
+ (50)
977
+ Of course, if f(∆A, ∆B) = ∆A∆B and A and B are bounded operators then this leads
978
+ to the trivial relation ∆A∆B ≥ 0 because we can choose |ψ⟩ to be an eigenstate of either
979
+ A or B. However, for sums and more general combinations of observables, optimization can
980
+ lead to a nontrivial relation.
981
+ Further, if we are considering a set of experiments that can only prepare a subset of
982
+ the possible states, then we can get an uncertainty relation that applies to those states by
983
+ optimizing over the subset. An example might be experiments in which we can only prepare
984
+ the system in a Gaussian state. Although this does not yield a state independent uncertainty
985
+ relation, it is more useful than a completely state dependent one, as it allows us to bound
986
+ the possible uncertainties for a class of relevant states.
987
+ To summarize, state dependent uncertainty relations are a strange idea, and I am not
988
+ sure whether they would ever have been considered had not Robertson introduced one as
989
+ a way-point in proving the Heisenberg relation. However, they can be useful in proving
990
+ more generally applicable uncertainty relations. The relations that we discuss here are state
991
+ dependent.
992
+ The remainder of this section is structured as follows. In section 6.1 we prove two propo-
993
+ sitions called the sum relations that will be used repeatedly using the Aharonov-Vaidman
994
+ identity. In section 6.2, we give an Aharonov-Vaidman based proof of the Maccone-Pati
995
+ uncertainty relations, and in in section 6.3 we give some simple generalizations.
996
+ 6.1
997
+ The Sum Relations
998
+ Proposition 6.1. Let A and B be linear operators acting on H. Then, for any |ψ⟩ ∈ H,
999
+ ∆(A + B)
1000
+ ��ψ⊥
1001
+ A+B
1002
+
1003
+ = ∆A
1004
+ ��ψ⊥
1005
+ A
1006
+
1007
+ + ∆B
1008
+ ��ψ⊥
1009
+ B
1010
+
1011
+ .
1012
+ Proof. Apply the Aharonov-Vaidman identity to A + B in two different ways. The first way
1013
+ is
1014
+ (A + B) |ψ⟩ = ⟨A + B⟩ |ψ⟩ + ∆(A + B)
1015
+ ��ψ⊥
1016
+ A+B
1017
+
1018
+ = (⟨A⟩ + ⟨B⟩) |ψ⟩ + ∆(A + B)
1019
+ ��ψ⊥
1020
+ A+B
1021
+
1022
+ ,
1023
+ (51)
1024
+ 2The minimum in eq. (50) may have to be replaced by an infimum, depending on the Hilbert space that
1025
+ the observables are defined on.
1026
+ 13
1027
+
1028
+ and the second is
1029
+ (A + B) |ψ⟩ = A |ψ⟩ + B |ψ⟩
1030
+ = (⟨A⟩ + ⟨B⟩) |ψ⟩ + ∆A
1031
+ ��ψ⊥A�
1032
+ + ∆B
1033
+ ��ψ⊥
1034
+ B
1035
+
1036
+ .
1037
+ (52)
1038
+ Subtracting eq. (52) from eq. (51) and rearranging gives the desired result.
1039
+ The next proposition comes from [19]. Here, the proof relies on proposition 6.1 and so is
1040
+ based on the Aharonov-Vaidman relation. The original proof uses a different method and is
1041
+ a little more complicated.
1042
+ Proposition 6.2 (The Sum Relation). Let A and B be two linear operators acting on a
1043
+ Hilbert space H. Then,
1044
+ ∆(A + B) ≤ ∆A + ∆B.
1045
+ Proof. Let |ψ⟩ in proposition 6.1 be a unit vector. Then, starting from ∆(A + B)
1046
+ ��ψ⊥
1047
+ A+B
1048
+
1049
+ =
1050
+ ∆A
1051
+ ��ψ⊥
1052
+ A
1053
+
1054
+ + ∆B
1055
+ ��ψ⊥
1056
+ B
1057
+
1058
+ and taking the inner product with
1059
+ ��ψ⊥
1060
+ A+B
1061
+
1062
+ gives
1063
+ ∆(A + B) = ∆A
1064
+
1065
+ ψ⊥
1066
+ A+B
1067
+ ��ψ⊥
1068
+ A
1069
+
1070
+ + ∆B
1071
+
1072
+ ψ⊥A+B��ψ⊥
1073
+ B
1074
+
1075
+ .
1076
+ The left hand side of this equation is a real number, so the right hand side must be too.
1077
+ Therefore, we can take the real part of each term to give
1078
+ ∆(A + B) = ∆ARe
1079
+ ��
1080
+ ψ⊥
1081
+ A+B
1082
+ ��ψ⊥
1083
+ A
1084
+ ��
1085
+ + ∆BRe
1086
+ ��
1087
+ ψ⊥A+B��ψ⊥
1088
+ B
1089
+ ��
1090
+ ,
1091
+ but the real part of an inner product between two unit vectors is ≤ 1, so we have
1092
+ ∆(A + B) ≤ ∆A + ∆B.
1093
+ From the proof, we see that the equality condition for the sum relation is
1094
+ Rcorr(A + B, A) = Rcorr(A + B, B) = 1.
1095
+ Remark 6.3. For a set of linear operators A1, A2, · · · , An on a Hilbert space H, Proposi-
1096
+ tion 6.1 is easily generalized to
1097
+
1098
+ � n
1099
+
1100
+ j=1
1101
+ Aj
1102
+ � ���ψ⊥
1103
+ �n
1104
+ j=1 Aj
1105
+
1106
+ =
1107
+ n
1108
+
1109
+ j=1
1110
+ ∆Aj
1111
+ ���ψ⊥
1112
+ Aj
1113
+
1114
+ ,
1115
+ (53)
1116
+ by applying the Aharonov-Vaidman identity to �n
1117
+ j=1 Aj. Similarly, proposition 6.2 is easily
1118
+ generalized to
1119
+
1120
+ � n
1121
+
1122
+ j=1
1123
+ Aj
1124
+
1125
+
1126
+ n
1127
+
1128
+ j=1
1129
+ ∆Aj.
1130
+ (54)
1131
+ by taking the inner product of eq. (53) with
1132
+ ���ψ⊥
1133
+ �n
1134
+ j=1 Aj
1135
+
1136
+ . We will also refer to the generaliza-
1137
+ tion in eq. (54) as the sum relation.
1138
+ 14
1139
+
1140
+ 6.2
1141
+ The Maccone-Pati Uncertainty Relations
1142
+ Between the time of Robertson’s uncertainty relation and now, there has always been some
1143
+ literature on uncertainty relations for variances and standard deviations. However, the field
1144
+ was reinvigorated in 2014, when Maccone and Pati [20] proved a pair of uncertainty relations
1145
+ for sums of variances, which always give a nontrivial bound, even in the case of an eigenstate
1146
+ of an observable.
1147
+ Here, we give Aharonov-Vaidman based proofs of the Maccone-Pati relations3.
1148
+ Theorem 6.4 (The First Maccone-Pati Uncertainty Relation). Let A and B be Hermitian
1149
+ operators on a Hilbert space H and let |ψ⟩ ∈ H be a unit vector. Then,
1150
+ (∆A)2 + (∆B)2 ≥ ±i ⟨[A, B]⟩ +
1151
+ ���
1152
+ ψ⊥��(A ∓ iB)
1153
+ ��ψ
1154
+ ���2 ,
1155
+ (55)
1156
+ where
1157
+ ��ψ⊥�
1158
+ is any unit vector orthogonal to |ψ⟩.
1159
+ Proof. We will prove (∆A)2 + (∆B)2 ≥ −i ⟨[A, B]⟩ +
1160
+ ���
1161
+ ψ⊥��(A + iB)
1162
+ ��ψ
1163
+ ���2 by applying the
1164
+ Aharonov-Vaidman identity to (A + iB). The proof of the other inequality follows by re-
1165
+ placing A + iB with A − iB. Note that, even though A and B are Hermitian, A + iB is not,
1166
+ so it is crucial that we previously generalized the Aharonov-Vaidman identity to arbitrary
1167
+ linear operators.
1168
+ Applying the Aharonov-Vaidman identity to A + iB gives
1169
+ (A + iB) |ψ⟩ = (⟨A⟩ + i ⟨B⟩) |ψ⟩ + ∆(A + iB)
1170
+ ��ψ⊥
1171
+ A+iB
1172
+
1173
+ .
1174
+ Taking the inner product with any unit vector
1175
+ ��ψ⊥�
1176
+ orthogonal to |ψ⟩ gives
1177
+
1178
+ ψ⊥��(A + iB)
1179
+ ��ψ
1180
+
1181
+ = ∆(A + iB)
1182
+
1183
+ ψ⊥��ψ⊥
1184
+ A+iB
1185
+
1186
+ ,
1187
+ and taking the modulus squared of this gives
1188
+ ���
1189
+ ψ⊥��(A + iB)
1190
+ ��ψ
1191
+ ���2 = (∆(A + iB))2 ���
1192
+ ψ⊥��ψ⊥
1193
+ A+iB
1194
+ ���2 .
1195
+ Now,
1196
+ ���
1197
+ ψ⊥��ψ⊥
1198
+ A+iB
1199
+ ��� ≤ 1, so
1200
+ (∆(A + iB))2 ≥
1201
+ ���
1202
+ ψ⊥��(A + iB)
1203
+ ��ψ
1204
+ ���2 .
1205
+ The result now follows by expanding (∆(A + iB))2 as follows.
1206
+ (∆(A + iB))2 = ⟨(A − iB)(A + iB)⟩ − ⟨A − iB⟩ ⟨A + iB⟩
1207
+ =
1208
+
1209
+ A2�
1210
+ +
1211
+
1212
+ B2�
1213
+ + i ⟨[A, B]⟩ − ⟨A⟩2 − ⟨B⟩2
1214
+ = (∆A)2 + (∆B)2 + i ⟨[A, B]⟩ .
1215
+ 3Although the Aharonov-Vaidman identity is used in [20], it is not used in the proofs of the uncertainty
1216
+ relations.
1217
+ 15
1218
+
1219
+ Theorem 6.5 (The Second Maccone-Pati Uncertainty Relation). Let A and B be linear
1220
+ operators on a Hilbert space H and let |ψ⟩ ∈ H be a unit vector. Then,
1221
+ (∆A)2 + (∆B)2 ≥ 1
1222
+ 2
1223
+ ���
1224
+ ψ⊥
1225
+ A+B
1226
+ ��(A + B)
1227
+ ��ψ
1228
+ ���2 .
1229
+ (56)
1230
+ Proof. Applying the Aharonov-Vaidman identity to A + B gives
1231
+ (A + B) |ψ⟩ = (⟨A⟩ + ⟨B⟩) |ψ⟩ + ∆(A + B)
1232
+ ��ψ⊥
1233
+ A+B
1234
+
1235
+ .
1236
+ Taking the inner product with
1237
+ ��ψ⊥
1238
+ A+B
1239
+
1240
+ gives
1241
+
1242
+ ψ⊥
1243
+ A+B
1244
+ ��(A + B)
1245
+ ��ψ
1246
+
1247
+ = ∆(A + B)
1248
+ ≤ ∆A + ∆B,
1249
+ where the second line follows from the sum relation.
1250
+ We could stop here and regard ∆A+∆B ≥
1251
+
1252
+ ψ⊥
1253
+ A+B
1254
+ ��(A + B)
1255
+ ��ψ
1256
+
1257
+ as an uncertainty relation,
1258
+ but Maccone and Pati wanted a relation in terms of variances to compare to their first result.
1259
+ To do this, we take the modulus squared of both sides to obtain
1260
+ (∆A + ∆B)2 ≥
1261
+ ���
1262
+ ψ⊥
1263
+ A+B
1264
+ ��(A + B)
1265
+ ��ψ
1266
+ ���2 .
1267
+ The result now follows from the real number inequality x2 + y2 ≥ 1
1268
+ 2(x + y)2 with x = ∆A
1269
+ and y = ∆B. For completeness, this inequality is proved as follows.
1270
+ 0 ≤ (x − y)2 = x2 + y2 − 2xy
1271
+
1272
+ x2 + y2 ≥ 2xy
1273
+
1274
+ 2x2 + 2y2 ≥ x2 + y2 + 2xy
1275
+
1276
+ 2x2 + 2y2 ≥ (x + y)2
1277
+
1278
+ x2 + y2 ≥ 1
1279
+ 2(x + y)2.
1280
+ 6.3
1281
+ Generalizations
1282
+ Generalizations of the Maccone-Pati Uncertainty relations can be obtained by applying the
1283
+ Aharonov-Vaidman identity to more general linear combinations αA + βB, where α, β ∈ C.
1284
+ This gives
1285
+ (αA + βB) |ψ⟩ = (α ⟨A⟩ + β ⟨B⟩) |ψ⟩ + ∆(αA + βB)
1286
+ ��ψ⊥
1287
+ αA+βB
1288
+
1289
+ .
1290
+ (57)
1291
+ Applying the strategy we used to prove theorem 6.4, we can take the inner product of this
1292
+ with an arbitrary unit vector
1293
+ ��ψ⊥�
1294
+ that is orthogonal to |ψ⟩, which gives
1295
+
1296
+ ψ⊥��(αA + βB)
1297
+ ��ψ
1298
+
1299
+ = ∆(αA + βB)
1300
+
1301
+ ψ⊥��ψ⊥
1302
+ αA+βB
1303
+
1304
+ .
1305
+ 16
1306
+
1307
+ We can now take the modulus squared of this and recognize that 0 ≤
1308
+ ���
1309
+ ψ⊥��ψ⊥
1310
+ αA+βB
1311
+ ���2 ≤ 1
1312
+ to obtain
1313
+ ���
1314
+ ψ⊥��(αA + βB)
1315
+ ��ψ
1316
+ ���2 ≤ ∆(αA + βB).
1317
+ Next, we can expand ∆(αA + βB) and rearrange to obtain
1318
+ |α|2 (∆A)2 + |β|2 (∆B)2 ≥ −Re(α∗β) (⟨{A, B}⟩ − 2 ⟨A⟩ ⟨B⟩) − iIm (α∗β) ⟨[A, B]⟩
1319
+ +
1320
+ ���
1321
+ ψ⊥��(αA + βB)
1322
+ ��ψ
1323
+ ���2 .
1324
+ (58)
1325
+ Substituting α = 1, β = i and α = 1, β = −i immediately yields the first Maccone-Pati
1326
+ Uncertainty Relation.
1327
+ Alternatively, we can apply the strategy used to prove theorem 6.5. Starting from eq. (57),
1328
+ we can take the inner product with
1329
+ ��ψ⊥
1330
+ αA+βB
1331
+
1332
+ and rearrange to obtain
1333
+ ∆(αA + βB) =
1334
+
1335
+ ψ⊥
1336
+ αA+βB
1337
+ ��(αA + βB)
1338
+ ��ψ
1339
+
1340
+ .
1341
+ Using the sum relation, together with ∆(αA) = |α|∆A gives
1342
+ |α|∆A + |β|∆B ≥
1343
+
1344
+ ψ⊥
1345
+ αA+βB
1346
+ ��(αA + βB)
1347
+ ��ψ
1348
+
1349
+ .
1350
+ Finally, squaring and using the inequality x2 + y2 ≥ 1
1351
+ 2(x + y)2 gives
1352
+ |α|2 (∆A)2 + |β|2 (∆B)2 ≥ 1
1353
+ 2
1354
+ ���
1355
+ ψ⊥
1356
+ αA+βB
1357
+ ��(αA + βB)
1358
+ ��ψ
1359
+ ���2 .
1360
+ (59)
1361
+ The inequalities eq. (58) and eq. (59) are related to some of the generalizations of the
1362
+ Maccone-Pati uncertainty relations that have previously appeared in the literature [21, 28].
1363
+ For example, eq. (58) can be used to derive an uncertainty relation that has appeared in the
1364
+ literature under the name “weighted uncertainty relation” [28]. To do so, we set α =
1365
+
1366
+ λ,
1367
+ β = ±i/
1368
+
1369
+ λ in eq. (58), where λ > 0. This yields
1370
+ λ (∆A)2 + 1
1371
+ λ (∆B)2 ≥ ±i ⟨[A, B]⟩ + 1
1372
+ λ
1373
+ ���
1374
+ ψ⊥��(λA ∓ iB)
1375
+ ��ψ
1376
+ ���2 .
1377
+ This is an uncertainty relation in its own right, but the relation in [28] comes from adding
1378
+ this to eq. (55), which yields
1379
+ (1+λ) (∆A)2+
1380
+
1381
+ 1 + 1
1382
+ λ
1383
+
1384
+ (∆B)2 ≥ ±2i ⟨[A, B]⟩
1385
+ ���
1386
+ ψ⊥
1387
+ 1
1388
+ ��(A ∓ iB)
1389
+ ��ψ
1390
+ ���2+1
1391
+ λ
1392
+ ���
1393
+ ψ⊥
1394
+ 2
1395
+ ��(λA ∓ iB)
1396
+ ��ψ
1397
+ ���2 ,
1398
+ where
1399
+ ��ψ⊥
1400
+ 1
1401
+
1402
+ and
1403
+ ��ψ⊥
1404
+ 2
1405
+
1406
+ are (possibly different) unit vectors that are orthogonal to |ψ⟩.
