jackkuo commited on
Commit
74906ef
·
verified ·
1 Parent(s): 86482b4

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +56 -0
  2. 0NAzT4oBgHgl3EQfRPtW/content/tmp_files/2301.01212v1.pdf.txt +596 -0
  3. 0NAzT4oBgHgl3EQfRPtW/content/tmp_files/load_file.txt +0 -0
  4. 0tE5T4oBgHgl3EQfOg6n/content/2301.05498v1.pdf +3 -0
  5. 0tE5T4oBgHgl3EQfOg6n/vector_store/index.faiss +3 -0
  6. 0tE5T4oBgHgl3EQfOg6n/vector_store/index.pkl +3 -0
  7. 19AyT4oBgHgl3EQfPvYS/content/2301.00028v1.pdf +3 -0
  8. 19AyT4oBgHgl3EQfPvYS/vector_store/index.faiss +3 -0
  9. 19AyT4oBgHgl3EQfPvYS/vector_store/index.pkl +3 -0
  10. 19E2T4oBgHgl3EQf5QiW/content/tmp_files/2301.04189v1.pdf.txt +753 -0
  11. 19E2T4oBgHgl3EQf5QiW/content/tmp_files/load_file.txt +0 -0
  12. 39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf +3 -0
  13. 39E4T4oBgHgl3EQf0g2Q/vector_store/index.faiss +3 -0
  14. 39E4T4oBgHgl3EQf0g2Q/vector_store/index.pkl +3 -0
  15. 4tE3T4oBgHgl3EQfQQmX/content/tmp_files/2301.04411v1.pdf.txt +846 -0
  16. 4tE3T4oBgHgl3EQfQQmX/content/tmp_files/load_file.txt +0 -0
  17. 5dE1T4oBgHgl3EQfmgRl/content/tmp_files/2301.03298v1.pdf.txt +1313 -0
  18. 5dE1T4oBgHgl3EQfmgRl/content/tmp_files/load_file.txt +0 -0
  19. 6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf +3 -0
  20. 6NAyT4oBgHgl3EQfcffh/vector_store/index.pkl +3 -0
  21. 6dAzT4oBgHgl3EQf-P4i/vector_store/index.faiss +3 -0
  22. 8NE1T4oBgHgl3EQfTwPq/vector_store/index.faiss +3 -0
  23. 8tE4T4oBgHgl3EQf3A1I/vector_store/index.faiss +3 -0
  24. 8tE4T4oBgHgl3EQf3A1I/vector_store/index.pkl +3 -0
  25. 9dE0T4oBgHgl3EQffwCf/content/tmp_files/2301.02409v1.pdf.txt +0 -0
  26. 9dE0T4oBgHgl3EQffwCf/content/tmp_files/load_file.txt +0 -0
  27. 9dFAT4oBgHgl3EQfpx0O/content/2301.08641v1.pdf +3 -0
  28. 9dFAT4oBgHgl3EQfpx0O/vector_store/index.faiss +3 -0
  29. ANE4T4oBgHgl3EQfEgyT/content/tmp_files/2301.04878v1.pdf.txt +486 -0
  30. ANE4T4oBgHgl3EQfEgyT/content/tmp_files/load_file.txt +0 -0
  31. ANFQT4oBgHgl3EQfMDYd/vector_store/index.faiss +3 -0
  32. AtAyT4oBgHgl3EQfq_mZ/vector_store/index.pkl +3 -0
  33. C9A0T4oBgHgl3EQfAf_H/vector_store/index.faiss +3 -0
  34. C9AzT4oBgHgl3EQfTvzN/vector_store/index.faiss +3 -0
  35. CtE4T4oBgHgl3EQfeg0W/content/tmp_files/2301.05099v1.pdf.txt +1221 -0
  36. CtE4T4oBgHgl3EQfeg0W/content/tmp_files/load_file.txt +0 -0
  37. FdAzT4oBgHgl3EQfUfww/content/tmp_files/load_file.txt +0 -0
  38. GtE4T4oBgHgl3EQfHgy3/content/tmp_files/2301.04904v1.pdf.txt +900 -0
  39. GtE4T4oBgHgl3EQfHgy3/content/tmp_files/load_file.txt +0 -0
  40. HNE1T4oBgHgl3EQf_Qa5/content/2301.03579v1.pdf +3 -0
  41. HtE2T4oBgHgl3EQfTwfs/content/2301.03807v1.pdf +3 -0
  42. HtE2T4oBgHgl3EQfTwfs/vector_store/index.pkl +3 -0
  43. I9E4T4oBgHgl3EQfhQ2p/vector_store/index.faiss +3 -0
  44. I9E4T4oBgHgl3EQfhQ2p/vector_store/index.pkl +3 -0
  45. INFJT4oBgHgl3EQfFiwP/content/2301.11443v1.pdf +3 -0
  46. INFJT4oBgHgl3EQfFiwP/vector_store/index.pkl +3 -0
  47. K9E2T4oBgHgl3EQfVQcE/content/tmp_files/2301.03820v1.pdf.txt +1776 -0
  48. K9E2T4oBgHgl3EQfVQcE/content/tmp_files/load_file.txt +345 -0
  49. K9FRT4oBgHgl3EQfEDfx/content/tmp_files/2301.13475v1.pdf.txt +883 -0
  50. K9FRT4oBgHgl3EQfEDfx/content/tmp_files/load_file.txt +386 -0
.gitattributes CHANGED
@@ -2419,3 +2419,59 @@ T9FLT4oBgHgl3EQfQi86/content/2301.12033v1.pdf filter=lfs diff=lfs merge=lfs -tex
2419
  lNA0T4oBgHgl3EQfJP8k/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2420
  odE1T4oBgHgl3EQfhwTG/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2421
  VdFOT4oBgHgl3EQf6jSQ/content/2301.12959v1.pdf filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2419
  lNA0T4oBgHgl3EQfJP8k/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2420
  odE1T4oBgHgl3EQfhwTG/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2421
  VdFOT4oBgHgl3EQf6jSQ/content/2301.12959v1.pdf filter=lfs diff=lfs merge=lfs -text
2422
+ etE3T4oBgHgl3EQffAo5/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2423
+ cdFAT4oBgHgl3EQf5x5t/content/2301.08735v1.pdf filter=lfs diff=lfs merge=lfs -text
2424
+ 9dFAT4oBgHgl3EQfpx0O/content/2301.08641v1.pdf filter=lfs diff=lfs merge=lfs -text
2425
+ zdE0T4oBgHgl3EQf_ALP/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2426
+ P9AzT4oBgHgl3EQfWvzh/content/2301.01308v1.pdf filter=lfs diff=lfs merge=lfs -text
2427
+ mdE_T4oBgHgl3EQf7BxL/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2428
+ ytE5T4oBgHgl3EQfNg6I/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2429