1407
+ This is intended as a simple example of a generalization that is easily obtained from the
1408
+ Aharonov-Vaidman identity, but I expect many other uncertainty relations that are usually
1409
+ proved using the Cauchy-Schwarz inequality or the parallelogram law would also have simple
1410
+ Aharonov-Vaidman based proofs.
1411
+ 17
1412
+
1413
+ 7
1414
+ Quantum Propagation of Uncertainty
1415
+ In this section, we develop generalizations of the classical formulas for the propagation of
1416
+ uncertainty. We start with the case of linear functions in section 7.1, for which exact formulas
1417
+ are easy to obtain, before moving on to the general, possibly nonlinear, case in section 7.2,
1418
+ for which we have to employ a Taylor series approximation.
1419
+ 7.1
1420
+ Linear Functions
1421
+ We start with the simplest case: a sum of two observables. Classically, if A and B are
1422
+ random variables then
1423
+ [∆(A + B)]2 = (∆A)2 + (∆B)2 + 2∆A∆B corrA,B.
1424
+ (60)
1425
+ Consider an experiment consisting of multiple runs. On each run, the quantities A and B
1426
+ are measured. These quantities are formalized as random variables because we assume that
1427
+ our experiments are subject to random statistical fluctuations, and that the “true” values
1428
+ that we are seeking are the means ⟨A⟩ and ⟨B⟩ of these random processes. We then use
1429
+ the average values calculated from the data as estimates of ⟨A⟩ and ⟨B⟩, and the standard
1430
+ deviations as a measure of the error in our experiment. If we are actually interested in the
1431
+ quantity A + B then we would sum the averages to form our estimate of ⟨A + B⟩, and we
1432
+ would use eq. (60) to determine the error in our estimate of ⟨A + B⟩. Using eq. (60) in this
1433
+ way is called the propagation of uncertainty or propagation of error.
1434
+ If the random variables, A and B are independent, which would be the case if the ran-
1435
+ domness were due to independent statistical errors, then corrA,B = 0 and we would have
1436
+ [∆(A + B)]2 = (∆A)2 + (∆B)2 ,
1437
+ which is the formula for propagation of uncertainty that is most commonly used in practice.
1438
+ We now want to generalize these formulas by replacing classical random variables with
1439
+ quantum observables. The generalization of eq. (60) is as follows.
1440
+ Theorem 7.1. Let A and B be Hermitian operators on a Hilbert space H. Then,
1441
+ [∆(A + B)]2 = (∆A)2 + (∆B)2 + 2∆A∆B RcorrA,B
1442
+ (61)
1443
+ = (∆A)2 + (∆B)2 + ⟨{A, B}⟩ − 2 ⟨A⟩ ⟨B⟩
1444
+ (62)
1445
+ Proof. Proposition 6.1 implies that, for any unit vector |ψ⟩ ∈ H,
1446
+ ∆(A + B)
1447
+ ��ψ⊥
1448
+ A+B
1449
+
1450
+ = ∆A
1451
+ ��ψ⊥
1452
+ A
1453
+
1454
+ + ∆B
1455
+ ��ψ⊥
1456
+ B
1457
+
1458
+ .
1459
+ Taking the inner product of this with itself gives
1460
+ [∆ (A + B)]2 = (∆A)2 + (∆B)2 + ∆A∆B
1461
+ ��
1462
+ ψ⊥
1463
+ A
1464
+ ��ψ⊥
1465
+ B
1466
+
1467
+ +
1468
+
1469
+ ψ⊥
1470
+ B
1471
+ ��ψ⊥
1472
+ A
1473
+ ��
1474
+ = (∆A)2 + (∆B)2 + 2∆A∆B Re
1475
+ ��
1476
+ ψ⊥
1477
+ A
1478
+ ��ψ⊥
1479
+ B
1480
+ ��
1481
+ .
1482
+ Applying eq. (13) completes the proof.
1483
+ 18
1484
+
1485
+ Remark 7.2. For operators A1, A2, · · · , An and real numbers α1, α2, · · · , αn, theorem 7.1 is
1486
+ easily generalized to
1487
+
1488
+
1489
+ � n
1490
+
1491
+ j=1
1492
+ αjAj
1493
+ ��2
1494
+ =
1495
+ n
1496
+
1497
+ j=1
1498
+ α2
1499
+ j (∆Aj)2 +
1500
+
1501
+ j̸=k
1502
+ αjαk∆Aj∆Ak RcorrAj,Ak
1503
+ =
1504
+ n
1505
+
1506
+ j=1
1507
+ α2
1508
+ j (∆Aj)2 +
1509
+
1510
+ j̸=k
1511
+ αjαk (⟨{Aj, Ak}⟩ − 2 ⟨Aj⟩ ⟨Ak⟩) .
1512
+ Although theorem 7.1 is a true theorem about quantum observables, it cannot be used
1513
+ to propagate uncertainty in the same way as its classical counterpart. Classically, we can
1514
+ measure A and B together in the same run of the experiment. We can then estimate A + B
1515
+ by summing the average values of A and B that we found in the experiment. We also have
1516
+ all the information we need to calculate the uncertainty ∆(A + B), i.e. ∆A, ∆B, ⟨A⟩, ⟨B⟩
1517
+ and ⟨AB⟩, so we can determine the uncertainty without doing any more experiments.
1518
+ In quantum mechanics, this is not the case. When A and B do not commute, they cannot
1519
+ both be accurately measured on the same run of an experiment. We can still estimate their
1520
+ expectation values by measuring A on half of the runs of the experiment and B on the other
1521
+ half and taking averages. Since ⟨A + B⟩ = ⟨A⟩ + ⟨B⟩, summing these averages is still a way
1522
+ of estimating ⟨A + B⟩. However, we do not have enough information to calculate ∆(A + B).
1523
+ The reason is that ∆(A + B) is the uncertainty in a direct measurement of A + B. Since A
1524
+ and B do not commute, this requires a different experimental setup from a measurement of
1525
+ A and B alone.
1526
+ If we wanted to use eq. (61) to calculate ∆(A + B), we would also have to estimate
1527
+ ⟨{A, B}⟩. The most straightforward way of doing this would be to measure the observable
1528
+ {A, B} = AB +BA, but this requires yet another different experimental setup, and one that
1529
+ is likely to be at least as complicated as measuring A + B directly.
1530
+ An exception to this are cases where {A, B} = cI for some constant c, in which case
1531
+ ⟨{A, B}⟩ = c regardless of the state. In particular, this is true of the Pauli observables σx,
1532
+ σy, σz of a qubit for which {σj, σk} = δjkI, where j and k run over x, y, z. Therefore, if we
1533
+ measure σx on many qubits prepared in the same way and σy on another set of such qubits,
1534
+ we can estimate ⟨σx + σy⟩ and ∆(σx + σy) without doing any further experiments using the
1535
+ formula
1536
+ [∆ (σx + σy)]2 = (∆σx)2 + (∆σy)2 − 2 ⟨σx⟩ ⟨σy⟩ .
1537
+ When {A, B} ̸= cI, I do not know of any situations in which eq. (61) would be useful in
1538
+ practice, but from a theoretical point of view it is the appropriate generalization of eq. (60)
1539
+ to quantum mechanics, and this bolsters the case that RcorrA,B is the appropriate quantum
1540
+ generalization of the classical correlation.
1541
+ 7.2
1542
+ Nonlinear Functions
1543
+ For nonlinear functions f(A, B) of two random variables A and B, it is common to use a first
1544
+ order Taylor expansion of f(A, B) about the point f(⟨A⟩ , ⟨B⟩) to derive an approximation
1545
+ 19
1546
+
1547
+ for the variance [∆f(A, B)]2 to second order in ∆A and ∆B. This yields the formula
1548
+ [∆f(A, B)]2 ≈
1549
+
1550
+ ∂f
1551
+ ∂A
1552
+ ����
1553
+ A=⟨A⟩,B=⟨B⟩
1554
+ �2
1555
+ (∆A)2 +
1556
+
1557
+ ∂f
1558
+ ∂B
1559
+ ����
1560
+ A=⟨A⟩,B=⟨B⟩
1561
+ �2
1562
+ (∆B)2
1563
+ + ∂f
1564
+ ∂A
1565
+ ����
1566
+ A=⟨A⟩,B=⟨B⟩
1567
+ ∂f
1568
+ ∂B
1569
+ ����
1570
+ A=⟨A⟩,B=⟨B⟩
1571
+ ∆A∆B corrA,B.
1572
+ To avoid cluttering notation, I will write ¯A for A = ⟨A⟩, so that we can more compactly
1573
+ write
1574
+ [∆f(A, B)]2 ≈ ∂f
1575
+ ∂A
1576
+ ����
1577
+ 2
1578
+ ¯
1579
+ A, ¯B
1580
+ (∆A)2 + ∂f
1581
+ ∂B
1582
+ ����
1583
+ 2
1584
+ ¯
1585
+ A, ¯B
1586
+ (∆B)2 + ∂f
1587
+ ∂A
1588
+ ���� ¯
1589
+ A, ¯B
1590
+ ∂f
1591
+ ∂B
1592
+ ���� ¯
1593
+ A, ¯B
1594
+ ∆A∆B corrA,B.
1595
+ (63)
1596
+ When A and B are independent, this reduces to
1597
+ [∆f(A, B)]2 ≈ ∂f
1598
+ ∂A
1599
+ ����
1600
+ 2
1601
+ ¯
1602
+ A, ¯B
1603
+ (∆A)2 + ∂f
1604
+ ∂B
1605
+ ����
1606
+ 2
1607
+ ¯
1608
+ A, ¯B
1609
+ (∆B)2 ,
1610
+ which is the most commonly used form.
1611
+ The quantum generalization of eq. (63) is as follows.
1612
+ Theorem 7.3. Let A and B be Hermitian operators on a Hilbert space H and consider a
1613
+ function f : H(H) × H(H) → H(H) where H(H) is the space of Hermitian operators on H.
1614
+ Then
1615
+ [∆f(A, B)]2 ≈ ∂f
1616
+ ∂A
1617
+ ����
1618
+ 2
1619
+ ¯
1620
+ A, ¯B
1621
+ (∆A)2 + ∂f
1622
+ ∂B
1623
+ ����
1624
+ 2
1625
+ ¯
1626
+ A, ¯B
1627
+ (∆B)2 + ∂f
1628
+ ∂A
1629
+ ���� ¯
1630
+ A, ¯B
1631
+ ∂f
1632
+ ∂B
1633
+ ���� ¯
1634
+ A, ¯B
1635
+ ∆A∆B RcorrA,B
1636
+ (64)
1637
+ where ≈ means equality to second order in ∆A and ∆B
1638
+ Proof. Consider the first order Taylor expansion of f(A, B) about the point f0 = f(⟨A⟩ , ⟨B⟩),
1639
+ f(A, B) ≈ f0 + ∂f
1640
+ ∂A
1641
+ ���� ¯
1642
+ A, ¯B
1643
+ A + ∂f
1644
+ ∂B
1645
+ ���� ¯
1646
+ A, ¯B
1647
+ B.
1648
+ Applying proposition 6.1 to this gives
1649
+ [∆f(A, B)]
1650
+ ��ψ⊥
1651
+ f(A,B)
1652
+
1653
+ ≈ ∂f
1654
+ ∂A
1655
+ ���� ¯
1656
+ A, ¯B
1657
+ ∆A
1658
+ ��ψ⊥
1659
+ A
1660
+
1661
+ + ∂f
1662
+ ∂B
1663
+ ���� ¯
1664
+ A, ¯B
1665
+ ∆B
1666
+ ��ψ⊥
1667
+ B
1668
+
1669
+ .
1670
+ Taking the inner product of this with itself gives
1671
+ [∆f(A, B)]2 ≈ ∂f
1672
+ ∂A
1673
+ ����
1674
+ 2
1675
+ ¯
1676
+ A, ¯B
1677
+ (∆A)2 + ∂f
1678
+ ∂B
1679
+ ����
1680
+ 2
1681
+ ¯
1682
+ A, ¯B
1683
+ (∆B)2 + ∂f
1684
+ ∂A
1685
+ ���� ¯
1686
+ A, ¯B
1687
+ ∂f
1688
+ ∂B
1689
+ ���� ¯
1690
+ A, ¯B
1691
+ ∆A∆B Re
1692
+ ��
1693
+ ψ⊥
1694
+ A
1695
+ ��ψ⊥
1696
+ B
1697
+ ��
1698
+ = ∂f
1699
+ ∂A
1700
+ ����
1701
+ 2
1702
+ ¯
1703
+ A, ¯B
1704
+ (∆A)2 + ∂f
1705
+ ∂B
1706
+ ����
1707
+ 2
1708
+ ¯
1709
+ A, ¯B
1710
+ (∆B)2 + ∂f
1711
+ ∂A
1712
+ ���� ¯
1713
+ A, ¯B
1714
+ ∂f
1715
+ ∂B
1716
+ ���� ¯
1717
+ A, ¯B
1718
+ ∆A∆B RcorrA,B
1719
+ 20
1720
+
1721
+ Remark 7.4. For operators A1, A2, · · · , An and a function f(A1, A2, · · · , An), theorem 7.3 is
1722
+ easily generalized to
1723
+ [∆f (A1, A2, · · · , An)]2 ≈
1724
+ n
1725
+
1726
+ j=1
1727
+ ∂f
1728
+ ∂Aj
1729
+ ����
1730
+ 2
1731
+ ¯
1732
+ A
1733
+ (∆Aj)2 +
1734
+
1735
+ j̸=k
1736
+ ∂f
1737
+ ∂Aj
1738
+ ���� ¯
1739
+ A
1740
+ ∂f
1741
+ ∂Ak
1742
+ ���� ¯
1743
+ A
1744
+ ∆Aj∆Ak RcorrAj,Ak,
1745
+ where ¯A is shorthand for A1 = ⟨A1⟩ , A2 = ⟨A2⟩ , · · · An = ⟨An⟩.
1746
+ As a formula for propagating uncertainty, eq. (64) inherits all of the problems of eq. (61),
1747
+ but the problems are compounded further by use of the first order Taylor approximation.
1748
+ This approximation is valid when ∆A and ∆B are suitably small compared to ⟨A⟩, ⟨B⟩,
1749
+ f(⟨A⟩ , ⟨B⟩) and the derivatives of f(A, B) at A = ⟨A⟩, B = ⟨B⟩. This is often the case
1750
+ in classical experiments where everything can be measured with a small statistical error.
1751
+ However, in quantum mechanics, when A and B do not commute, the (various) uncertainty
1752
+ relations tell us that there is necessarily a trade-off between the size of ∆A and ∆B. If one
1753
+ of them is small, then the other might necessarily have to be large. For example, for the
1754
+ Pauli observables σx and σy, at least one of the uncertainties must be comparable in size to
1755
+ 1, which is the largest possible value of ⟨σx⟩ or ⟨σy⟩.
1756
+ A case where the formula will work well is for a continuous variable system where ∆x ∼
1757
+ ∆p ∼
1758
+
1759
+ ℏ, and ⟨x⟩, ⟨p⟩ are large compared to
1760
+
1761
+ ℏ. But this is a case where you would expect
1762
+ classical physics to be a good approximation anyway.
1763
+ I do not know whether there is a practical use of eq. (64), but it is nonetheless a correct
1764
+ formal generalization of eq. (63).
1765
+ 8
1766
+ Dealing with Mixed States
1767
+ So far, we have dealt exclusively with the case of pure state vectors |ψ⟩. However, all of
1768
+ our results can be extended to more general density operators ρ, which can represent mixed
1769
+ states. The most familiar way to do this is to make use of the concept of a purification
1770
+ of a density operator. Given a density operator on a Hilbert space HS, where S stands
1771
+ for “system”, we can always find a pure state vector |ψ⟩SE ∈ HS ⊗ HE, where E is the
1772
+ “environment”, such that
1773
+ ρS = TrE (|ψ⟩⟨ψ|SE) ,
1774
+ and TrE is the partial trace over HE. You can then apply the Aharonov-Vaidman identity
1775
+ to operators of the form AS ⊗ IE acting on a purification to obtain results about the density
1776
+ operator ρS.
1777
+ However, to make the parallels to the pure state case as close as possible, I prefer to use
1778
+ an equivalent concept, called an amplitude operator. The equivalence between amplitude
1779
+ operators and purifications is discussed in appendix A
1780
+ Definition 8.1. Given a density operator ρS on a Hilbert space HS, an amplitude operator
1781
+ for ρS is a linear operator LS : HE → HS, where HE is any Hilbert space, such that
1782
+ ρS = LSL†
1783
+ S.
1784
+ 21
1785
+
1786
+ The reason for the name amplitude operator is that, in pure-state quantum mechanics, an
1787
+ amplitude is a complex number α such that |α|2 is a probability. A density operator is a non-
1788
+ commutative generalization of a probability distribution [42, 43], and hence an amplitude
1789
+ operator ought to be an operator that “squares” to a density operator.