+ HtE2T4oBgHgl3EQfTwfs/content/2301.03807v1.pdf filter=lfs diff=lfs merge=lfs -text
2430
+ mdE_T4oBgHgl3EQf7BxL/content/2301.08367v1.pdf filter=lfs diff=lfs merge=lfs -text
2431
+ b9E2T4oBgHgl3EQfwQjN/content/2301.04100v1.pdf filter=lfs diff=lfs merge=lfs -text
2432
+ 6dAzT4oBgHgl3EQf-P4i/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2433
+ 19AyT4oBgHgl3EQfPvYS/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2434
+ ytE5T4oBgHgl3EQfNg6I/content/2301.05490v1.pdf filter=lfs diff=lfs merge=lfs -text
2435
+ C9A0T4oBgHgl3EQfAf_H/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2436
+ 9dFAT4oBgHgl3EQfpx0O/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2437
+ b9E2T4oBgHgl3EQfwQjN/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2438
+ lNA0T4oBgHgl3EQfJP8k/content/2301.02086v1.pdf filter=lfs diff=lfs merge=lfs -text
2439
+ VdE3T4oBgHgl3EQf0Qv6/content/2301.04737v1.pdf filter=lfs diff=lfs merge=lfs -text
2440
+ HNE1T4oBgHgl3EQf_Qa5/content/2301.03579v1.pdf filter=lfs diff=lfs merge=lfs -text
2441
+ utE2T4oBgHgl3EQf2QjI/content/2301.04160v1.pdf filter=lfs diff=lfs merge=lfs -text
2442
+ utE2T4oBgHgl3EQf2QjI/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2443
+ qtE4T4oBgHgl3EQfUww8/content/2301.05018v1.pdf filter=lfs diff=lfs merge=lfs -text
2444
+ ktE0T4oBgHgl3EQf7gLb/content/2301.02778v1.pdf filter=lfs diff=lfs merge=lfs -text
2445
+ NtFLT4oBgHgl3EQfOS8u/content/2301.12023v1.pdf filter=lfs diff=lfs merge=lfs -text
2446
+ _9E4T4oBgHgl3EQfEgsU/content/2301.04877v1.pdf filter=lfs diff=lfs merge=lfs -text
2447
+ ANFQT4oBgHgl3EQfMDYd/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2448
+ 0tE5T4oBgHgl3EQfOg6n/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2449
+ RtA0T4oBgHgl3EQfDv-e/content/2301.02008v1.pdf filter=lfs diff=lfs merge=lfs -text
2450
+ iNE1T4oBgHgl3EQffgTu/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2451
+ qtE4T4oBgHgl3EQfUww8/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2452
+ 19AyT4oBgHgl3EQfPvYS/content/2301.00028v1.pdf filter=lfs diff=lfs merge=lfs -text
2453
+ cdFAT4oBgHgl3EQf5x5t/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2454
+ 0tE5T4oBgHgl3EQfOg6n/content/2301.05498v1.pdf filter=lfs diff=lfs merge=lfs -text
2455
+ XNFLT4oBgHgl3EQfTi_1/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2456
+ XtE1T4oBgHgl3EQfcAQQ/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2457
+ SNAzT4oBgHgl3EQf0f5U/content/2301.01784v1.pdf filter=lfs diff=lfs merge=lfs -text
2458
+ VdE3T4oBgHgl3EQf0Qv6/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2459
+ ptAzT4oBgHgl3EQfq_1g/content/2301.01637v1.pdf filter=lfs diff=lfs merge=lfs -text
2460
+ 8NE1T4oBgHgl3EQfTwPq/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2461
+ 6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf filter=lfs diff=lfs merge=lfs -text
2462
+ YdFJT4oBgHgl3EQf6i0m/content/2301.11674v1.pdf filter=lfs diff=lfs merge=lfs -text
2463
+ _9E4T4oBgHgl3EQfEgsU/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2464
+ 39E4T4oBgHgl3EQf0g2Q/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2465
+ P9AzT4oBgHgl3EQfWvzh/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2466
+ ktE0T4oBgHgl3EQf7gLb/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2467
+ RdE2T4oBgHgl3EQfBwYp/content/2301.03605v1.pdf filter=lfs diff=lfs merge=lfs -text
2468
+ INFJT4oBgHgl3EQfFiwP/content/2301.11443v1.pdf filter=lfs diff=lfs merge=lfs -text
2469
+ YdFJT4oBgHgl3EQf6i0m/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2470
+ T9FLT4oBgHgl3EQfQi86/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2471
+ C9AzT4oBgHgl3EQfTvzN/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2472
+ I9E4T4oBgHgl3EQfhQ2p/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2473
+ 39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf filter=lfs diff=lfs merge=lfs -text
2474
+ KdE3T4oBgHgl3EQfAQmY/content/2301.04256v1.pdf filter=lfs diff=lfs merge=lfs -text
2475
+ MtE3T4oBgHgl3EQfYwqL/content/2301.04491v1.pdf filter=lfs diff=lfs merge=lfs -text
2476
+ NtFLT4oBgHgl3EQfOS8u/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
2477
+ 8tE4T4oBgHgl3EQf3A1I/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
0NAzT4oBgHgl3EQfRPtW/content/tmp_files/2301.01212v1.pdf.txt ADDED
@@ -0,0 +1,596 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.01212v1 [q-fin.RM] 31 Dec 2022
2
+ Assessment of creditworthiness models privacy-preserving
3
+ training with synthetic data
4
+ Ricardo Mu˜noz-Cancino1, Cristi´an Bravo2, Sebasti´an A. R´ıos3, and Manuel Gra˜na4
5
+ 1,3Business Intelligence Research Center (CEINE), Industrial Engineering Department, University of
6
+ Chile, Beauchef 851, Santiago 8370456, Chile
7
+ 2Department of Statistical and Actuarial Sciences, The University of Western Ontario,1151 Richmond
8
+ Street, London, Ontario, N6A 5B7, Canada.
9
+ 4Computational Intelligence Group, University of Basque Country, 20018 San Sebasti´an, Spain.
10
+ Abstract
11
+ Credit scoring models are the primary instrument used by financial institutions to manage
12
+ credit risk. The scarcity of research on behavioral scoring is due to the difficult data access.
13
+ Financial institutions have to maintain the privacy and security of borrowers’ information
14
+ refrain them from collaborating in research initiatives. In this work, we present a methodology
15
+ that allows us to evaluate the performance of models trained with synthetic data when they
16
+ are applied to real-world data. Our results show that synthetic data quality is increasingly
17
+ poor when the number of attributes increases. However, creditworthiness assessment models
18
+ trained with synthetic data show a reduction of 3% of AUC and 6% of KS when compared with
19
+ models trained with real data. These results have a significant impact since they encourage
20
+ credit risk investigation from synthetic data, making it possible to maintain borrowers’ privacy
21
+ and to address problems that until now have been hampered by the availability of information.
22
+ Keywords: credit scoring; synthetic data; generative adversarial networks; variational au-
23
+ toencoders
24
+ 1
25
+ Introduction
26
+ For decades financial institutions have used mathematical models to determine borrowers’ credit-
27
+ worthiness and consequently manage credit risk. The main objective of these models is to char-
28
+ acterize each borrower with the probability of not complying with their contractual obligations
29
+ The Basel Committee on Banking Supervision (2000), avoiding to give loans to applicants that
30
+ will not be able to pay them back. Despite all the years of research on credit scoring, there is still
31
+ little done on behavioral scoring models, which are the credit scoring models used on those clients
32
+ who have already been granted a loan, because it requires large volumes of data and a relevant
33
+ ∗NOTICE: This is a preprint of a published work. Changes resulting from the publishing process, such as editing, corrections,
34
+ structural formatting, and other quality control mechanisms may not be reflected in this version of the document. Please cite this work
35
+ as follows: Mu˜noz-Cancino, R., Bravo, C., R´ıos, S.A., Gra˜na, M. (2022). Assessment of Creditworthiness Models Privacy-Preserving
36
+ Training with Synthetic Data. In: , et al. Hybrid Artificial Intelligent Systems. HAIS 2022. Lecture Notes in Computer Science(), vol
37
+ 13469. Springer, Cham. https://doi.org/10.1007/978-3-031-15471-3 32
38
+ ∗E-mail
39
+ addresses:
40
+ rimunoz@uchile.cl
41
+ (Ricardo
42
+ Mu˜noz-Cancino),
43
+ cbravoro@uwo.ca
44
+ (Cristi´an
45
+ Bravo),
46
+ srios@dii.uchile.cl (Sebasti´an A. R´ıos), manuel.grana@ehu.es (Manuel Gra˜na)
47
+ 1
48
+
49
+ historical depth Goh and Lee (2019); Kennedy et al. (2013). In addition, financial institutions are
50
+ often reluctant to collaborate in this type of investigation due to concerns about data security and
51
+ personal privacy. Until now, the use of synthetic data in credit scoring is mainly restricted to bal-
52
+ ancing the minority class in classification problems using the traditional SMOTE Gici´c and Subasi
53
+ (2019), variational autoencoders Wan et al. (2017), and lately generative adversarial networks
54
+ Fiore et al. (2019); Lei et al. (2020); Ngwenduna and Mbuvha (2021). In these studies, synthetic
55
+ records of the minority class are generated, and the original data set is augmented. In this paper,
56
+ we present a framework that allows us to train a model on synthetic data and then apply it to
57
+ real-world data. We also analyze if the model copes with data drift by applying both models to
58
+ real-world data representing the same problem but obtaining the dataset one year later. The main
59
+ findings of our work are:
60
+ • It is possible to train a model on synthetic data that achieves good performance in real
61
+ situations.