1790
+ Given a density operator ρS, one obvious way of constructing an amplitude operator is
1791
+ to set HE = HS and LS = √ρS, but there are an infinite number of alternatives, as the
1792
+ following proposition shows
1793
+ Proposition 8.2. An operator LS : HE → HS is an amplitude operator for ρS if and only
1794
+ if
1795
+ LS = √ρSUS|E,
1796
+ where US|E : HE → HS is a semi-unitary operator, i.e. it satisfies US|EU †
1797
+ S|E = IS
1798
+ Proof. An operator of the form LS = √ρSUS|E obviously satisfies definition 8.1. For the other
1799
+ direction, assume LS is an amplitude operator. Like any operator, it may be decomposed in
1800
+ its polar decomposition LS = PSUS|E where PS is a positive semi-definite operator on HS,
1801
+ and US|E : HE → HS is semi-unitary4. The definition of an amplitude operator then implies
1802
+ that ρS = PSUS|EU †
1803
+ S|EPS = P 2
1804
+ S, so we must have PS = √ρS.
1805
+ Going back to the analogy between amplitudes and amplitude operators, multiplying an
1806
+ amplitude α by a phase factor eiφ does not change the probability it represents. Similarly,
1807
+ multiplying an amplitude operator LS by a semi-unitary VE|E′, i.e. an operator VE|E′ : HE′ →
1808
+ HE satisfying VE|E′V †
1809
+ E|E′ = IE, on the right does not change the density operator it represents.
1810
+ Although one might think it desirable to work directly with probabilities or density operators
1811
+ in order to eliminate these ambiguities, the mathematical manipulations we need to do in
1812
+ quantum mechanics are often linear in the amplitudes or amplitude operators, but would be
1813
+ nonlinear if you used probabilities or density operators. Therefore, it is often more convenient
1814
+ to live with the ambiguity.
1815
+ Since every operator has a polar decomposition, the only requirement for LS to be an
1816
+ amplitude operator for some density operator is that TrS
1817
+
1818
+ LSL†
1819
+ S
1820
+
1821
+ = 1.
1822
+ If we want to
1823
+ work with unnormalized density operators, i.e. any positive operator, then any operator
1824
+ LS : HE → HS is the amplitude operator for some (possibly unnormalized) density operator.
1825
+ This is analogous to the fact that any vector in HS represents a (possibly unnormalized) pure
1826
+ state.
1827
+ The strategy for generalizing the Aharonov-Vaidman identity, and everything that follows
1828
+ from it, is to replace the state vector |ψ⟩S with an amplitude operator LS. The reason this
1829
+ works is that the space of linear operators mapping HE to HS, which we denote LS|E, is itself
1830
+ a Hilbert space with inner product ⟨LS, MS⟩ = TrE
1831
+
1832
+ L†
1833
+ SMS
1834
+
1835
+ , known as the Hilbert-Schmidt
1836
+ 4The polar decomposition is often only defined for square matrices, in which case HE = HS and US|E is
1837
+ unitary. Here, we use the generalization to non-square matrices (see e.g. [44]).
1838
+ 22
1839
+
1840
+ inner product5. Since the Aharonov-Vaidman identity is valid for any Hilbert space, it must
1841
+ be valid on LS|E as well.
1842
+ Proposition 8.3 (The Aharonov-Vaidman Identity for Operators). Let AS be a linear op-
1843
+ erator on a Hilbert space HS and let LS : HE → HS. Then,
1844
+ ASLS = ⟨AS⟩ LS + (∆AS) L⊥
1845
+ AS,
1846
+ (65)
1847
+ where ⟨AS⟩ = TrS
1848
+
1849
+ ASLSL†
1850
+ S
1851
+
1852
+ /TrS
1853
+
1854
+ LSL†
1855
+ S
1856
+
1857
+ , ∆A =
1858
+ ��
1859
+ A†
1860
+ SAS
1861
+
1862
+ − |⟨AS⟩|2, and L⊥
1863
+ AS : HE →
1864
+ HS is an amplitude operator that is orthogonal to LS, i.e.
1865
+ TrE
1866
+
1867
+ L†
1868
+ SL⊥
1869
+ AS
1870
+
1871
+ = 0, satisfies
1872
+ TrS
1873
+
1874
+ L⊥
1875
+ ASL⊥†
1876
+ AS
1877
+
1878
+ = TrS
1879
+
1880
+ LSL†
1881
+ S
1882
+
1883
+ , and depends on both LS and AS.
1884
+ The proof of this proposition is essentially the same as the proof of the vector Aharonov-
1885
+ Vaidman identity (proposition 2.1) with the standard inner product replaced by the Hilbert-
1886
+ Schmidt inner product. The only difference is that the cyclic property of the trace is also
1887
+ needs to be used to write things in the exact form given in proposition 8.3. I leave this as
1888
+ an exercise for the reader.
1889
+ Since ρS = LSL†
1890
+ S is always a (possibly unnormalized) density operator, we can write
1891
+ ⟨AS⟩ =
1892
+ TrS
1893
+
1894
+ ASLSL†
1895
+ S
1896
+
1897
+ TrE
1898
+
1899
+ L†
1900
+ SLS
1901
+
1902
+ = TrS (ASρS)
1903
+ TrE (ρS) .
1904
+ We can also introduce the density operator ρ⊥
1905
+ AS = L⊥
1906
+ ASL⊥†
1907
+ AS, which will be normalized in the
1908
+ same way as ρS, i.e., TrS
1909
+
1910
+ ρ⊥
1911
+ AS
1912
+
1913
+ = TrS (ρS).
1914
+ When LS is normalized so that ρS = LSL†
1915
+ S is a normalized density operator, i.e.,
1916
+ TrS
1917
+
1918
+ LSL†
1919
+ S
1920
+
1921
+ = 1, then ρ⊥
1922
+ AS is also normalized, i.e., TrS
1923
+
1924
+ ρ⊥
1925
+ AS
1926
+
1927
+ = 1.
1928
+ As defined, ρ⊥
1929
+ AS = L⊥
1930
+ ASL⊥†
1931
+ AS looks like it depends on the choice of amplitude operator
1932
+ LS. In fact, it does not. It only depends on ρS and AS. To see this, rewrite the operator
1933
+ Aharonov-Vaidman identity as
1934
+ L⊥
1935
+ AS =
1936
+ 1
1937
+ ∆AS
1938
+ (AS − ⟨AS⟩ IS) LS,
1939
+ and then we have,
1940
+ ρ⊥
1941
+ AS = L⊥
1942
+ ASL⊥†
1943
+ AS
1944
+ =
1945
+ 1
1946
+ (∆AS)2 (AS − ⟨AS⟩ IS) LSL†
1947
+ S
1948
+
1949
+ A†
1950
+ S − ⟨AS⟩∗ IS
1951
+
1952
+ =
1953
+ 1
1954
+ (∆AS)2 (AS − ⟨AS⟩ IS) ρS
1955
+
1956
+ A†
1957
+ S − ⟨AS⟩∗ IS
1958
+
1959
+ ,
1960
+ 5By the cyclic property of the trace, we can also write ⟨LS, MS⟩ = TrS
1961
+
1962
+ MSL†
1963
+ S
1964
+
1965
+ .
1966
+ 23
1967
+
1968
+ which is clearly independent of the choice of LS.
1969
+ Note that, although LS and L⊥
1970
+ AS are
1971
+ Hilbert-Schmidt orthogonal, ρS and ρ⊥
1972
+ AS are generally not.
1973
+ To generalize the results of this paper from state vectors to density operators, we replace
1974
+ the vector Aharonov-Vaidman identity with its operator counterpart applied to amplitude
1975
+ operators, and we replace the usual inner product with the Hilbert-Schmidt inner product.
1976
+ In many cases, the final result is independent of the amplitude operator used to represent
1977
+ the state. Although we use it in the proof, it drops out in the final result by only appearing
1978
+ in the combination LSL†
1979
+ S, as in the expression we derived for ρ⊥
1980
+ AS. In fact, the final formulas
1981
+ are usually the same as in the pure state case, except that we have to interpret ⟨AS⟩ as
1982
+ TrS (ASρS) rather than ⟨ψ|AS|ψ⟩.
1983
+ However, this is not true for the Maccone-Pati uncertainty relations and their general-
1984
+ izations, which do depend on the choice of amplitude operator LS.
1985
+ Theorem 8.4 (The First Maccone-Pati Uncertainty Relation for amplitude operators). Let
1986
+ AS and BS be Hermitian operators on a Hilbert space HS and let ρS be a normalized density
1987
+ operator on HS. Then,
1988
+ (∆A)2 + (∆B)2 ≥ ±i ⟨[A, B]⟩ +
1989
+ ���TrE
1990
+
1991
+ L⊥†
1992
+ S (A ∓ iB)LS
1993
+ ����
1994
+ 2
1995
+ ,
1996
+ (66)
1997
+ where LS : HE → HS is any amplitude operator for ρS, and L⊥
1998
+ S : HE → HS is any normalized
1999
+ amplitude operator orthogonal to LS that has the same input space HE.
2000
+ Note that, in order to obtain the tightest possible bound on (∆A)2 + (∆B)2, the right
2001
+ hand side of eq. (66) should be maximized over all possible choices of LS and L⊥
2002
+ S . To do this
2003
+ in practice, a bound on the largest dimension dE required to obtain the maximum is needed.
2004
+ I conjecture that dE = 2dS is sufficient because this allows LS and L⊥
2005
+ S to have orthogonal
2006
+ kernels on HE, but I do not have a proof of this.
2007
+ Theorem 8.5 (The Second Maccone-Pati Uncertainty Relation for amplitude operators).
2008
+ Let AS and BS be linear operators on a Hilbert space HS and let ρS be a normalized density
2009
+ operator on HS. Then,
2010
+ (∆AS)2 + (∆BS)2 ≥ 1
2011
+ 2
2012
+ ���TrE
2013
+
2014
+ L⊥†
2015
+ AS+BS(A + B)LS
2016
+ ����
2017
+ 2
2018
+ ,
2019
+ (67)
2020
+ where LS is any amplitude operator for ρS and
2021
+ L⊥
2022
+ AS+BS =
2023
+ 1
2024
+ ∆(AS + BS) (AS + BS − ⟨AS + BS⟩ IS) LS.
2025
+ In this case, to obtain the tightest bound, we have to maximize the right hand side over
2026
+ LS. We do not have to separately optimize over L⊥
2027
+ AS+BS because it is a function of LS, AS
2028
+ and BS. However, its dependence on LS makes the problem into a complicated nonlinear
2029
+ optimization.
2030
+ 24
2031
+
2032
+ 9
2033
+ Summary and Conclusions
2034
+ In this paper, I discussed how the standard textbook uncertainty relations of Robertson and
2035
+ Schrödinger can be derived from the Aharonov-Vaidman identity in a more direct way than
2036
+ the standard proof. I also demonstrated the identity’s usefulness in proving other uncertainty
2037
+ relations, such as the Maccone-Pati relations, and the quantum formulas for propagation of
2038
+ uncertainty. Finally, I gave a mixed-state generalization of the Aharonov-Vaidman identity
2039
+ in terms of amplitude operators. I hope that this has persuaded you that the Aharonov-
2040
+ Vaidman identity belongs in undergraduate textbooks and that it ought to be a first-line
2041
+ tool in proving relationships between standard deviations in quantum mechanics. I am sure
2042
+ there are other uncertainty relations that have an elegant Aharonov-Vaidman based proofs,
2043
+ and I hope to find new and useful uncertainty relations that have not been discovered before
2044
+ via this method.
2045
+ The Aharonov-Vaidman identity naturally gives rise to two quantum generalizations of
2046
+ the correlation, corrA,B and RcorrA,B. It would be interesting to determine whether these
2047
+ quantities have an operational meaning in the case where A and B do not commute. On the
2048
+ more formal side, perhaps there is a pseudo-probability representation of quantum mechanics,
2049
+ such as the Wigner function [45, 46, 47] or the Kirkwood-Dirac distribution [48, 49, 50],
2050
+ for which these are the correlations for observables as defined on the appropriate phase
2051
+ space. This might help to find uses for the propagation of error formulas in cases where the
2052
+ observables do not commute.
2053
+ Acknowledgments
2054
+ I would like to thank Yakir Aharonov for introducing me to the Aharonov-Vaidman iden-
2055
+ tity and emphasizing its importance. I would like to acknowledge (but not thank) the role
2056
+ played by the COVID19 pandemic shutdowns in giving me the opportunity to think about
2057
+ uncertainty relations and their pedagogy. This research was supported in part by the Fetzer
2058
+ Franklin Fund of the John E. Fetzer Memorial Trust and by grant number FQXi-RFPIPW-
2059
+ 1905 from the Foundational Questions Institute and Fetzer Franklin Fund, a donor advised
2060
+ fund of Silicon Alley Community Foundation. This research was also supported in part by
2061
+ Perimeter Institute for Theoretical Physics. Research at Perimeter Institute is supported
2062
+ by the Government of Canada through the Department of Innovation, Science, and Eco-
2063
+ nomic Development, and by the Province of Ontario through the Ministry of Colleges and
2064
+ Universities.
2065
+ References
2066
+ [1] Y. Aharonov and L. Vaidman. Properties of a quantum system during the time interval
2067
+ between two measurements. Phys. Rev. A, 41(1):11–20, 1990. doi:10.1103/PhysRevA.
2068
+ 41.11.
2069
+ 25
2070
+
2071
+ [2] Y. Aharonov.
2072
+ Visiting researcher presentation.
2073
+ Talk at Perimeter Institute to PSI
2074
+ Masters Students: comment is made at 41:16, August 2011. URL: https://pirsa.
2075
+ org/11080091.
2076
+ [3] L. Vaidman. Minimum time for the evolution to an orthogonal state. Am. J. Phys.,
2077
+ 60(2):182, 1992. doi:10.1119/1.16940.
2078
+ [4] H. P. Robertson. The Uncertainty Principle. Phys. Rev., 34(1):163–164, 1929. doi:
2079
+ 10.1103/PhysRev.34.163.
2080
+ [5] E. Schrödinger. Zum heisenbergschen unschärfeprinzip. Sitzungsberichte der Preussis-
2081
+ chen Akademie der Wissenschaften, Physikalisch-mathematische Klasse, 14:296–303,
2082
+ 1930.
2083
+ [6] L. Goldenberg and L. Vaidman. Applications of a simple quantum mechanical formula.
2084
+ Am. J. Phys., 64(8):1059, 1996. arXiv:quant-ph/9506030, doi:10.1119/1.18307.
2085
+ [7] Y. Aharonov and D. Rohrlich. Quantum Paradoxes: Quantum Theory for the Perplexed.
2086
+ Wiley, 2005. doi:10.1002/9783527619115.
2087
+ [8] M.
2088
+ J.
2089
+ Steele.
2090
+ The
2091
+ Cauchy-Schwarz
2092
+ Master
2093
+ Class:
2094
+ An
2095
+ Introduction
2096
+ to
2097
+ the
2098
+ Art
2099
+ of
2100
+ Mathematical
2101
+ Inequalities,
2102
+ chapter
2103
+ 1,
2104
+ page
2105
+ 1.
2106
+ Mathematical
2107
+ Association
2108
+ of
2109
+ America
2110
+ Problem
2111
+ Books.
2112
+ Cambridge
2113
+ University
2114
+ Press,
2115
+ 2004.
2116
+ URL:
2117
+ http://www-stat.wharton.upenn.edu/~steele/Publications/Books/CSMC/
2118
+ CSMC_index.html, doi:CBO9780511817106.
2119
+ [9] C. A. Fuchs and A. Peres. Quantum-state disturbance versus information gain: Un-
2120
+ certainty relations for quantum information. Phys. Rev. A, 53(4):2038, 1996. arXiv:
2121
+ quant-ph/9512023, doi:10.1103/PhysRevA.53.2038.
2122
+ [10] H. F. Hofmann and S. Takeuchi. Violation of local uncertainty relations as a signature
2123
+ of entanglement. Phys. Rev. A, 68(3):032103, 2003. arXiv:quant-ph/0212090, doi:
2124
+ 10.1103/PhysRevA.68.032103.
2125
+ [11] O. Gühne.
2126
+ Characterizing entanglement via uncertainty relations.
2127
+ Phys. Rev.
2128
+ Lett., 92(11):117903, 2004.
2129
+ arXiv:quant-ph/0306194, doi:10.1103/PhysRevLett.
2130
+ 92.117903.
2131
+ [12] M. Koashi. Unconditional security of quantum key distribution and the uncertainty
2132
+ principle.
2133
+ J. Phys.: Conf. Ser., 36:98–102, 2006.
2134
+ arXiv:quant-ph/0505108, doi:
2135
+ 10.1088/1742-6596/36/1/016.
2136
+ [13] M. Berta, M. Christandl, R. Colbeck, J. M. Renes, and R. Renner. The uncertainty
2137
+ principle in the presence of quantum memory. Nature Physics, 6:659–662, 2010. arXiv:
2138
+ 0909.0950, doi:doi.org/10.1038/nphys1734.
2139
+ 26
2140
+
2141
+ [14] A. S. Majumdar and T. Pramanik. Some applications of uncertainty relations in quan-
2142
+ tum information. International Journal of Quantum Information, 14(6):1640022, 2016.
2143
+ arXiv:1410.5974, doi:10.1142/S0219749916400220.
2144
+ [15] N. Yunger Halpern, A. Bartolotta, and J. Pollack. Entropic uncertainty relations for
2145
+ quantum information scrambling.
2146
+ Commun. Phys., 2:92, 2019.
2147
+ arXiv:1806.04147,
2148
+ doi:10.1038/s42005-019-0179-8.
2149
+ [16] J. Oppenheim and S. Wehner. The uncertainty principle determines the nonlocality
2150
+ of quantum mechanics. Science, 330(6007):1072–1074, 2010. arXiv:1004.2507, doi:
2151
+ 10.1126/science.119206.
2152
+ [17] L. Catani, M. Leifer, G. Scala, D. Schmid, and R. W. Spekkens. What is nonclassical
2153
+ about uncertainty relations?
2154
+ Phys. Rev. Lett., 129(24):240401, 2022. arXiv:2207.
2155
+ 11779, doi:10.1103/PhysRevLett.129.240401.
2156
+ [18] P. J. Coles, M. Berta, M. Tomamichel, and S. Wehner. Entropic uncertainty relations
2157
+ and their applications. Rev. Mod. Phys., 89(1):015002, 2017. arXiv:1511.04857, doi:
2158
+ 10.1103/RevModPhys.89.015002.
2159
+ [19] A. K. Pati and P. K. Sahu. Sum uncertainty relation in quantum theory. Phys. Lett.
2160
+ A, 367(3):177–181, 2007. arXiv:quant-ph/0608092, doi:10.1016/j.physleta.2007.
2161
+ 03.005.
2162
+ [20] L. Maccone and A. K. Pati. Stronger uncertainty relations for all incompatible ob-
2163
+ servables. Phys. Rev. Lett., 113(26):039902, 2015. arXiv:1407.0338, doi:10.1103/
2164
+ PhysRevLett.113.260401.
2165
+ [21] V. M. Bannur. General and stronger uncertainty relation. 2015. arXiv:1503.00405,
2166
+ doi:10.48550/arXiv.1503.00405.
2167
+ [22] J. L. Li and C. F. Qiao. Reformulating the quantum uncertainty relation. Scientific
2168
+ Reports, 5:12708, 2015. arXiv:1502.06292, doi:10.1038/srep12708.
2169
+ [23] Y. Yao, X. Xiao, X. Wang, and C. P. Sun. Implications and applications of the variance-
2170
+ based uncertainty equalities. Phys. Rev. A, 91:062113, 2015. arXiv:1503.00239, doi:
2171
+ 10.1103/PhysRevA.91.062113.
2172
+ [24] A. A. Abbott, P. Alzieu, M. J. W. Hall, and C. Branciard. Tight state-independent
2173
+ uncertainty relations for qubits. Mathematics, 4(1):8, 2016. arXiv:1512.02383, doi:
2174
+ 10.3390/math4010008.
2175
+ [25] B. Chen, N. Cao, S. Fei, and G. Long. Variance-based uncertainty relations for in-
2176
+ compatible observables. Quantum Information Processing, 15:3909–3917, 2016. arXiv:
2177
+ 1608.06075, doi:10.1007/s11128-016-1365-1.
2178
+ 27
2179
+
2180
+ [26] H. Qin, S. Fei, and X. Li-Jost. Multi-observable uncertainty relations in product form
2181
+ of variances.
2182
+ Scientific Reports, 6:31192, 2016.
2183
+ arXiv:1608.03089, doi:10.1038/
2184
+ srep31192.
2185
+ [27] Q. Song and C. Qiao.
2186
+ Stronger Schrödinger-like uncertainty relations.
2187
+ Phys. Lett.
2188
+ A, 380(37):2925–2930, 2016. arXiv:1504.01137, doi:10.1016/j.physleta.2016.06.
2189
+ 054.
2190
+ [28] Y. Xiao, N. Jing, X. Li-Jost, and S. Fei. Weighted uncertainty relations. Scientific
2191
+ Reports, 6:23201, 2016. arXiv:1603.01004, doi:10.1038/srep23201.
2192
+ [29] D. Mondal, S. Bagchi, and A. K. Pati. Tighter uncertainty and reverse uncertainty rela-
2193
+ tions. Phys. Rev. A, 95(5):052117, 2017. arXiv:1607.06712, doi:10.1103/PhysRevA.
2194
+ 95.052117.
2195
+ [30] Q. Song, G. Li, J. annd Peng, and C. Qiao. A stronger multi-observable uncertainty re-
2196
+ lation. Scientific Reports, 7:44764, 2017. arXiv:1701.01072, doi:10.1038/srep44764.
2197
+ [31] J. Zhang, Y. Zhang, and C. Yu. Stronger uncertainty relations with improvable upper
2198
+ and lower bounds. Quantum Information Processing, 16:131, 2017. arXiv:1607.08223,
2199
+ doi:10.1007/s11128-017-1585-z.
2200
+ [32] X. Zheng and G. Zhang. Variance-based uncertainty relation for incompatible observers.
2201
+ Quantum Information Processing, 16:167, 2017.
2202
+ arXiv:1705.07396, doi:10.1007/
2203
+ s11128-017-1619-6.
2204
+ [33] V. V. Dodonov. Variance uncertainty relations without covariances for three and four
2205
+ observables.
2206
+ Phys. Rev. A, 97(2):022105, 2018.
2207
+ arXiv:1711.04037, doi:10.1103/
2208
+ PhysRevA.97.022105.
2209
+ [34] H. de Guise, L. Maccone, B. C. Sanders, and N. Shukla.
2210
+ State-independent un-
2211
+ certainty relations.
2212
+ Phys. Rev. A, 98(4):042121, 2018.
2213
+ arXiv:1804.06794, doi:
2214
+ 10.1103/PhysRevA.98.042121.
2215
+ [35] P. Busch and O. Reaerdon-Smith. On quantum uncertainty relations and uncertainty
2216
+ regions. 2019. arXiv:1901.03695, doi:10.48550/arXiv.1901.03695.
2217
+ [36] P. Giorda, L. Maccone, and A. Riccardi. State-independent uncertainty relations from
2218
+ eigenvalue minimization. Phys. Rev. A, 99(5):052121, 2019. arXiv:1810.09775, doi:
2219
+ 10.1103/PhysRevA.99.052121.
2220
+ [37] X. Zheng, S. Ma, G. Zhang, H. Fan, and W. Liu. Unified and exact framework for
2221
+ variance-based uncertainty relations. Scientific Reports, 10:150, 2020. arXiv:1803.
2222
+ 08720, doi:10.1038/s41598-019-56803-2.
2223
+ 28
2224
+
2225
+ [38] J. Li and C. Qiao.
2226
+ The generalized uncertainty principle.
2227
+ Annalen der Physik,
2228
+ 533(1):2000335, 2021.
2229
+ arXiv:2003.08705, doi:https://doi.org/10.1002/andp.
2230
+ 202000335.
2231
+ [39] L. Zhang, S. Luo, S. Fei, and J. Wu. Uncertainty regions of observables and state-
2232
+ independent uncertainty relations.
2233
+ Quantum Information Processing, 20:357, 2021.
2234
+ arXiv:2110.14134, doi:10.1007/s11128-021-03303-w.
2235
+ [40] S. Chiew and M. Gessner. Improving sum uncertainty relations with the quantum Fisher
2236
+ information. Phys. Rev. Res., 4(1):013076, 2022. arXiv:2109.06900, doi:10.1103/
2237
+ PhysRevResearch.4.013076.
2238
+ [41] Y. Xiao, N. Jing, B. Yu, S. Fei, and X. Li-Jost. Near-optimal variance-based uncertainty
2239
+ relations. Front. Phys., 10:846330, 2022. arXiv:1610.01692, doi:10.3389/fphy.2022.
2240
+ 846330.
2241
+ [42] M. Rédei and S. J. Summers. Quantum probability theory. Stud. Hist. Phil. Mod. Phys.,
2242
+ 38(2):390–417, 2007. arXiv:quant-ph/0601158, doi:10.1016/j.shpsb.2006.05.006.
2243
+ [43] M. S. Leifer and R. W. Spekkens.
2244
+ Towards a formulation of quantum theory as a
2245
+ causally neutral theory of bayesian inference. Phys. Rev. A, 88(5):052130, 2013. arXiv:
2246
+ 1107.5849, doi:10.1103/PhysRevA.88.052130.
2247
+ [44] A. Ben-Israel and T. N. Greville. Generalized Inverses: Theory and Applications, chap-
2248
+ ter chapter 6, pages 220–221. CMS Books in Mathematics. Springer, 2nd edition, 2003.
2249
+ doi:doi.org/10.1007/b97366.
2250
+ [45] E. Wigner. On the quantum correction for thermodynamic equilibrium. Phys. Rev.,
2251
+ 40(5):749–759, 1932. doi:10.1103/PhysRev.40.749.
2252
+ [46] D. Gross. Hudson’s theorem for finite-dimensional quantum systems. J. Math. Phys.,
2253
+ 47:122107, 2006. arXiv:quant-ph/0602001, doi:10.1063/1.2393152.
2254
+ [47] T. L. Curtright, D. B. Fairlie, and C. K. Zachos. A Concise Treatise on Quantum
2255
+ Mechanics in Phase Space. World Scientific, 2014. doi:10.1142/8870.
2256
+ [48] J. G. Kirkwood. Quantum statistics of almost classical assemblies. Phys. Rev., 44(1):31–
2257
+ 37, 1933. doi:10.1103/PhysRev.44.31.
2258
+ [49] P. A. M. Dirac. On the analogy between classical and quantum mechanics. Rev. Mod.
2259
+ Phys., 17(2-3):195–199, 1945. doi:10.1103/RevModPhys.17.195.
2260
+ [50] M. Lostaglio, A. Belenchia, A. Levy, S. Hernández-Gómez, N. Fabbri, and S. Gherardini.
2261
+ Kirkwood-dirac quasiprobability approach to quantum fluctuations: Theoretical and ex-
2262
+ perimental perspectives. 2022. arXiv:2206.11783, doi:10.48550/arXiv.2206.11783.
2263
+ 29
2264
+
2265
+ A
2266
+ Amplitude Operators and Purifications
2267
+ Proposition A.1. Given a density operator ρS on a Hilbert space HS, let HS′ be another
2268
+ copy of the same Hilbert space and let {|j⟩} be an orthonormal basis for HS and HS′. Define
2269
+ the vector
2270
+ ��Φ+�
2271
+ SS′ =
2272
+
2273
+ j
2274
+ |j⟩S |j⟩S′ .
2275
+ Let LS : HE → HS be an amplitude operator for ρS and let {|k⟩E} be an orthonormal
2276
+ basis for HE. Then IS ⊗LT
2277
+ S′ |Φ+⟩SS′ is a purification of ρS, where T denotes transpose in the
2278
+ |j⟩⟨k|SE basis. Similarly, if |ψ⟩SE ∈ HS⊗HE is a purification of ρS then LS = ⟨ψ∗|S′E |Φ+⟩SS′
2279
+ is an amplitude operator for ρS, where ∗ denotes complex conjugation in the |jk⟩S′E basis.
2280
+ Proof. If LS is an amplitude operator for ρS then ρS = LSL†
2281
+ S. We have to show that this
2282
+ implies that TrE
2283
+
2284
+ IS ⊗ LT
2285
+ S′ |Φ+⟩⟨Φ+|SS′ IS ⊗
2286
+
2287
+ LT
2288
+ S′
2289
+ �†�
2290
+ = ρS. Note that
2291
+
2292
+ LT
2293
+ S′
2294
+ �† = L∗
2295
+ S′, where ∗
2296
+ denotes complex conjugate in the |j⟩⟨k|SE basis. Therefore, we have
2297
+ TrE
2298
+
2299
+ IS ⊗ LT
2300
+ S′
2301
+ ��Φ+��
2302
+ Φ+��
2303
+ SS′ IS ⊗ L∗
2304
+ S′
2305
+
2306
+ =
2307
+
2308
+ j,k
2309
+ |j⟩⟨k|S TrE
2310
+
2311
+ LT
2312
+ S′ |j⟩⟨k|S′ L∗
2313
+ S′
2314
+
2315
+ (68)
2316
+ =
2317
+
2318
+ j,k
2319
+ |j⟩⟨k|S
2320
+
2321
+ k
2322
+ ��L∗
2323
+ SLT
2324
+ S
2325
+ ��j
2326
+
2327
+ S ,
2328
+ (69)
2329
+ where we have changed the index S′ to S because they refer to the same Hilbert space and
2330
+
2331
+ k
2332
+ ��LT
2333
+ SL∗
2334
+ S
2335
+ ��j
2336
+
2337
+ S is a scalar. Rearranging this, we have
2338
+ TrE
2339
+
2340
+ IS ⊗ LT
2341
+ S′
2342
+ ��Φ+��
2343
+ Φ+��
2344
+ SS′ IS ⊗ L∗
2345
+ S′
2346
+
2347
+ =
2348
+
2349
+ j,k
2350
+ |j⟩S
2351
+
2352
+ k
2353
+ ��L∗
2354
+ SLT
2355
+ S
2356
+ ��j
2357
+
2358
+ S ⟨k|S
2359
+ (70)
2360
+ =
2361
+
2362
+ j,k
2363
+ |j⟩⟨j|S
2364
+
2365
+ L∗
2366
+ SLT
2367
+ S
2368
+ �T |k⟩⟨k|S
2369
+ (71)
2370
+ =
2371
+
2372
+ L∗
2373
+ SLT
2374
+ S
2375
+ �T = LSL†
2376
+ S = ρS.
2377
+ (72)
2378
+ For the other direction, we have to prove that LSL†
2379
+ S = ρS, where LS = ⟨ψ∗|S′E |Φ+⟩SS′
2380
+ and |ψ⟩SE is any purification of ρS, i.e. TrE (|ψ⟩⟨ψ|SE) = ρS.
2381
+ First, let |ψ⟩SE = �
2382
+ jk αjk |j⟩S ⊗ |k⟩E be the decomposition of |ψ⟩SE in the |jk⟩SE basis.
2383
+ We have |ψ∗⟩SE = �
2384
+ jk α∗
2385
+ jk |j⟩S ⊗ |k⟩E and the condition TrE (|ψ⟩⟨ψ|SE) = ρS is equivalent
2386
+ to �
2387
+ j,k,l αjkα∗
2388
+ lk |j⟩⟨l|S = ρS. Note also that ⟨j|S′ |Φ+⟩SS′ = |j⟩S.
2389
+ 30
2390
+
2391
+ Hence, we have
2392
+ LSL†
2393
+ S =
2394
+
2395
+ ⟨ψ∗|S′E
2396
+ ��Φ+�
2397
+ SS′
2398
+ � �
2399
+ ⟨ψ∗|S′E
2400
+ ��Φ+�
2401
+ SS′
2402
+ �†
2403
+ (73)
2404
+ = ⟨ψ∗|S′E
2405
+ ��Φ+�
2406
+ SS′
2407
+
2408
+ Φ+��
2409
+ SS′ |ψ∗⟩S′E
2410
+ (74)
2411
+ =
2412
+
2413
+ jklm
2414
+ αjk ⟨j|S′ ⟨k|E′
2415
+ ��Φ+��
2416
+ Φ+��
2417
+ SS′ α∗
2418
+ lm |l⟩S′ |m⟩E
2419
+ (75)
2420
+ =
2421
+
2422
+ jklm
2423
+ αjkα∗
2424
+ lm ⟨k|m⟩E
2425
+
2426
+ ⟨j|S′
2427
+ ��Φ+�
2428
+ SS′
2429
+ � ��
2430
+ Φ+��
2431
+ SS′ |l⟩S′
2432
+
2433
+ (76)
2434
+ =
2435
+
2436
+ jkl
2437
+ αjkα∗
2438
+ lk |j⟩⟨l|S
2439
+ (77)
2440
+ = ρS.
2441
+ (78)
2442
+ 31
2443
+
KtFAT4oBgHgl3EQfwB6h/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
L9E0T4oBgHgl3EQfSwBA/content/tmp_files/2301.02226v1.pdf.txt ADDED
@@ -0,0 +1,956 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.02226v1 [hep-ph] 5 Jan 2023
2
+ Resolving RD and RD∗ Anomalies in Adjoint SU(5)
3
+ A. Ismael1,2 and S. Khalil2
4
+ 1Physics Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt. and
5
+ 2Center for Fundamental Physics, Zewail City of Science and Technology, 6th of October City, Giza 12578, Egypt.
6
+ (Dated: January 6, 2023)
7
+ We investigate the RD and RD∗ anomalies in the context of non-minimal SU(5), where Higgs
8
+ sector is extended by adjoint 45-dimensional multiplet. One of the light spectrum of this model
9
+ could be the scalar triplet leptoquark that is contained in this multiplet. We demonstrate that
10
+ this particular scalar leptogquark mediation of the transition b → cτν is capable of simultaneously
11
+ accounting for both RD and RD∗ anomalies. We further emphasize that another Yukawa coupling
12
+ controls its contribution to b → sℓ+ℓ−, ensuring that RK and RK∗ remain consistent with the
13
+ standard model predictions.
14
+ I.
15
+ INTRODUCTION
16
+ Semileptonic decays B → {D, D∗}τν have received a
17
+ lot of attention in recent years because they provide a
18
+ good opportunity to test the Standard Model (SM) and
19
+ look for possible new physics beyond.
20
+ Recent intrigu-
21
+ ing measurements of RD,D∗ by BaBar [1, 2], Belle [3–6],
22
+ and LHCb collaborations [7] are significant hints of new
23
+ physics that violate lepton flavor universality. The ratios
24
+ RD,D∗ are defined by
25
+ RD∗,D ≡ BR(Bq → {D∗, D}τν)
26
+ BR(Bq → {D∗, D}lν) ,
27
+ (1)
28
+ where l = e, µ. The current experimental averages of RD
29
+ and RD∗ are given by [8]
30
+ RD = 0.339 ± 0.026 ± 0.014 ,
31
+ (2)
32
+ RD∗ = 0.295 ± 0.010 ± 0.010 .