62
+ • As the number of features increases, the synthesized data quality gets worse.
63
+ • There is a performance cost for working in a privacy-preserving environment.
64
+ This cost
65
+ corresponds to a loss of predictive power of approximately 3% if measured in AUC and 6%
66
+ in KS.
67
+ 2
68
+ Related Work
69
+ 2.1
70
+ Credit Scoring
71
+ Credit scoring aims to manage credit risk, defined as the potential for a borrower to default on
72
+ established contractual obligations The Basel Committee on Banking Supervision (2000). These
73
+ models intensively use borrower data, demographic information, payment behavior, and even al-
74
+ ternative data sources such as social networks Mu˜noz-Cancino et al. (2021); ´Oskarsd´ottir et al.
75
+ (2019), psychometrics Djeundje et al. (2021), and geolocation Simumba et al. (2021).
76
+ 2.2
77
+ Generative models for synthetic data generation
78
+ Generative models are a subset of machine learning models whose main objective is to learn
79
+ the real-data distribution and then to generate consistent samples from the learned distribution.
80
+ Working with synthetic data allows addressing problems where real-data is expensive to obtain,
81
+ where a large dataset is needed to train a model, or where the real-data is sensitive or cannot
82
+ be shared Torres (2018). For years, statistical methods were the most used ones to estimate the
83
+ real-world data joint distribution. In this group, Gaussian Mixture Models are the most utilized
84
+ for this task when there are fewer continuous variables. At the same time, Bayesian Networks are
85
+ commonly used for discrete variables. The main problem of these methods is dealing with datasets
86
+ containing numerical and categorical variables. They also present problems when the continuous
87
+ variables have more than one mode and the categorical variables present small categories Xu et al.
88
+ (2020). During the last years, deep learning models have gained popularity to generate synthetic
89
+ data due to their performance and because they allow us to deal with the problems mentioned
90
+ above. The generative adversarial networks and the variational autoencoders stand out within
91
+ these models.
92
+ 2
93
+
94
+ 2.2.1
95
+ Generative Adversarial Networks
96
+ Generative adversarial networks are a deep learning framework based on a game theory scenario
97
+ where a generator network G(·) must compete with a discriminator network D(·). The generator
98
+ network produces samples of synthetic data that attempt to emulate real data. In contrast, the
99
+ discriminator network aims to differentiate between real examples from the training dataset and
100
+ synthetic samples obtained from the generator Goodfellow et al. (2016).
101
+ Its most basic form,
102
+ vanilla GAN, G(·) maps a vector z from a multivariate Gaussian distribution N (0, I) to a vector
103
+ ˆx in the data domain X. While D(·) outputs a probability that indicates whether ˆx is a real
104
+ training samples or a fake sample drawn from G(·) Xu et al. (2020).
105
+ The generator G(·) and
106
+ the discriminator D(·) are alternatively optimized to train a GAN. Vanilla GANs have two main
107
+ problems, representing unbalanced categorical features and expressing numerical features having
108
+ multiple modes. To solve this, Xu et al. (2019) Xu et al. (2019) present a conditional generator
109
+ (CTGAN) that samples records from each category according to the log-frequency; this way, the
110
+ generator can explore all discrete values. Moreover, the multimodal distributions are handled using
111
+ kernel density estimation to assess the number of modes in each numerical feature.
112
+ 2.2.2
113
+ Variational autoencoders
114
+ Autoencoders (AE) are an unsupervised machine learning method that enables two main objec-
115
+ tives: low-dimensional representation and synthetic data generation.
116
+ Variational Autoencoder
117
+ Kingma and Welling (2013) interpret the latent space produced by the encoder as a probability
118
+ distribution modeling the training samples as independent random variables, assuming the poste-
119
+ rior distribution defined by the encoder qθ(z|x) and generative distribution pφ(x|z) defined by the
120
+ decoder. To accomplish that the encoder produces two vectors as output, one of means and the
121
+ other of standard deviations, which are the parameters to be optimized in the model. Xu et al.
122
+ (2019) Xu et al. (2019) present TVAE, a variational autoencoder adaption for tabular data, using
123
+ the same pre-processing as in CTGAN and the evidence lower bound (ELBO) loss.