33
+ (3)
34
+ However, the SM predictions are given as follows: [9–11]
35
+ RSM
36
+ D
37
+ = 0.298 ± 0.004 ,
38
+ (4)
39
+ RSM
40
+ D∗ = 0.254 ± 0.005 .
41
+ (5)
42
+ This shows that the measured RD and RD∗ results devi-
43
+ ate from the SM expectations by 1.9σ and 3.2σ, respec-
44
+ tively. On the other hand, the LHCb recently announced
45
+ new results for the ratios
46
+ RK = BR(B+ → K+µ+µ−)
47
+ BR(B+ → K+e+e−) ,
48
+ (6)
49
+ RK∗ = BR(B0 → K∗0µ+µ−)
50
+ BR(B0 → K∗0e+e−) .
51
+ (7)
52
+ It has been reported that RK and RK∗ are given for two
53
+ dilepton invariant mass-squared bins by [12, 13]
54
+ Low − q2
55
+
56
+
57
+
58
+
59
+
60
+ RK = 0.994 +0.09
61
+ −0.082 (stat) +0.027
62
+ −0.029 (syst)
63
+ RK∗ = 0.927 +0.0933
64
+ −0.087 (stat) +0.034
65
+ −0.033 (syst)
66
+ (8)
67
+ Central − q2
68
+
69
+
70
+
71
+
72
+
73
+ RK = 0.949 +0.042
74
+ −0.041 (stat) +0.023
75
+ −0.023 (syst)
76
+ RK∗ = 1.027 +0.072
77
+ −0.068 (stat) +0.027
78
+ −0.027 (syst)
79
+ These measurements are consistent with the SM predic-
80
+ tions: RK,K∗ ≃ 1 [14]. As a result, they would impose
81
+ sever constraints on any new physics contributions that
82
+ could lead to lepton flavor non-universality.
83
+ In this paper, we argue that the scalar triplet lepto-
84
+ quark within the adjoint SU(5) framework can account
85
+ for the discrepancy between RD,D∗ experimental results
86
+ and SM expectations, while preserving RSM
87
+ K,K∗ results.
88
+ The Adjoint SU(5) is the simplest extension of minimal
89
+ SU(5) Grand Unified Theory (GUT), in which the Higgs
90
+ sector is extended by a 45-dimensional multiplet (45H).
91
+ As is well known, minimal SU(5) has a number of se-
92
+ rious problems, such as the incorrect prediction for the
93
+ fermion mass relation: mµ(e) = ms(d). One possible so-
94
+ lution to some of these flaws is to introduce an extra
95
+ 45H. The scalar triplet is one of the 45H components,
96
+ with the following (3∗, 2, −7/6) representation under the
97
+ SM gauge group. Because of its special interactions with
98
+ quarks and leptons, this scalar triplet, which is a lepto-
99
+ quark type particle, does not contribute to proton de-
100
+ cay, as explained in [15]. This distinguishes SU(5) scalar
101
+ triplet from previous leptoquark scenarios discussed in
102
+
103
+ 2
104
+ the literature. [16–19]. Although the scalar letptoquark
105
+ contributes to the semileptonic decays b → cτν at the
106
+ tree level, it is still subdominant because the leptoquark’s
107
+ mass is quite heavy of order TeV, which is sufficient to
108
+ account for the given ∼ 10% discrepancy. Controlling the
109
+ contribution of scalar leptoquarks to the b → sℓ+ℓ− can
110
+ be accomplished by constraining one of the free Yukawa
111
+ couplings.
112
+ The paper is organized as follows. In section 2 we in-
113
+ troduce the SU(5) scalar leptoquark and its associated
114
+ interactions, emphasizing that it does not contribute to
115
+ proton decay but can play important role in the following
116
+ decays: b → cτν and b → sℓ+ℓ−. Section 3 is devoted to
117
+ anlayzing the new contribution of our scalar leptoquark
118
+ to RD,D∗. RK,K∗ analysis is discussed in section 4. Fi-
119
+ nally our conclusions and prospects are give in section
120
+ 5.
121
+ II.
122
+ SCALAR LEPTOQUARK IN ADJOINT SU(5)
123
+ As previously advocated, extending the Higgs sector of
124
+ SU(5) by 45H helps to solve some of the problems that
125
+ this simple example of GUT model faces [20–23]. The
126
+ 45H transforms under the SM gauge as
127
+ 45H = (8, 2)1/2 ⊕ (1, 2)1/2 ⊕ (3, 1)−1/3 ⊕ (3, 3)−1/3
128
+ ⊕ (6∗, 1)−1/3 ⊕ (3∗, 2)−7/6 ⊕ (3∗, 1)4/3.
129
+ (9)
130
+ It also satisfies the following constraints: 45αβ
131
+ γ
132
+ = −45βα
133
+ γ
134
+ and �5
135
+ α(45)αβ
136
+ α
137
+ = 0.
138
+ Through non-vanishing Vacuum
139
+ Expectation Values (VEVs) of 5H and 45H:
140
+ ⟨5H⟩ =
141
+ v5, ⟨45H⟩15
142
+ 1
143
+ = ⟨45H⟩25
144
+ 2
145
+ = ⟨45H⟩35
146
+ 3
147
+ = v45, ⟨45H⟩45
148
+ 4
149
+ =
150
+ −3v45, the electroweak symmetry SU(2)L × U(1)Y is
151
+ spontaneously broken into U(1)em.
152
+ The 45H scalar triplets are defined as:
153
+ (3∗, 2)ij
154
+ c −7/6 ≡ (45H)ij
155
+ c ≡ Φij
156
+ c ,
157
+ (10)
158
+ (3∗, 1)ab
159
+ k 4/3 ≡ (45H)ab
160
+ k ≡ Φab
161
+ k ,
162
+ [(3, 1)ib
163
+ c ⊕ (3, 3)ib
164
+ c ]−1/3 ≡ (45H)ib
165
+ c ≡ Φib
166
+ c .
167
+ It has been emphasized [15] that while the scalar triplets
168
+ Φab
169
+ k
170
+ and Φib
171
+ c
172
+ contribute to the proton decay and they
173
+ must be superheavy, the scalar triplet Φij
174
+ c does not. It
175
+ has no interaction terms that would cause proton decay.
176
+ By writing Φij
177
+ c as (φi
178
+ 1, φi
179
+ 2)T , one can demonstrate that
180
+ the scalar triplet has the following peculiar interactions:
181
+ L=2Y 2
182
+ ABeT
183
+ ACuc
184
+ Biφi1∗+4(Y 4
185
+ AB−Y 4
186
+ BA)uiT
187
+ A Cec
188
+ Bφi1
189
+ −2Y 2
190
+ ABνT
191
+ ACuc
192
+ Biφi2∗+4(Y 4
193
+ AB−Y 4
194
+ BA)diT
195
+ A Cec
196
+ Bφi2. (11)
197
+ The first two interaction terms would imply the decay of
198
+ b → sℓ+ℓ− through scalar triplet leptoquark φi1 media-
199
+ tion, while the last two interaction terms clearly account
200
+ for the decay b → cτν via scalar triplet leptoquark φi2
201
+ mediation. These terms can be written as
202
+ L = 2Y 2
203
+ AB¯uBiPLνAφi2∗ − 4Y 4′
204
+ AB¯eBPLdi
205
+ Aφi2 + h.c.,
206
+ (12)
207
+ where we used CT = −C and ¯Ψ = ΨcT
208
+ L , and define
209
+ Y 4′
210
+ AB ≡ (Y 4
211
+ AB −Y 4
212
+ BA). In the mass eignestate basis, where
213
+ dA → V CKM
214
+ AB
215
+ dB, νA → V PMNS
216
+ AB
217
+ νB, uA → uA, eA → eA,
218
+ the above Lagrangian takes the form:
219
+ L = 2Y 2
220
+ AB ¯u′BiPLV PMNS
221
+ AK
222
+ ν′
223
+ kφi2∗ − 4Y 4′
224
+ AB ¯e′BPLV CKM
225
+ AK
226
+ d′
227
+ Kφi2
228
+ +h.c.
229
+ (13)
230
+ In this regards, the amplitude of b → cτν transition is
231
+ given by
232
+ M=−8Y 4′
233
+ 13V CKM
234
+ 13
235
+ M 2
236
+ φ
237
+ �1
238
+ 2(¯uτPLvντ )(¯uCPLub)
239
+ + 1
240
+ 8(¯uτσµνPLvντ )(¯uCPLσµνub) ×
241
+
242
+ Y 2
243
+ 12V PMNS
244
+ 13
245
+ (14)
246
+ +Y 2
247
+ 22V PMNS
248
+ 23
249
+ +Y 2
250
+ 32V PMNS
251
+ 33
252
+ ��
253
+ +
254
+
255
+ Y 4′
256
+ 13 V CKM
257
+ 13
258
+ →Y 4′
259
+ 23 V CKM
260
+ 23
261
+
262
+ .
263
+ Because V CKM
264
+ 13
265
+ and V CKM
266
+ 23
267
+ are so small (10−3 and 10−2,
268
+ respectively), the amplitude of b → cτν is essentially
269
+ determined by the leptoquark masses Mφ, Y 2
270
+ 22, Y 2
271
+ 32, and
272
+ Y 4′
273
+ 13.
274
+ III.
275
+ SU(5) LEPTOQUARK CONTRIBUTION TO
276
+ RD,D∗
277
+ The general expression of the effective Hamiltonian for
278
+ b → cl ¯νl can be written as [24]
279
+ Heff = 4GF Vcb
280
+
281
+ 2
282
+
283
+ (1 + gVL)[¯cγµPLb][¯lγµPLνl]
284
+ + gVR[¯cγµPRb][¯lγµPLνl] + gSL[¯cPLb][¯lPLνl]
285
+ + gSR[¯cPRb][¯lPLνl] + gT [¯cσµντ PLb][¯lσµνPLνl]
286
+
287
+ ,(15)
288
+ where GF is the Fermi coupling constant, Vcb is the
289
+ Cabibbo-Kobayashi-Maskawa (CKM) matrix element be-
290
+ tween charm and bottom quarks while PL/R = (1 ∓
291
+
292
+ 3
293
+ γ5)/2.
294
+ Here, gi is defined as gi = CNP
295
+ i
296
+ /CSM, i ≡
297
+ VL, VR, SL, SR, T , with CSM =
298
+ 4GF Vcb
299
+
300
+ 2
301
+ . Eq. 15 shows
302
+ that gVL = gVR = gSR = 0, whereas gSL and gT are given
303
+ by
304
+ gSL = −
305
+
306
+ 2Z
307
+ M 2
308
+ φGF
309
+ ,
310
+ gST = gSL
311
+ 4
312
+ = −
313
+ Z
314
+ 2
315
+
316
+ 2M 2
317
+ φGF
318
+ , (16)
319
+ with
320
+ Z =
321
+
322
+ Y 2
323
+ 12V PMNS
324
+ 13
325
+ + Y 2
326
+ 22V PMNS
327
+ 23
328
+ + Y 2
329
+ 32V PMNS
330
+ 33
331
+
332
+
333
+ Y 4′
334
+ 13V CKM
335
+ 13
336
+ V CKM
337
+ 23
338
+ + Y 4′
339
+ 23
340
+
341
+ (17)
342
+ Substituting with the SM parameters as well as the
343
+ form factors involved in the definition of the matrix ele-
344
+ ments to their central values, one finds [25]
345
+ R(D) = R(D)SM�
346
+ 1 + 1.02|gSL|2 + 0.9|gT|2
347
+ + 1.49 Re[g∗
348
+ SL] + 1.14 Re[g∗
349
+ T ]
350
+
351
+ ,
352
+ (18)
353
+ R(D∗) = R(D∗)SM�
354
+ 1 + 0.04|gSL|2 + 16.07|gT|2
355
+ − 0.11 Re[g∗
356
+ SL] − 5.12 Re[g∗
357
+ T ]
358
+
359
+ .
360
+ (19)
361
+ A few remarks are in order. First, the gSL and gT can
362
+ be complex due to non-zero phases in U PMNS as well as
363
+ complex values of the Yukawa couplings Y 2 and Y 4′. Sec-
364
+ ond, because the tree-level scalar leptoquark contributes
365
+ to the branching ratio of the tauonic decay B−
366
+ c → τ −¯ντ,
367
+ experimental constraints from this decay must be in-
368
+ cluded in our analysis.
369
+ The modified branching ratio
370
+ BR(B−
371
+ c → τ −¯ντ) is given by [25–27]
372
+ BR(B−
373
+ c →τ −¯ντ)=BR(B−
374
+ c →τ −¯ντ)SM|1−4.065gSL|2, (20)
375
+ with BR(B−
376
+ c
377
+ → τ −¯ντ)SM = (2.25 ± 0.21) × 10−2 [28].
378
+ The experimental bound on BR(B−
379
+ c → τ −¯ντ) varies from
380
+ ≤ 10% to ≤ 60% [28–31]. Third, it is also worth noting
381
+ that our type of scalar leptoquarks would not contribute
382
+ to lepton flavor violation, like τ → µγ or B − ¯B mixing.
383
+ Fourth, we impose the constraints of the D∗ and τ lon-
384
+ gitudinal polarizations that come from Belle experiment.
385
+ Their expressions depend on the same Wilson coefficients
386
+ affecting RD and RD∗, which are written as [25, 27]
387
+ F D∗
388
+ L
389
+ F D∗
390
+ L,SM
391
+ =
392
+ � RD∗
393
+ RSM
394
+ D∗
395
+ �−1�
396
+ 1 + 0.08|gSL|2 + 7.02|gT|2
397
+ − 0.24 Re[g∗
398
+ SL] − 4.37 Re[g∗
399
+ T]
400
+
401
+ (21)
402
+ P D∗
403
+ τ
404
+ P D∗
405
+ τ,SM
406
+ =
407
+ � RD∗
408
+ RSM
409
+ D∗
410
+ �−1�
411
+ 1 − 0.07|gSL|2 − 1.86|gT|2
412
+ + 0.22 Re[g∗
413
+ SL] − 3.37 Re[g∗
414
+ T]
415
+
416
+ (22)
417
+ The experimental values of F D
418
+ L and P D∗
419
+ τ
420
+ are given by
421
+ 0.60 ± 0.08 ± 0.035 [32] and −0.38 ± 0.51+0.21
422
+ −0.16 [4, 5, 33]
423
+ respectively, whereas their SM predictions are 0.46±0.04
424
+ [34] and −0.497 ± 0.013 [35] Finally, running the coeffi-
425
+ cients gSL and gT from the scale µ = 1T eV to the scale
426
+ mb = 4.2GeV implies that [36, 37]:
427
+
428
+ gSL
429
+ gT
430
+
431
+ =
432
+
433
+ 1.71 0
434
+ 0
435
+ 1
436
+ � �
437
+ gSL(µ = 1T eV )
438
+ gT (µ = 1T eV )
439
+
440
+ .
441
+ (23)
442
+ In the presence of the aforementioned experimental
443
+ constraints, we performed a numerical analysis of RD
444
+ and RD∗. In Fig. 1, we show the dependence of RD and
445
+ RD∗ on the most relevant parameters, which are the mass
446
+ of leptoquark Mφ (left panel) and the real and imag-
447
+ inary parts of the Yukawa coupling Y 4′
448
+ 23 (right panel).
449
+ The other parameters in these plots were set as follows:
450
+ Y 2
451
+ 12 = −1.5, Y 2
452
+ 22 = Y 2
453
+ 32 = Y 4′
454
+ 13 = 1.5. Furthermore, the
455
+ coupling Y 4′
456
+ 23 is fixed with 1.48 + 0.1i in the plot of RD
457
+ and RD∗ versus Mφ (left panel), whereas in the 3D plot
458
+ of RD and RD∗ versus real and imaginary parts of Y 4′
459
+ 23
460
+ (right panel), the mass Mφ varies along the [800, 1500]
461
+ GeV, while real and imaginary parts of Y 4′
462
+ 23 vary along
463
+ the [−1.5, 1.5] and [−0.5, 0.5], respectively.
464
+ The correlation between RD and RD∗ is shown in Fig.
465
+ 2, left-panel, and the correlation between the constraints
466
+ on the BR(B−
467
+ c → τ −¯ντ) and RD and RD∗ is highlighted
468
+ in the right-panel of this plot. The parameters are set in
469
+ the same way as in the previous plots.
470
+ These plots show that in this class of models, both RD
471
+ and RD∗ can be significantly enhanced and lie within
472
+ one sigma of the recent experimental limits, with scalar
473
+ leptoquark masses of order one TeV, which is consistent
474
+ with experimental constraints.