124
+ 3
125
+ Methodology and Experimental Design
126
+ 3.1
127
+ Dataset
128
+ In this work, we use a dataset provided by a financial institution already used for research on credit
129
+ scoring Mu˜noz-Cancino et al. (2021,2). This dataset includes each borrower financial information
130
+ and social interactions features over two periods: January 2018 and January 2019; each dataset
131
+ contains 500,000 individuals. Each borrower is labeled based on their payment behavior in the
132
+ following 12-month observation period. Each borrower in the 2018 dataset is labeled as a defaulter
133
+ if it was more than 90 days past due between February 2018 and January 2019 and is labeled as a
134
+ non-defaulter if it was not more than 90 days past due. Borrowers from the Jan-2019 dataset are
135
+ similarly tagged. This dataset contains three feature subsets: XF in corresponds to the borrower’s
136
+ financial information, XDegree corresponds to the number of connections the borrower has in the
137
+ social interaction network, and XSocInt are the features extracted from the social interactions.
138
+ 3
139
+
140
+ 3.2
141
+ Synthetic data generation
142
+ A step to privacy-preserving credit scoring model building is to generate a synthetic dataset that
143
+ mimics real-world behavior. In order to accomplish this, we compare the performance of two state-
144
+ of-the-art synthetic data generators, CTGAN and TVAE, defined in Sect. 2. The first experiment
145
+ (S01) only compares these methods using borrowers’ features XF in. The objective of this stage
146
+ is to find a method to generate synthetic data from real data, and it is not part of this study
147
+ to find the best way to generate them. Despite not generating an exhaustive search for the best
148
+ hyper-parameters, we will test two different architectures (Arch) for each synthesizer. Arch A is
149
+ the default configuration for both methods. In the case of CTGAN, Arch B set up the generator
150
+ with two linear residual layers and the discriminator with two linear layers, both of size (64, 64).
151
+ In the case of TVAE Arch B, set hidden layers of (64, 64) for both the encoder and the decoder.
152
+ Then, in experiment S02, we train a new synthesizer using the best architecture from S01. This
153
+ experiment uses the borrowers’ features XF in and exclusively one feature from the network data,
154
+ the node degree XDegree. We only include node degree because its feature enables us to reconstruct
155
+ an entire network using the random graphs generators. Finally, in experiment S03, the borrowers
156
+ and social interaction features (XF in + XDegree + XSocInt) are used to train a synthesizer. This
157
+ experiment corresponds to the traditional approach to generating synthetic data from a dataset
158
+ using social interaction features.
159
+ 3.3
160
+ Borrower’s creditworthiness assessment
161
+ The objective of this stage is to have a framework that allows us to estimate the borrower’s cred-
162
+ itworthiness from a feature set.
163
+ This modeling framework is based on previous investigations
164
+ Mu˜noz-Cancino et al. (2021,2). This stage begins by discarding attributes with low or null predic-
165
+ tive power and selecting uncorrelated attributes. The correlation-based selection method begins by
166
+ selecting the attribute with the highest predictive power. It then discards the possible selections
167
+ if the correlation exceeds a threshold ρ. This step is repeated until no attributes are left to select.
168
+ To ensure the model generalization capability, we work under a K-fold cross-validation scheme;
169
+ in this way, the feature selection and the model training use K-1 folds, and the evaluation is car-
170
+ ried out with the remaining fold. Additionally, we use two holdout datasets, one generated with
171
+ information from the same year as the training dataset but not contained. The second contains
172
+ information from one year later. Both the results of the validation fold and the holdout dataset
173
+ are stored to use a t-test later to compare different models (Flach, 2012, Ch. 12).
174
+ 3.4
175
+ Evaluation Metrics
176
+ In this section, we describe a set of metrics that will help us to evaluate the performance of the
177
+ synthetic data generators and the classification models used for creditworthiness assessment. The
178
+ area under the curve (AUC) is a performance measure used to evaluate classification models
179
+ Bradley (1997). The AUC is an overall measure of performance that can be interpreted as the
180
+ average of the true positive rate for all possible values of the false positive rate. A higher AUC
181
+ indicates a higher overall performance of the classification model Park Seong Ho (2004). Another
182
+ classification performance measure is the F-measure. This metric is calculated as the harmonic
183
+ mean between precision and recall. It is beneficial for dichotomous outputs and when there is
184
+ no preference between maximizing the model’s precision or recall Hripcsak and Rothschild (2005).
185
+ Kolmogorov-Smirnov (KS) statistic measures the distance separating two cumulative distributions
186
+ 4
187
+
188
+ Hodges (1958). The KS statistic ranges between 0 and 1 and is defined as D = maxx |F1(x)−F2(x)|,
189
+ where F1 and F2 are two cumulative distributions. In the case of creditworthiness assessment,
190
+ we are interested in the difference between the cumulative distributions of defaulters and non-
191
+ defaulters, and a higher D indicates a higher discriminatory power.