475
+
476
+ 4
477
+ 1000
478
+ 1050
479
+ 1100
480
+ 1150
481
+ 1200
482
+ 1250
483
+ 1300
484
+ 1350
485
+ 1400
486
+ 1450
487
+ M (GeV)
488
+ 0.28
489
+ 0.3
490
+ 0.32
491
+ 0.34
492
+ 0.36
493
+ 0.38
494
+ 0.4
495
+ 0.42
496
+ RD & R D *
497
+ RD
498
+ *
499
+ RD
500
+ 0.26
501
+ 0.28
502
+ 0.4
503
+ 0.3
504
+ 0.32
505
+ 0.34
506
+ 0.2
507
+ RD&R D *
508
+ 0.36
509
+ 1
510
+ 0.38
511
+ (Y 23
512
+ 4' )
513
+ 0
514
+ 0.5
515
+ 0.4
516
+ (Y 23
517
+ 4' )
518
+ 0.42
519
+ 0
520
+ -0.2
521
+ -0.5
522
+ -1
523
+ -0.4
524
+ RD
525
+ *
526
+ RD
527
+ FIG. 1. RD and RD∗ as function of the Letoquark mass and and real and imaginary parts of the Yukawa coupling Y23. The
528
+ other parameters are fixed as mentioned in the text.
529
+ 0.3
530
+ 0.32
531
+ 0.34
532
+ 0.36
533
+ 0.38
534
+ 0.4
535
+ 0.42
536
+ RD
537
+ 0.25
538
+ 0.26
539
+ 0.27
540
+ 0.28
541
+ 0.29
542
+ 0.3
543
+ 0.31
544
+ 0.32
545
+ RD *
546
+ 0.05
547
+ 0.1
548
+ 0.15
549
+ 0.2
550
+ 0.25
551
+ BR (B
552
+ )
553
+ 0.26
554
+ 0.28
555
+ 0.3
556
+ 0.32
557
+ 0.34
558
+ 0.36
559
+ 0.38
560
+ 0.4
561
+ 0.42
562
+ RD & R D *
563
+ RD
564
+ *
565
+ RD
566
+ FIG. 2. The correlation between RD and RD∗ (left) and between both RD and RD∗ and BR(B−
567
+ c → τ −¯ντ) (right). The scan
568
+ is conducted over the regions of parameter space mentioned above.
569
+ IV.
570
+ SU(5) LEPTOQUARK CONTRIBUTION TO
571
+ RK,K∗
572
+ In this section, we show that, while the scalar lep-
573
+ toquark causes non-universality of lepton flavor in the
574
+ process B → Dℓν, it does not necessarily cause non-
575
+ universality in the process B → Kℓ+ℓ−. The Lagrangian
576
+ that generates the b → sℓ+ℓ− transition is given by
577
+ L=−4Y 4′
578
+ AB ¯e′BPLV CKM
579
+ AK
580
+ di′
581
+ Kφi2−4Y 4′
582
+ AB ¯d′iKV CKM∗
583
+ AK
584
+ PR e
585
+
586
+ Bφ∗
587
+ i2.
588
+ (24)
589
+ Thus, for b → s µ µ+, the Lagrangian is given as
590
+ L ⊃ −4Y 4′
591
+ 32 ¯µ′PLbi′φi2 − 4Y 4′∗
592
+ 12
593
+ ¯
594
+ Si′V CKM∗
595
+ 12
596
+ PR µ
597
+ ′φ∗
598
+ i2
599
+ − 4Y 4′∗
600
+ 32
601
+ ¯
602
+ Si′V CKM∗
603
+ 32
604
+ PR µ
605
+ ′φ∗
606
+ i2,
607
+ (25)
608
+ where V CKM
609
+ 13
610
+ ≈ 0 and V CKM
611
+ 33
612
+ ≈ 1 are assumed. Also,
613
+ we may neglect V CKM
614
+ 32
615
+ respect V CKM
616
+ 12
617
+ (although we in-
618
+ clude all terms in our numerical calculations). Thus, the
619
+ amplitude of this process is given by
620
+ M = 8Y 4′
621
+ 32Y 4′∗
622
+ 12 V CKM∗
623
+ 12
624
+ M 2
625
+ φ
626
+ � ¯UsγµPLUb
627
+ �� ¯UµγµPLVν
628
+
629
+ . (26)
630
+ We used the Fierz transformation identity
631
+ � ¯UsPRVµ
632
+ �� ¯
633
+ UµPLUb
634
+
635
+ = 1
636
+ 2
637
+ � ¯UsγµPLUb
638
+ �� ¯UµγµPLvµ
639
+
640
+ .
641
+ (27)
642
+ As a result, the Wilson coefficient Cµ
643
+ 9 for b → s µ µ+
644
+ process is written as
645
+
646
+ 9 (Λ) = 8Y 4′
647
+ 32Y 4′∗
648
+ 12 V CKM∗
649
+ 12
650
+ M 2
651
+ φ
652
+ .
653
+ (28)
654
+
655
+ 5
656
+ where the scale Λ ≈ 1TeV, and Cµ
657
+ 10(Λ) = −Cµ
658
+ 9 (Λ). On
659
+ the other hand, the Lagrangian that generates the pro-
660
+ cess b → s e e+ is given by
661
+ L = − 4Y 4′
662
+ 31 ¯e
663
+ ′PLbi′φi2 − 4Y 4′∗
664
+ 21
665
+ ¯
666
+ Si′PRe
667
+ ′φ∗
668
+ i2.
669
+ (29)
670
+ After applying Fierz identity, the amplitude of b → s e e+
671
+ is given by
672
+ M = 8Y 4′
673
+ 31Y 4′∗
674
+ 21
675
+ M 2
676
+ φ
677
+ � ¯UsγµPLUb
678
+ �� ¯UeγµPLVe
679
+
680
+ .
681
+ (30)
682
+ Hence, the Wilson coefficient Ce
683
+ 9(Λ) for b → s e e+ will
684
+ be
685
+ Ce
686
+ 9(Λ) = 8Y 4′
687
+ 31Y 4′∗
688
+ 21
689
+ M 2
690
+ φ
691
+ .
692
+ (31)
693
+ Moreover, Ce
694
+ 10(Λ) = −Ce
695
+ 9(Λ). The effective Hamiltonian
696
+ Heff for RK process is given by
697
+ Heff =
698
+
699
+ i
700
+
701
+ Ci(µb)Oi(µb) + ˜Ci(µb) ˜Oi(µb)
702
+
703
+ .
704
+ (32)
705
+ Through renormalization group equation (RGE), we ob-
706
+ tain
707
+ Ce,µ
708
+ 9,10(Λ) = 1.2 Ce,µ
709
+ 9,10(µb),
710
+ (33)
711
+ where Oi(µb) are ∆B = 1 transition operator, which is
712
+ evaluated at the mb scale. ˜Ci(µb), ˜Oi(µb) are obtained by
713
+ replacing L ↔ R. The relevant operators that describe
714
+ the Rk and Rk∗ in our model are
715
+ O9 =
716
+
717
+ ¯sγµPLb
718
+ ��¯lγµl),
719
+ O10 =
720
+
721
+ ¯sγµPLb
722
+ ��¯lγµγ5l). (34)
723
+ The Rk and Rk∗ expressions are written as
724
+ Rk ≈1 + ∆+,
725
+ (35)
726
+ Rk∗ ≈1 + ���+ + p(∆+ − ∆−),
727
+ (36)
728
+ where p is a function of q2
729
+ min and q2
730
+ max and ∆± is given
731
+ by
732
+ ∆± =
733
+ 2
734
+ |CSM
735
+ 9
736
+ |2 + |CSM
737
+ 10 |2
738
+
739
+
740
+
741
+ CSM
742
+ 9
743
+ (CNP,µ
744
+ 9
745
+ ± ˜
746
+ C9
747
+ NP,µ)∗�
748
+ + ℜ
749
+
750
+ CSM
751
+ 10 (CNP,µ
752
+ 10
753
+ ± ˜
754
+ C10
755
+ NP,µ)∗�
756
+ − (µ ↔ e)
757
+
758
+ (37)
759
+ For our model, ˜CNP
760
+ 9,10 = 0. Therefore, we obtain
761
+ ∆+ = ∆− = 2.4
762
+
763
+ CSM
764
+ 9
765
+ − CSM
766
+ 10
767
+
768
+ |CSM
769
+ 9
770
+ |2 + |CSM
771
+ 10 |2 ℜ
772
+
773
+ CNP,µ
774
+ 9
775
+ (µb)−CNP,e
776
+ 9
777
+ (µb)
778
+ �∗
779
+ (38)
780
+ It is worth mentioning that, whereas RK,K∗ is essen-
781
+ tially dependent on the couplings Y 4′
782
+ 21 and Y 4′
783
+ 32, RD,D∗ is
784
+ dependent on Y 2
785
+ 22, Y 2
786
+ 33 and Y 4′
787
+ 23 . As a result, it is entirely
788
+ possible to keep RK,K∗ equal to the SM expectation, con-
789
+ sistently with the new LHCb results, while leaving RD,D∗
790
+ intact. To make RK,K∗ close to one, ∆+ should be very
791
+ small. This can be accomplished by having Y 4′
792
+ 12 ≪ 1.
793
+ V.
794
+ CONCLUSIONS
795
+ In this paper we have demonstrated that, in the pres-
796
+ ence of experimental constraints on flavor and lepton
797
+ violation observables, measured values of RD and RD∗
798
+ within 1σ can be explained in non-minimal SU(5) with
799
+ adjoint 45-dimensional Higgs multiplet. Enhancements
800
+ for both RD and RD∗ are made possible by a tree level
801
+ transition of b → cτν, which is mediated by the associ-
802
+ ated scalar leptoquark. We also emphasized that even
803
+ though this leptoquark may contribute to RK and RK∗,
804
+ they remain independent of RD and RD∗ enhancements
805
+ because they are given in terms of different Yukawa cou-
806
+ plings. As a result, their contributions can be easily sup-
807
+ pressed, and RK and RK∗ continue to be identical to SM
808
+ predictions, which are consistent with the most recent
809
+ LHCb data.
810
+ ACKNOWLEDGEMENTS
811
+ This work is partially supported by Science, Tech-
812
+ nology & Innovation Funding Authority (STDF) under
813
+ grant number 37272.
814
+
815
+ 6
816
+ REFERENCES
817
+ [1] J. P. Lees et al. [BaBar Collaboration], Phys. Rev. Lett.
818
+ 109, 101802 (2012) [arXiv:1205.5442 [hep-ex]].
819
+ [2] J. P. Lees et al. [BaBar Collaboration], Phys. Rev. D 88,
820
+ no. 7, 072012 (2013) [arXiv:1303.0571 [hep-ex]].
821
+ [3] M. Huschle et al. [Belle Collaboration], Phys. Rev. D 92,
822
+ no. 7, 072014 (2015) [arXiv:1507.03233 [hep-ex]].
823
+ [4] S. Hirose et al. [Belle Collaboration], Phys. Rev. Lett.
824
+ 118, no. 21, 211801 (2017) [arXiv:1612.00529 [hep-ex]].
825
+ [5] S. Hirose et al. [Belle Collaboration], Phys. Rev. D 97,
826
+ no. 1, 012004 (2018) [arXiv:1709.00129 [hep-ex]].
827
+ [6] G. Caria et al. [Belle Collaboration], Phys. Rev. Lett.
828
+ 124, no. 16, 161803 (2020) [arXiv:1910.05864 [hep-ex]].
829
+ [7] LHCb Collaboration, https://indico.cern.ch/event/1187939/
830
+ (2022).
831
+ [8] https://hflav-eos.web.cern.ch/hflav-
832
+ eos/semi/spring21/html/RDsDsstar/RDRDs.html
833
+ (2022).
834
+ [9] D. Bigi and P. Gambino, Phys. Rev. D 94, no. 7, 094008
835
+ (2016). [arXiv:1606.08030 [hep-ph]]
836
+ [10] P. Gambino, M. Jung and S. Schacht, Phys. Lett. B 795,
837
+ 386-390 (2019) [arXiv:1905.08209 [hep-ph]].
838
+ [11] M. Bordone, M. Jung and D. van Dyk, Eur. Phys. J. C
839
+ 80, no. 2, 74 (2020) [arXiv:1908.09398 [hep-ph]].
840
+ [12] LHCb collaboration, arXiv.2212.09152 [hep-ex] (2022).
841
+ [13] LHCb collaboration, arXiv.2212.09153 [hep-ex] (2022).
842
+ [14] Marzia Bordone, Gino Isidori and Andrea Pattori,Eur.
843
+ Phys. J. C 76, no. 8, 440 (2016) [arXiv:1605.07633 [hep-
844
+ ph]].
845
+ [15] Ilja Dorsner, Svjetlana Fajfer, Nejc Kosnik, Phys. Rev. D
846
+ 86, no. 1, 015013 (2012) [ arXiv:1204.0674v2 [hep-ph]].
847
+ [16] Syuhei Iguro, Michihisa Takeuchi and Ryoutaro Watan-
848
+ abe,
849
+ Eur.
850
+ Phys.
851
+ J.
852
+ C
853
+ 81,
854
+ no.
855
+ 5,
856
+ 406
857
+ (2021)
858
+ [arXiv:2011.02486 [hep-ph]].
859
+ [17] David Marzocca and Sokratis Trifinopoulos, Phys. Rev.
860
+ Lett. 127, no. 6, 061803 (2021) [arXiv:2104.05730 [hep-
861
+ ph]].
862
+ [18] Arvind Bhaskar and Anirudhan A. Madathil and Tanu-
863
+ moy Mandal and Subhadip Mitra, Phys. Rev. D 106, no.
864
+ 11, 115009 (2022) [arXiv:2204.09031 [hep-ph]].
865
+ [19] Peter
866
+ Cox,
867
+ Alexander
868
+ Kusenko,
869
+ Olcyr
870
+ Sumensari
871
+ and
872
+ Tsutomu
873
+ T.
874
+ Yanagida,
875
+ JHEP
876
+ 05,
877
+ 35
878
+ (2017)
879
+ [arXiv:1612.03923 [hep-ph]].
880
+ [20] Bartosz Fornal and Benjam´ın Grinstein, Phys. Rev. Lett.
881
+ 119, no. 24, 241801 (2017) [ arXiv:1706.08535 [hep-ph].
882
+ [21] Ilja Dorsner, Pavel Fileviez Perez, Phys. Lett. B 642, no.
883
+ 03, 248-252 (2006) [arXiv:0606062 [hep-ph]].
884
+ [22] S. Khalil, S. Salem, M. Allam, Phys. Rev. D 89, no. 09,
885
+ 095011 (2015) [arXiv:1401.1482v2 [hep-ph]].
886
+ [23] S. Khalil, S. Salem, Nucl. Phys. B 876, 473 (2013)
887
+ [arXiv:1304.3689 [hep-ph]]
888
+ [24] Minoru Tanaka and Ryoutaro Watanabe, Phys. Rev. D
889
+ 87, no. 3, 034028 (2013) [arXiv:1212.1878 [hep-ph]].
890
+ [25] Syuhei Iguro, Teppei Kitahara, Yuji Omura, Ryoutaro
891
+ Watanabe and Kei Yamamoto,JHEP 02, 194 (2019)
892
+ [arXiv 1811.08899 [hep-ph]].
893
+ [26] Pouya Asadi, Matthew R. Buckley and David Shih,
894
+ JHEP 09, 10 (2018) [arXiv:1804.04135 [hep-ph]].
895
+ [27] Pouya Asadi, Matthew R. Buckley and David Shih, Phys.
896
+ Rev. D 99, no. 3, 035015 (2019) [arXiv:1810.06597 [hep-
897
+ ph]].
898
+ [28] Robert
899
+ Fleischer,
900
+ Ruben
901
+ Jaarsma
902
+ and
903
+ Gilberto
904
+ Tetlalmatzi-Xolocotzi,
905
+ Eur.
906
+ Phys.
907
+ J.
908
+ C
909
+ 81,
910
+ no.7,
911
+ 658 (2021) [arXiv:2104.04023 [hep-ph]].
912
+ [29] Debjyoti Bardhan and Diptimoy Ghosh, Phys. Rev. D
913
+ 100, no. 1, 011701 (2019) [arXiv:1904.10432 [hep-ph]].
914
+ [30] Monika Blanke,
915
+ Andreas Crivellin,
916
+ Stefan de Boer,
917
+ Teppei Kitahara, Marta Moscati, Ulrich Nierste and
918
+ Ivan Nisandzic,Phys. Rev. D 99, no.7, 075006 (2019)
919
+ [arXiv:1811.09603 [hep-ph]].
920
+ [31] Monika Blanke, Andreas Crivellin, Teppei Kitahara,
921
+ Marta Moscati, Ulrich Nierste and Ivan Nisandzic,Phys.
922
+ Rev. D 100, no. 3, 035035 (2019) [arXiv:1905.08253 [hep-
923
+ ph]].
924
+ [32] A.
925
+ Abdesselam
926
+ et
927
+ al.
928
+ [Belle
929
+ Collaboration],
930
+ arXiv:1903.03102 [hep-ex] (2019).
931
+ [33] Karol Adamczyk, arXiv:1901.06380 [hep-ex] (2019).
932
+ [34] Ashutosh Kumar Alok, Dinesh Kumar, Suman Kumb-
933
+ hakar and S Uma Sankar, Phys. Rev. D 95, no. 11,
934
+ 115038 (2017), [arXiv:1606.03164 [hep-ph]].
935
+ [35] Minoru Tanaka and Ryoutaro Watanabe, Phys. Rev. D
936
+ 87, no. 3, 034028 (2013), [arXiv:1212.1878v3 [hep-ph]].
937
+ [36] Mart´ın Gonz´alez-Alonso, Jorge Martin Camalich and
938
+ Kin
939
+ Mimouni,Phys.
940
+ Lett.