192
+ However, in the case of
193
+ synthetic data generation, we are interested in the real data distribution and the synthetic data
194
+ distribution being as similar as possible; in this way, a lower D indicates a better synthetic data
195
+ generation. In order for all the acceptance criteria to be the same, we define the KSTest as 1−D;
196
+ in this way, a higher KSTest indicates a better synthetic data generator. In the synthetic data
197
+ generation problem, the KS is only valid to measure the performance for continuous features; to
198
+ handle categorical features, we will use the chi-square test (CS). The CS is a famous test to assess
199
+ the independence of two events McHugh (2013). We will call CSTest to the resulting p-value for
200
+ this test. Therefore a small value indicates we can reject the null hypothesis that synthetic data
201
+ has the real data distribution. In the synthetic data generation problem, we want to maximize the
202
+ CSTest.
203
+ 3.5
204
+ Experimental setup
205
+ The parameters of the univariate selection are set at KSmin = 0.01 and AUCmin = 0.53, i.e., we
206
+ discard feature with a univarite performance lower than KSmin or AUCmin. In the multivariate
207
+ selection process, we set ρ = 0.7 in the process to avoid high correlated features Akoglu (2018). The
208
+ N-Fold Cross-Validation stage is carried out considering N = 10, and in each iteration, the results
209
+ of regularized logistic regression and gradient boosting Friedman (2001) models are displayed.
210
+ 4
211
+ Results and Discussion
212
+ In this section, we present the results of our methodology. We start with the implementation
213
+ details. Then, we compare the synthesizers, and finally, we analyze the creditworthiness assessment
214
+ performance of the models trained using synthetic data.
215
+ 4.1
216
+ Implementation Details
217
+ In this work, we used the Python implementations of Networkx v2.6.3 Hagberg et al. (2008) and
218
+ Synthetic Data Vault (SDV) v5.0.0 Patki et al. (2016) for networks statistics and synthetic data
219
+ generation, respectively. To conduct the experiments, we used a laptop with 8 CPU cores Intel i7
220
+ and 32 GB of RAM.
221
+ 4.2
222
+ Synthetic Data Generation Performance
223
+ The first objective is to analyze the performance of the methods to generate synthetic data pre-
224
+ sented above, CTGAN and TVAE. Table 1 shows the results obtained. The features Synthesizer
225
+ training features corresponds to the training feature set, while Arq indicates the network architec-
226
+ ture defined in Sect. 3.2. The experiment S01 consisted in comparing both synthesizer using two
227
+ different architectures. It is observed that a reduction in the number of layers reduces the execution
228
+ times considerably in both cases, being TVAE, the one that presented the fastest execution times.
229
+ KSTest show us the performance to synthesize continuous features, where TVAE achieves better
230
+ performance than CTGAN. The difference between TVAE architectures is almost negligible when
231
+ 5
232
+
233
+ evaluate continuous features performance. The performance to synthesize categorical features is
234
+ measured using CSTest. In this case, TVAE obtained higher performance again, the differences
235
+ between architectures is slightly higher to architecture A. Another popular approach to measuring
236
+ the synthesizer performance is training a classifier to distinguish between real and synthetic data.
237
+ The column Logistic Detection in Table 1 shows the result after training a logistic regression model;
238
+ the value displayed corresponds to the complementary F-measure. In this way, values closer to 1
239
+ indicate that the classifier cannot distinguish between real and synthetic data, and values closer
240
+ to 0 mean the classifier efficiently detects synthetic data. It can be seen that TVAE achieve the
241
+ best performance, but this performance decreases as we include more features to the synthesizer.
242
+ Table 1: Synthetic data generators performance
243
+ Experiment
244
+ Synthesizer training features
245
+ Synthesizer
246
+ Arch
247
+ Exec Time (m)
248
+ CSTest
249
+ KSTest
250
+ Logistic Detection
251
+ S01
252
+ XF in
253
+ CTGAN
254
+ A
255
+ 410
256
+ 0.836
257
+ 0.864
258
+ 0.697
259
+ B
260
+ 260
261
+ 0.861
262
+ 0.846
263
+ 0.749
264
+ TVAE
265
+ A
266
+ 230
267
+ 0.962
268
+ 0.868
269
+ 0.803
270
+ B
271
+ 130
272
+ 0.952
273
+ 0.861
274
+ 0.756
275
+ S02
276
+ XF in + XDegree
277
+ TVAE
278
+ B
279
+ 140
280
+ 0.935
281
+ 0.836
282
+ 0.644
283
+ S03
284
+ XF in + XDegree + XSocInt
285
+ TVAE
286
+ A
287
+ 400
288
+ 0.924
289
+ 0.809
290
+ 0.539
291
+ S03
292
+ XF in + XDegree + XSocInt
293
+ TVAE
294
+ B
295
+ 320
296
+ 0.907
297
+ 0.825
298
+ 0.542
299
+ S03
300
+ XF in + XDegree + XSocInt
301
+ TVAE
302
+ B
303
+ 465
304
+ 0.930
305
+ 0.819
306
+ 0.513
307
+ 4.3
308
+ Creditworthiness assessment performance on real data
309
+ This section establishes a comparison line for the performance of the models trained with synthetic
310
+ data. In order to establish this comparison, we first trained classifiers using real-world data and
311
+ tested their performance using the holdout datasets previously defined. Table 2 shows the results
312
+ of training models according to the methodology described in 3.3. The performance is measured
313
+ using AUC and KS on the two holdout datasets; the 10-folds mean and its standard deviation are
314
+ shown for each statistic. For each feature set, we trained two classifiers, logistic regression and
315
+ gradient boosting. The results show that gradient boosting obtains better results compared to
316
+ logistic regression. More details of this comparison are shown in Table 3, where we quantify the
317
+ higher predictive power of gradient boosting.
318
+ Table 2: Creditworthiness assessment performance for models trained on real data
319
+ Classifier training
320
+ features
321
+ Classifier
322
+ Holdout 2018
323
+ Holdout 2019
324
+ AUC
325
+ KS
326
+ AUC
327
+ KS
328
+ XF in
329
+ GB
330
+ 0.88 ± 0.001
331
+ 0.59 ± 0.002
332
+ 0.82 ± 0.001
333
+ 0.50 ± 0.002
334
+ XF in
335
+ LR
336
+ 0.87 ± 0.001
337
+ 0.58 ± 0.001
338
+ 0.82 ± 0.001
339
+ 0.50 ± 0.002
340
+ XF in + XDegree + XSocInt
341
+ GB
342
+ 0.88 ± 0.001
343
+ 0.59 ± 0.002
344
+ 0.82 ± 0.001
345
+ 0.50 ± 0.002
346
+ XF in + XDegree + XSocInt
347
+ LR
348
+ 0.87 ± 0.001
349
+ 0.58 ± 0.002
350
+ 0.83 ± 0.001
351
+ 0.50 ± 0.002
352
+ XDegree + XSocInt
353
+ GB
354
+ 0.61 ± 0.002
355
+ 0.17 ± 0.002
356
+ 0.62 ± 0.001
357
+ 0.18 ± 0.002
358
+ XDegree + XSocInt
359
+ LR
360
+ 0.60 ± 0.001
361
+ 0.17 ± 0.002
362
+ 0.61 ± 0.001
363
+ 0.18 ± 0.002
364
+ Based on the results presented above, we will select gradient boosting for the comparisons
365
+ against the models trained on synthetic data that we will present in the next section.
366
+ 4.4
367
+ Creditworthiness assessment performance on synthetic data
368
+ This section aims to know how the performance of a creditworthiness assessment model (the
369
+ classifier) behaves when trained on synthetic data and applied to real-world data. Table 4 shows
370
+ 6
371
+
372
+ Table 3: Gradient boosting and logistic regression comparison on real data (holdout 2018)
373
+ Classifier training features
374
+ AUC diff (%)
375
+ KS diff (%)
376
+ AUC diff p-value
377
+ KS diff p-value
378
+ XF in
379
+ 0.70%
380
+ 1.65%
381
+ 0.000
382
+ 0.000
383
+ XF in + XDegree + XSocInt
384
+ 0.84%
385
+ 1.91%
386
+ 0.000
387
+ 0.000
388
+ XDegree + XSocInt
389
+ 1.65%
390
+ 2.36%
391
+ 0.000
392
+ 0.000
393
+ the performance indicators on real-world data. Considering all synthesizers are trained with at
394
+ least the feature set XF in, the results of training the classifier with XF in are also displayed for all
395
+ synthesizers. It is observed that regardless of the synthesizer, training the classifier incorporating
396
+ at least feature set XF in produces similar performances in 2018 except in S02. However, when we
397
+ analyze how much the model degrades, the model trained with synthetic XF in from synthesizer
398
+ S01 is the one that suffers a minor discrimination power loss. It can be explained in part that a
399
+ better synthesizer manages to capture better the proper relationship between the borrower features
400
+ and the default.
401
+ Table 4: Creditworthiness assessment performance on real data for model trained on synthetic data
402
+ Synthesizer
403
+ Experiment
404
+ Classifier training
405
+ features
406
+ holdout 2018
407
+ holdout 2019
408
+ AUC
409
+ KS
410
+ AUC
411
+ KS
412
+ S01
413
+ XF in
414
+ 0.85 ± 0.003
415
+ 0.53 ± 0.002
416
+ 0.82 ± 0.002
417
+ 0.48 ± 0.002
418
+ S02
419
+ XF in
420
+ 0.82 ± 0.001
421
+ 0.51 ± 0.001
422
+ 0.80 ± 0.001
423
+ 0.46 ± 0.002
424
+ S03
425
+ XF in
426
+ 0.85 ± 0.002
427
+ 0.55 ± 0.002
428
+ 0.80 ± 0.002
429
+ 0.46 ± 0.002
430
+ S03
431
+ XF in + XDegree + XSocInt
432
+ 0.85 ± 0.002
433
+ 0.56 ± 0.003
434
+ 0.80 ± 0.002
435
+ 0.47 ± 0.003
436
+ S03
437
+ XDegree + XSocInt
438
+ 0.60 ± 0.002
439
+ 0.16 ± 0.002
440
+ 0.61 ± 0.003
441
+ 0.18 ± 0.002
442
+ The comparison of performance obtained by the models trained with synthetic data against
443
+ the models trained on real-world data is presented in Table 5. We can understand this comparison
444
+ as the cost of using synthetic data, and it corresponds to the loss of predictive power to preserve
445
+ the borrower’s privacy. We can observe that in the best cases, this decrease in predictive power is
446
+ approximately 3% and 6% when we measure the performance in AUC and KS, respectively.