941
+ B
942
+ 772,
943
+ 777-785
944
+ (2017),
945
+ [arXiv:1706.00410v2 [hep-ph]].
946
+ [37] Syuhei
947
+ Iguro,
948
+ Michihisa
949
+ Takeuchi
950
+ and
951
+ Ryoutaro
952
+ Watanabe,Eur. Phys. J. C 81,
953
+ no. 5,
954
+ 406 (2021),
955
+ [arXiv2011.02486v4 [hep-ph]].
956
+
L9E0T4oBgHgl3EQfSwBA/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,437 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf,len=436
2
+ page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
3
+ page_content='02226v1 [hep-ph] 5 Jan 2023 Resolving RD and RD∗ Anomalies in Adjoint SU(5) A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
4
+ page_content=' Ismael1,2 and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
5
+ page_content=' Khalil2 1Physics Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
6
+ page_content=' and 2Center for Fundamental Physics, Zewail City of Science and Technology, 6th of October City, Giza 12578, Egypt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
7
+ page_content=' (Dated: January 6, 2023) We investigate the RD and RD∗ anomalies in the context of non-minimal SU(5), where Higgs sector is extended by adjoint 45-dimensional multiplet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
8
+ page_content=' One of the light spectrum of this model could be the scalar triplet leptoquark that is contained in this multiplet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
9
+ page_content=' We demonstrate that this particular scalar leptogquark mediation of the transition b → cτν is capable of simultaneously accounting for both RD and RD∗ anomalies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
10
+ page_content=' We further emphasize that another Yukawa coupling controls its contribution to b → sℓ+ℓ−, ensuring that RK and RK∗ remain consistent with the standard model predictions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
11
+ page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
12
+ page_content=' INTRODUCTION Semileptonic decays B → {D, D∗}τν have received a lot of attention in recent years because they provide a good opportunity to test the Standard Model (SM) and look for possible new physics beyond.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
13
+ page_content=' Recent intrigu- ing measurements of RD,D∗ by BaBar [1, 2], Belle [3–6], and LHCb collaborations [7] are significant hints of new physics that violate lepton flavor universality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
14
+ page_content=' The ratios RD,D∗ are defined by RD∗,D ≡ BR(Bq → {D∗, D}τν) BR(Bq → {D∗, D}lν) , (1) where l = e, µ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
15
+ page_content=' The current experimental averages of RD and RD∗ are given by [8] RD = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
16
+ page_content='339 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
17
+ page_content='026 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
18
+ page_content='014 , (2) RD∗ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
19
+ page_content='295 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
20
+ page_content='010 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
21
+ page_content='010 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
22
+ page_content=' (3) However, the SM predictions are given as follows: [9–11] RSM D = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
23
+ page_content='298 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
24
+ page_content='004 , (4) RSM D∗ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
25
+ page_content='254 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
26
+ page_content='005 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
27
+ page_content=' (5) This shows that the measured RD and RD∗ results devi- ate from the SM expectations by 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
28
+ page_content='9σ and 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
29
+ page_content='2σ, respec- tively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
30
+ page_content=' On the other hand, the LHCb recently announced new results for the ratios RK = BR(B+ → K+µ+µ−) BR(B+ → K+e+e−) , (6) RK∗ = BR(B0 → K∗0µ+µ−) BR(B0 → K∗0e+e−) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
31
+ page_content=' (7) It has been reported that RK and RK∗ are given for two dilepton invariant mass-squared bins by [12, 13] Low − q2 \uf8f1 \uf8f4 \uf8f2 \uf8f4 \uf8f3 RK = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
32
+ page_content='994 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
33
+ page_content='09 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
34
+ page_content='082 (stat) +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
35
+ page_content='027 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
36
+ page_content='029 (syst) RK∗ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
37
+ page_content='927 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
38
+ page_content='0933 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
39
+ page_content='087 (stat) +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
40
+ page_content='034 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
41
+ page_content='033 (syst) (8) Central − q2 \uf8f1 \uf8f4 \uf8f2 \uf8f4 \uf8f3 RK = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
42
+ page_content='949 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
43
+ page_content='042 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
44
+ page_content='041 (stat) +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
45
+ page_content='023 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
46
+ page_content='023 (syst) RK∗ = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
47
+ page_content='027 +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
48
+ page_content='072 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
49
+ page_content='068 (stat) +0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
50
+ page_content='027 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
51
+ page_content='027 (syst) These measurements are consistent with the SM predic- tions: RK,K∗ ≃ 1 [14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
52
+ page_content=' As a result, they would impose sever constraints on any new physics contributions that could lead to lepton flavor non-universality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
53
+ page_content=' In this paper, we argue that the scalar triplet lepto- quark within the adjoint SU(5) framework can account for the discrepancy between RD,D∗ experimental results and SM expectations, while preserving RSM K,K∗ results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
54
+ page_content=' The Adjoint SU(5) is the simplest extension of minimal SU(5) Grand Unified Theory (GUT), in which the Higgs sector is extended by a 45-dimensional multiplet (45H).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
55
+ page_content=' As is well known, minimal SU(5) has a number of se- rious problems, such as the incorrect prediction for the fermion mass relation: mµ(e) = ms(d).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
56
+ page_content=' One possible so- lution to some of these flaws is to introduce an extra 45H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
57
+ page_content=' The scalar triplet is one of the 45H components, with the following (3∗, 2, −7/6) representation under the SM gauge group.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
58
+ page_content=' Because of its special interactions with quarks and leptons, this scalar triplet, which is a lepto- quark type particle, does not contribute to proton de- cay, as explained in [15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
59
+ page_content=' This distinguishes SU(5) scalar triplet from previous leptoquark scenarios discussed in 2 the literature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
60
+ page_content=' [16–19].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
61
+ page_content=' Although the scalar letptoquark contributes to the semileptonic decays b → cτν at the tree level, it is still subdominant because the leptoquark’s mass is quite heavy of order TeV, which is sufficient to account for the given ∼ 10% discrepancy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
62
+ page_content=' Controlling the contribution of scalar leptoquarks to the b → sℓ+ℓ− can be accomplished by constraining one of the free Yukawa couplings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
63
+ page_content=' The paper is organized as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
64
+ page_content=' In section 2 we in- troduce the SU(5) scalar leptoquark and its associated interactions, emphasizing that it does not contribute to proton decay but can play important role in the following decays: b → cτν and b → sℓ+ℓ−.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
65
+ page_content=' Section 3 is devoted to anlayzing the new contribution of our scalar leptoquark to RD,D∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
66
+ page_content=' RK,K∗ analysis is discussed in section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
67
+ page_content=' Fi- nally our conclusions and prospects are give in section 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
68
+ page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
69
+ page_content=' SCALAR LEPTOQUARK IN ADJOINT SU(5) As previously advocated, extending the Higgs sector of SU(5) by 45H helps to solve some of the problems that this simple example of GUT model faces [20–23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
70
+ page_content=' The 45H transforms under the SM gauge as 45H = (8, 2)1/2 ⊕ (1, 2)1/2 ⊕ (3, 1)−1/3 ⊕ (3, 3)−1/3 ⊕ (6∗, 1)−1/3 ⊕ (3∗, 2)−7/6 ⊕ (3∗, 1)4/3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
71
+ page_content=' (9) It also satisfies the following constraints: 45αβ γ = −45βα γ and �5 α(45)αβ α = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
72
+ page_content=' Through non-vanishing Vacuum Expectation Values (VEVs) of 5H and 45H: ⟨5H⟩ = v5, ⟨45H⟩15 1 = ⟨45H⟩25 2 = ⟨45H⟩35 3 = v45, ⟨45H⟩45 4 = −3v45, the electroweak symmetry SU(2)L × U(1)Y is spontaneously broken into U(1)em.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
73
+ page_content=' The 45H scalar triplets are defined as: (3∗, 2)ij c −7/6 ≡ (45H)ij c ≡ Φij c , (10) (3∗, 1)ab k 4/3 ≡ (45H)ab k ≡ Φab k , [(3, 1)ib c ⊕ (3, 3)ib c ]−1/3 ≡ (45H)ib c ≡ Φib c .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
74
+ page_content=' It has been emphasized [15] that while the scalar triplets Φab k and Φib c contribute to the proton decay and they must be superheavy, the scalar triplet Φij c does not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
75
+ page_content=' It has no interaction terms that would cause proton decay.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
76
+ page_content=' By writing Φij c as (φi 1, φi 2)T , one can demonstrate that the scalar triplet has the following peculiar interactions: L=2Y 2 ABeT ACuc Biφi1∗+4(Y 4 AB−Y 4 BA)uiT A Cec Bφi1 −2Y 2 ABνT ACuc Biφi2∗+4(Y 4 AB−Y 4 BA)diT A Cec Bφi2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
77
+ page_content=' (11) The first two interaction terms would imply the decay of b → sℓ+ℓ− through scalar triplet leptoquark φi1 media- tion, while the last two interaction terms clearly account for the decay b → cτν via scalar triplet leptoquark φi2 mediation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
78
+ page_content=' These terms can be written as L = 2Y 2 AB¯uBiPLνAφi2∗ − 4Y 4′ AB¯eBPLdi Aφi2 + h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
79
+ page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
80
+ page_content=', (12) where we used CT = −C and ¯Ψ = ΨcT L , and define Y 4′ AB ≡ (Y 4 AB −Y 4 BA).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
81
+ page_content=' In the mass eignestate basis, where dA → V CKM AB dB, νA → V PMNS AB νB, uA → uA, eA → eA, the above Lagrangian takes the form: L = 2Y 2 AB ¯u′BiPLV PMNS AK ν′ kφi2∗ − 4Y 4′ AB ¯e′BPLV CKM AK d′ Kφi2 +h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
82
+ page_content='c.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
83
+ page_content=' (13) In this regards, the amplitude of b → cτν transition is given by M=−8Y 4′ 13V CKM 13 M 2 φ �1 2(¯uτPLvντ )(¯uCPLub) + 1 8(¯uτσµνPLvντ )(¯uCPLσµνub) × � Y 2 12V PMNS 13 (14) +Y 2 22V PMNS 23 +Y 2 32V PMNS 33 �� + � Y 4′ 13 V CKM 13 →Y 4′ 23 V CKM 23 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
84
+ page_content=' Because V CKM 13 and V CKM 23 are so small (10−3 and 10−2, respectively), the amplitude of b → cτν is essentially determined by the leptoquark masses Mφ, Y 2 22, Y 2 32, and Y 4′ 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
85
+ page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
86
+ page_content=' SU(5) LEPTOQUARK CONTRIBUTION TO RD,D∗ The general expression of the effective Hamiltonian for b → cl ¯νl can be written as [24] Heff = 4GF Vcb √ 2 � (1 + gVL)[¯cγµPLb][¯lγµPLνl] + gVR[¯cγµPRb][¯lγµPLνl] + gSL[¯cPLb][¯lPLνl] + gSR[¯cPRb][¯lPLνl] + gT [¯cσµντ PLb][¯lσµνPLνl] � ,(15) where GF is the Fermi coupling constant, Vcb is the Cabibbo-Kobayashi-Maskawa (CKM) matrix element be- tween charm and bottom quarks while PL/R = (1 ∓ 3 γ5)/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
87
+ page_content=' Here, gi is defined as gi = CNP i /CSM, i ≡ VL, VR, SL, SR, T , with CSM = 4GF Vcb √ 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
88
+ page_content=' Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
89
+ page_content=' 15 shows that gVL = gVR = gSR = 0, whereas gSL and gT are given by gSL = − √ 2Z M 2 φGF , gST = gSL 4 = − Z 2 √ 2M 2 φGF , (16) with Z = � Y 2 12V PMNS 13 + Y 2 22V PMNS 23 + Y 2 32V PMNS 33 � � Y 4′ 13V CKM 13 V CKM 23 + Y 4′ 23 � (17) Substituting with the SM parameters as well as the form factors involved in the definition of the matrix ele- ments to their central values, one finds [25] R(D) = R(D)SM� 1 + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
90
+ page_content='02|gSL|2 + 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
91
+ page_content='9|gT|2 + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
92
+ page_content='49 Re[g∗ SL] + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
93
+ page_content='14 Re[g∗ T ] � , (18) R(D∗) = R(D∗)SM� 1 + 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
94
+ page_content='04|gSL|2 + 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
95
+ page_content='07|gT|2 − 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
96
+ page_content='11 Re[g∗ SL] − 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
97
+ page_content='12 Re[g∗ T ] � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
98
+ page_content=' (19) A few remarks are in order.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
99
+ page_content=' First, the gSL and gT can be complex due to non-zero phases in U PMNS as well as complex values of the Yukawa couplings Y 2 and Y 4′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
100
+ page_content=' Sec- ond, because the tree-level scalar leptoquark contributes to the branching ratio of the tauonic decay B− c → τ −¯ντ, experimental constraints from this decay must be in- cluded in our analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
101
+ page_content=' The modified branching ratio BR(B− c → τ −¯ντ) is given by [25–27] BR(B− c →τ −¯ντ)=BR(B− c →τ −¯ντ)SM|1−4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
102
+ page_content='065gSL|2, (20) with BR(B− c → τ −¯ντ)SM = (2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
103
+ page_content='25 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
104
+ page_content='21) × 10−2 [28].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
105
+ page_content=' The experimental bound on BR(B− c → τ −¯ντ) varies from ≤ 10% to ≤ 60% [28–31].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
106
+ page_content=' Third, it is also worth noting that our type of scalar leptoquarks would not contribute to lepton flavor violation, like τ → µγ or B − ¯B mixing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
107
+ page_content=' Fourth, we impose the constraints of the D∗ and τ lon- gitudinal polarizations that come from Belle experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
108
+ page_content=' Their expressions depend on the same Wilson coefficients affecting RD and RD∗, which are written as [25, 27] F D∗ L F D∗ L,SM = � RD∗ RSM D∗ �−1� 1 + 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
109
+ page_content='08|gSL|2 + 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
110
+ page_content='02|gT|2 − 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
111
+ page_content='24 Re[g∗ SL] − 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
112
+ page_content='37 Re[g∗ T] � (21) P D∗ τ P D∗ τ,SM = � RD∗ RSM D∗ �−1� 1 − 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
113
+ page_content='07|gSL|2 − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
114
+ page_content='86|gT|2 + 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
115
+ page_content='22 Re[g∗ SL] − 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
116
+ page_content='37 Re[g∗ T] � (22) The experimental values of F D L and P D∗ τ are given by 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
117
+ page_content='60 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
118
+ page_content='08 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
119
+ page_content='035 [32] and −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
120
+ page_content='38 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
121
+ page_content='51+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
122
+ page_content='21 −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
123
+ page_content='16 [4, 5, 33] respectively, whereas their SM predictions are 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
124
+ page_content='46±0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
125
+ page_content='04 [34] and −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
126
+ page_content='497 ± 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
127
+ page_content='013 [35] Finally, running the coeffi- cients gSL and gT from the scale µ = 1T eV to the scale mb = 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
128
+ page_content='2GeV implies that [36, 37]: � gSL gT � = � 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
129
+ page_content='71 0 0 1 � � gSL(µ = 1T eV ) gT (µ = 1T eV ) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
130
+ page_content=' (23) In the presence of the aforementioned experimental constraints, we performed a numerical analysis of RD and RD∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
131
+ page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
132
+ page_content=' 1, we show the dependence of RD and RD∗ on the most relevant parameters, which are the mass of leptoquark Mφ (left panel) and the real and imag- inary parts of the Yukawa coupling Y 4′ 23 (right panel).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
133
+ page_content=' The other parameters in these plots were set as follows: Y 2 12 = −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
134
+ page_content='5, Y 2 22 = Y 2 32 = Y 4′ 13 = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
135
+ page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
136
+ page_content=' Furthermore, the coupling Y 4′ 23 is fixed with 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
137
+ page_content='48 + 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
138
+ page_content='1i in the plot of RD and RD∗ versus Mφ (left panel), whereas in the 3D plot of RD and RD∗ versus real and imaginary parts of Y 4′ 23 (right panel), the mass Mφ varies along the [800, 1500] GeV, while real and imaginary parts of Y 4′ 23 vary along the [−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
139
+ page_content='5, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
140
+ page_content='5] and [−0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
141
+ page_content='5, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
142
+ page_content='5], respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
143
+ page_content=' The correlation between RD and RD∗ is shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
144
+ page_content=' 2, left-panel, and the correlation between the constraints on the BR(B− c → τ −¯ντ) and RD and RD∗ is highlighted in the right-panel of this plot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
145
+ page_content=' The parameters are set in the same way as in the previous plots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
146
+ page_content=' These plots show that in this class of models, both RD and RD∗ can be significantly enhanced and lie within one sigma of the recent experimental limits, with scalar leptoquark masses of order one TeV, which is consistent with experimental constraints.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
147
+ page_content=' 4 1000 1050 1100 1150 1200 1250 1300 1350 1400 1450 M (GeV) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
148
+ page_content='28 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
149
+ page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
150
+ page_content='32 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
151
+ page_content='34 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
152
+ page_content='36 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
153
+ page_content='38 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
154
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
155
+ page_content='42 RD & R D * RD RD 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
156
+ page_content='26 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
157
+ page_content='28 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
158
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
159
+ page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
160
+ page_content='32 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
161
+ page_content='34 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
162
+ page_content='2 RD&R D * 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
163
+ page_content='36 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
164
+ page_content="38 (Y 23 4' ) 0 0." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
165
+ page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
166
+ page_content="4 (Y 23 4' ) 0." metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
167
+ page_content='42 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
168
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
169
+ page_content='5 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
170
+ page_content='4 RD RD FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
171
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
172
+ page_content=' RD and RD∗ as function of the Letoquark mass and and real and imaginary parts of the Yukawa coupling Y23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
173
+ page_content=' The other parameters are fixed as mentioned in the text.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
174
+ page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
175
+ page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
176
+ page_content='32 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
177
+ page_content='34 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
178
+ page_content='36 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
179
+ page_content='38 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
180
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
181
+ page_content='42 RD 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
182
+ page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
183
+ page_content='26 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
184
+ page_content='27 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
185
+ page_content='28 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
186
+ page_content='29 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
187
+ page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
188
+ page_content='31 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
189
+ page_content='32 RD * 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
190
+ page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
191
+ page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
192
+ page_content='15 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
193
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
194
+ page_content='25 BR (B ) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
195
+ page_content='26 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
196
+ page_content='28 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
197
+ page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
198
+ page_content='32 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
199
+ page_content='34 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
200
+ page_content='36 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
201
+ page_content='38 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
202
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
203
+ page_content='42 RD & R D * RD RD FIG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
204
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
205
+ page_content=' The correlation between RD and RD∗ (left) and between both RD and RD∗ and BR(B− c → τ −¯ντ) (right).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
206
+ page_content=' The scan is conducted over the regions of parameter space mentioned above.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
207
+ page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
208
+ page_content=' SU(5) LEPTOQUARK CONTRIBUTION TO RK,K∗ In this section, we show that, while the scalar lep- toquark causes non-universality of lepton flavor in the process B → Dℓν, it does not necessarily cause non- universality in the process B → Kℓ+ℓ−.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
209
+ page_content=' The Lagrangian that generates the b → sℓ+ℓ− transition is given by L=−4Y 4′ AB ¯e′BPLV CKM AK di′ Kφi2−4Y 4′ AB ¯d′iKV CKM∗ AK PR e ′ Bφ∗ i2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
210
+ page_content=' (24) Thus, for b → s µ µ+, the Lagrangian is given as L ⊃ −4Y 4′ 32 ¯µ′PLbi′φi2 − 4Y 4′∗ 12 ¯ Si′V CKM∗ 12 PR µ ′φ∗ i2 − 4Y 4′∗ 32 ¯ Si′V CKM∗ 32 PR µ ′φ∗ i2, (25) where V CKM 13 ≈ 0 and V CKM 33 ≈ 1 are assumed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
211
+ page_content=' Also, we may neglect V CKM 32 respect V CKM 12 (although we in- clude all terms in our numerical calculations).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
212
+ page_content=' Thus, the amplitude of this process is given by M = 8Y 4′ 32Y 4′∗ 12 V CKM∗ 12 M 2 φ � ¯UsγµPLUb �� ¯UµγµPLVν � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
213
+ page_content=' (26) We used the Fierz transformation identity � ¯UsPRVµ �� ¯ UµPLUb � = 1 2 � ¯UsγµPLUb �� ¯UµγµPLvµ � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
214
+ page_content=' (27) As a result, the Wilson coefficient Cµ 9 for b → s µ µ+ process is written as Cµ 9 (Λ) = 8Y 4′ 32Y 4′∗ 12 V CKM∗ 12 M 2 φ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
215
+ page_content=' (28) 5 where the scale Λ ≈ 1TeV, and Cµ 10(Λ) = −Cµ 9 (Λ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
216
+ page_content=' On the other hand, the Lagrangian that generates the pro- cess b → s e e+ is given by L = − 4Y 4′ 31 ¯e ′PLbi′φi2 − 4Y 4′∗ 21 ¯ Si′PRe ′φ∗ i2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
217
+ page_content=' (29) After applying Fierz identity, the amplitude of b → s e e+ is given by M = 8Y 4′ 31Y 4′∗ 21 M 2 φ � ¯UsγµPLUb �� ¯UeγµPLVe � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
218
+ page_content=' (30) Hence, the Wilson coefficient Ce 9(Λ) for b → s e e+ will be Ce 9(Λ) = 8Y 4′ 31Y 4′∗ 21 M 2 φ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
219
+ page_content=' (31) Moreover, Ce 10(Λ) = −Ce 9(Λ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
220
+ page_content=' The effective Hamiltonian Heff for RK process is given by Heff = � i � Ci(µb)Oi(µb) + ˜Ci(µb) ˜Oi(µb) � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
221
+ page_content=' (32) Through renormalization group equation (RGE), we ob- tain Ce,µ 9,10(Λ) = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
222
+ page_content='2 Ce,µ 9,10(µb), (33) where Oi(µb) are ∆B = 1 transition operator, which is evaluated at the mb scale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
223
+ page_content=' ˜Ci(µb), ˜Oi(µb) are obtained by replacing L ↔ R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
224
+ page_content=' The relevant operators that describe the Rk and Rk∗ in our model are O9 = � ¯sγµPLb ��¯lγµl), O10 = � ¯sγµPLb ��¯lγµγ5l).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
225
+ page_content=' (34) The Rk and Rk∗ expressions are written as Rk ≈1 + ∆+, (35) Rk∗ ≈1 + ∆+ + p(∆+ − ∆−), (36) where p is a function of q2 min and q2 max and ∆± is given by ∆± = 2 |CSM 9 |2 + |CSM 10 |2 � ℜ � CSM 9 (CNP,µ 9 ± ˜ C9 NP,µ)∗� + ℜ � CSM 10 (CNP,µ 10 ± ˜ C10 NP,µ)∗� − (µ ↔ e) � (37) For our model, ˜CNP 9,10 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
226
+ page_content=' Therefore, we obtain ∆+ = ∆− = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
227
+ page_content='4 � CSM 9 − CSM 10 � |CSM 9 |2 + |CSM 10 |2 ℜ � CNP,µ 9 (µb)−CNP,e 9 (µb) �∗ (38) It is worth mentioning that, whereas RK,K∗ is essen- tially dependent on the couplings Y 4′ 21 and Y 4′ 32, RD,D∗ is dependent on Y 2 22, Y 2 33 and Y 4′ 23 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
228
+ page_content=' As a result, it is entirely possible to keep RK,K∗ equal to the SM expectation, con- sistently with the new LHCb results, while leaving RD,D∗ intact.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
229
+ page_content=' To make RK,K∗ close to one, ∆+ should be very small.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
230
+ page_content=' This can be accomplished by having Y 4′ 12 ≪ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
231
+ page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
232
+ page_content=' CONCLUSIONS In this paper we have demonstrated that, in the pres- ence of experimental constraints on flavor and lepton violation observables, measured values of RD and RD∗ within 1σ can be explained in non-minimal SU(5) with adjoint 45-dimensional Higgs multiplet.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
233
+ page_content=' Enhancements for both RD and RD∗ are made possible by a tree level transition of b → cτν, which is mediated by the associ- ated scalar leptoquark.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
234
+ page_content=' We also emphasized that even though this leptoquark may contribute to RK and RK∗, they remain independent of RD and RD∗ enhancements because they are given in terms of different Yukawa cou- plings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
235
+ page_content=' As a result, their contributions can be easily sup- pressed, and RK and RK∗ continue to be identical to SM predictions, which are consistent with the most recent LHCb data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
236
+ page_content=' ACKNOWLEDGEMENTS This work is partially supported by Science, Tech- nology & Innovation Funding Authority (STDF) under grant number 37272.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
237
+ page_content=' 6 REFERENCES [1] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
238
+ page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
239
+ page_content=' Lees et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
240
+ page_content=' [BaBar Collaboration], Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
241
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
242
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
243
+ page_content=' 109, 101802 (2012) [arXiv:1205.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
244
+ page_content='5442 [hep-ex]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
245
+ page_content=' [2] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
246
+ page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
247
+ page_content=' Lees et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
248
+ page_content=' [BaBar Collaboration], Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
249
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
250
+ page_content=' D 88, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
251
+ page_content=' 7, 072012 (2013) [arXiv:1303.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
252
+ page_content='0571 [hep-ex]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
253
+ page_content=' [3] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
254
+ page_content=' Huschle et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
255
+ page_content=' [Belle Collaboration], Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
256
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
257
+ page_content=' D 92, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
258
+ page_content=' 7, 072014 (2015) [arXiv:1507.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
259
+ page_content='03233 [hep-ex]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
260
+ page_content=' [4] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
261
+ page_content=' Hirose et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
262
+ page_content=' [Belle Collaboration], Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
263
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
264
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
265
+ page_content=' 118, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
266
+ page_content=' 21, 211801 (2017) [arXiv:1612.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
267
+ page_content='00529 [hep-ex]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
268
+ page_content=' [5] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
269
+ page_content=' Hirose et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
270
+ page_content=' [Belle Collaboration], Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
271
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
272
+ page_content=' D 97, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
273
+ page_content=' 1, 012004 (2018) [arXiv:1709.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
274
+ page_content='00129 [hep-ex]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
275
+ page_content=' [6] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
276
+ page_content=' Caria et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
277
+ page_content=' [Belle Collaboration], Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
278
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
279
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
280
+ page_content=' 124, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
281
+ page_content=' 16, 161803 (2020) [arXiv:1910.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
282
+ page_content='05864 [hep-ex]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
283
+ page_content=' [7] LHCb Collaboration, https://indico.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
284
+ page_content='cern.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
285
+ page_content='ch/event/1187939/ (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
286
+ page_content=' [8] https://hflav-eos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
287
+ page_content='web.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
288
+ page_content='cern.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
289
+ page_content='ch/hflav- eos/semi/spring21/html/RDsDsstar/RDRDs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
290
+ page_content='html (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
291
+ page_content=' [9] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
292
+ page_content=' Bigi and P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
293
+ page_content=' Gambino, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
294
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
295
+ page_content=' D 94, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
296
+ page_content=' 7, 094008 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
297
+ page_content=' [arXiv:1606.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
298
+ page_content='08030 [hep-ph]] [10] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
299
+ page_content=' Gambino, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
300
+ page_content=' Jung and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
301
+ page_content=' Schacht, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
302
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
303
+ page_content=' B 795, 386-390 (2019) [arXiv:1905.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
304
+ page_content='08209 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
305
+ page_content=' [11] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
306
+ page_content=' Bordone, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
307
+ page_content=' Jung and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
308
+ page_content=' van Dyk, Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
309
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
310
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
311
+ page_content=' C 80, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
312
+ page_content=' 2, 74 (2020) [arXiv:1908.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
313
+ page_content='09398 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
314
+ page_content=' [12] LHCb collaboration, arXiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
315
+ page_content='2212.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
316
+ page_content='09152 [hep-ex] (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
317
+ page_content=' [13] LHCb collaboration, arXiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
318
+ page_content='2212.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
319
+ page_content='09153 [hep-ex] (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
320
+ page_content=' [14] Marzia Bordone, Gino Isidori and Andrea Pattori,Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
321
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
322
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
323
+ page_content=' C 76, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
324
+ page_content=' 8, 440 (2016) [arXiv:1605.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
325
+ page_content='07633 [hep- ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
326
+ page_content=' [15] Ilja Dorsner, Svjetlana Fajfer, Nejc Kosnik, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
327
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
328
+ page_content=' D 86, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
329
+ page_content=' 1, 015013 (2012) [ arXiv:1204.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
330
+ page_content='0674v2 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
331
+ page_content=' [16] Syuhei Iguro, Michihisa Takeuchi and Ryoutaro Watan- abe, Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
332
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
333
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
334
+ page_content=' C 81, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
335
+ page_content=' 5, 406 (2021) [arXiv:2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
336
+ page_content='02486 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
337
+ page_content=' [17] David Marzocca and Sokratis Trifinopoulos, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
338
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
339
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
340
+ page_content=' 127, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
341
+ page_content=' 6, 061803 (2021) [arXiv:2104.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
342
+ page_content='05730 [hep- ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
343
+ page_content=' [18] Arvind Bhaskar and Anirudhan A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
344
+ page_content=' Madathil and Tanu- moy Mandal and Subhadip Mitra, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
345
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
346
+ page_content=' D 106, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
347
+ page_content=' 11, 115009 (2022) [arXiv:2204.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
348
+ page_content='09031 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
349
+ page_content=' [19] Peter Cox, Alexander Kusenko, Olcyr Sumensari and Tsutomu T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
350
+ page_content=' Yanagida, JHEP 05, 35 (2017) [arXiv:1612.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
351
+ page_content='03923 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
352
+ page_content=' [20] Bartosz Fornal and Benjam´ın Grinstein, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
353
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
354
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
355
+ page_content=' 119, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
356
+ page_content=' 24, 241801 (2017) [ arXiv:1706.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
357
+ page_content='08535 [hep-ph].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
358
+ page_content=' [21] Ilja Dorsner, Pavel Fileviez Perez, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
359
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
360
+ page_content=' B 642, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
361
+ page_content=' 03, 248-252 (2006) [arXiv:0606062 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
362
+ page_content=' [22] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
363
+ page_content=' Khalil, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
364
+ page_content=' Salem, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
365
+ page_content=' Allam, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
366
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
367
+ page_content=' D 89, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
368
+ page_content=' 09, 095011 (2015) [arXiv:1401.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
369
+ page_content='1482v2 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
370
+ page_content=' [23] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
371
+ page_content=' Khalil, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
372
+ page_content=' Salem, Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
373
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
374
+ page_content=' B 876, 473 (2013) [arXiv:1304.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
375
+ page_content='3689 [hep-ph]] [24] Minoru Tanaka and Ryoutaro Watanabe, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
376
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
377
+ page_content=' D 87, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
378
+ page_content=' 3, 034028 (2013) [arXiv:1212.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
379
+ page_content='1878 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
380
+ page_content=' [25] Syuhei Iguro, Teppei Kitahara, Yuji Omura, Ryoutaro Watanabe and Kei Yamamoto,JHEP 02, 194 (2019) [arXiv 1811.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
381
+ page_content='08899 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
382
+ page_content=' [26] Pouya Asadi, Matthew R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
383
+ page_content=' Buckley and David Shih, JHEP 09, 10 (2018) [arXiv:1804.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
384
+ page_content='04135 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
385
+ page_content=' [27] Pouya Asadi, Matthew R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
386
+ page_content=' Buckley and David Shih, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
387
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
388
+ page_content=' D 99, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
389
+ page_content=' 3, 035015 (2019) [arXiv:1810.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
390
+ page_content='06597 [hep- ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
391
+ page_content=' [28] Robert Fleischer, Ruben Jaarsma and Gilberto Tetlalmatzi-Xolocotzi, Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
392
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
393
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
394
+ page_content=' C 81, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
395
+ page_content='7, 658 (2021) [arXiv:2104.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
396
+ page_content='04023 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
397
+ page_content=' [29] Debjyoti Bardhan and Diptimoy Ghosh, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
398
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
399
+ page_content=' D 100, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
400
+ page_content=' 1, 011701 (2019) [arXiv:1904.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
401
+ page_content='10432 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
402
+ page_content=' [30] Monika Blanke, Andreas Crivellin, Stefan de Boer, Teppei Kitahara, Marta Moscati, Ulrich Nierste and Ivan Nisandzic,Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
403
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
404
+ page_content=' D 99, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
405
+ page_content='7, 075006 (2019) [arXiv:1811.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
406
+ page_content='09603 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
407
+ page_content=' [31] Monika Blanke, Andreas Crivellin, Teppei Kitahara, Marta Moscati, Ulrich Nierste and Ivan Nisandzic,Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
408
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
409
+ page_content=' D 100, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
410
+ page_content=' 3, 035035 (2019) [arXiv:1905.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
411
+ page_content='08253 [hep- ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
412
+ page_content=' [32] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
413
+ page_content=' Abdesselam et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
414
+ page_content=' [Belle Collaboration], arXiv:1903.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
415
+ page_content='03102 [hep-ex] (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
416
+ page_content=' [33] Karol Adamczyk, arXiv:1901.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
417
+ page_content='06380 [hep-ex] (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
418
+ page_content=' [34] Ashutosh Kumar Alok, Dinesh Kumar, Suman Kumb- hakar and S Uma Sankar, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
419
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
420
+ page_content=' D 95, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
421
+ page_content=' 11, 115038 (2017), [arXiv:1606.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
422
+ page_content='03164 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
423
+ page_content=' [35] Minoru Tanaka and Ryoutaro Watanabe, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
424
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
425
+ page_content=' D 87, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
426
+ page_content=' 3, 034028 (2013), [arXiv:1212.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
427
+ page_content='1878v3 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
428
+ page_content=' [36] Mart´ın Gonz´alez-Alonso, Jorge Martin Camalich and Kin Mimouni,Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
429
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
430
+ page_content=' B 772, 777-785 (2017), [arXiv:1706.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
431
+ page_content='00410v2 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
432
+ page_content=' [37] Syuhei Iguro, Michihisa Takeuchi and Ryoutaro Watanabe,Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
433
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
434
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
435
+ page_content=' C 81, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
436
+ page_content=' 5, 406 (2021), [arXiv2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
437
+ page_content='02486v4 [hep-ph]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/L9E0T4oBgHgl3EQfSwBA/content/2301.02226v1.pdf'}
M9E2T4oBgHgl3EQfBgYX/content/2301.03602v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ade93e4abaabfc9bda023d39eeede12852682887d58a8fd54db7c9b549e05c7c
3
+ size 217632