447
+ Table 5: Comparison between models trained using synthetic data and models trained on real data. ∗∗
448
+ denotes when the difference is statistically significant using 0.05 as the p-value threshold, while ∗ uses 0.1.
449
+ Synthesizer
450
+ Experiment
451
+ Classifier training
452
+ features
453
+ holdout 2018
454
+ holdout 2019
455
+ AUC diff
456
+ KS diff
457
+ AUC diff
458
+ KS diff
459
+ S01
460
+ XF in
461
+ -3.59%∗∗
462
+ -10.09%∗∗
463
+ -0.86%∗∗
464
+ -3.92%∗∗
465
+ S02
466
+ XF in
467
+ -6.24%∗∗
468
+ -13.24%∗∗
469
+ -3.32%∗∗
470
+ -6.48%∗∗
471
+ S03
472
+ XF in
473
+ -2.81%∗∗
474
+ -6.01%∗∗
475
+ -3.21%∗∗
476
+ -6.70%∗∗
477
+ S03
478
+ XF in + XDegree + XSocInt
479
+ -3.12%∗∗
480
+ -5.68%∗∗
481
+ -2.54%∗∗
482
+ -4.73%∗∗
483
+ S03
484
+ XDegree + XSocInt
485
+ -1.85%∗∗
486
+ -4.31%∗∗
487
+ -0.69%∗∗
488
+ 1.10%∗
489
+ 5
490
+ Conclusions
491
+ This work aimed to use synthetic data to train creditworthiness assessment models. We used a
492
+ massive dataset of 1 million individuals and trained state-of-the-art synthesizer methods to obtain
493
+ synthetic data and achieve this goal. Then, we presented a training framework that allows us to
494
+ analyze trained models with synthetic data and observe their performance on real-world data. In
495
+ addition, we observed their performance one year after being trained to see how susceptible they
496
+ 7
497
+
498
+ are to data drift. Our results show that lower quality synthetic data is obtained as we increase the
499
+ number of attributes in the synthesizer. Despite this, it is possible to use these data to train models
500
+ that obtain good results in real-world scenarios, with only a reduction in the predictive power of
501
+ approximately 3% and 6% when we measure the performance in AUC and KS, respectively. These
502
+ findings are of great relevance since they allow us to train accurate creditworthiness models. At the
503
+ same time, we keep borrowers’ privacy and encourage financial institutions to strengthen ties with
504
+ academia and foster collaboration and research in credit scoring without the privacy and security
505
+ restrictions.
506
+ 6
507
+ Future Work
508
+ Our future work will delve into how to synthesize social interactions’ information in the form of
509
+ graphs and not as added attributes to the training dataset since, as we show, this deteriorates the
510
+ quality of the synthetic data.
511
+ Acknowledgements
512
+ This work would not have been accomplished without the financial support of CONICYT-PFCHA
513
+ / DOCTORADO BECAS CHILE / 2019-21190345. The second author acknowledges the support
514
+ of the Natural Sciences and Engineering Research Council of Canada (NSERC) [Discovery Grant
515
+ RGPIN-2020-07114]. This research was undertaken, in part, thanks to funding from the Canada
516
+ Research Chairs program. The last author thanks the support of MICIN UNDER project PID2020-
517
+ 116346GB-I00.
518
+ References
519
+ Akoglu, H. (2018). User’s guide to correlation coefficients. Turkish Journal of Emergency Medicine,
520
+ 18.
521
+ Bradley, A. P. (1997). The use of the area under the roc curve in the evaluation of machine learning
522
+ algorithms. Pattern recognition, 30(7):1145–1159.
523
+ Djeundje, V. B., Crook, J., Calabrese, R., and Hamid, M. (2021). Enhancing credit scoring with
524
+ alternative data. Expert Systems with Applications, 163:113766.
525
+ Fiore, U., De Santis, A., Perla, F., Zanetti, P., and Palmieri, F. (2019). Using generative adversarial
526
+ networks for improving classification effectiveness in credit card fraud detection. Information
527
+ Sciences, 479:448–455.
528
+ Flach, P. A. (2012). Machine Learning - The Art and Science of Algorithms that Make Sense of
529
+ Data. Cambridge University Press.
530
+ Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. Annals of
531
+ statistics, pages 1189–1232.
532
+ Gici´c, A. and Subasi, A. (2019). Credit scoring for a microcredit data set using the synthetic
533
+ minority oversampling technique and ensemble classifiers. Expert Systems, 36(2):e12363.
534
+ Goh, R. Y. and Lee, L. S. (2019).
535
+ Credit scoring: a review on support vector machines and
536
+ metaheuristic approaches. Advances in Operations Research, 2019.
537
+ Goodfellow,
538
+ I.,
539
+ Bengio,
540
+ Y.,
541
+ and Courville,
542
+ A. (2016).
543
+ Deep Learning.
544
+ MIT Press.
545
+ http://www.deeplearningbook.org.
546
+ 8
547
+
548
+ Hagberg, A., Swart, P., and SChult, D. (2008).
549
+ Exploring network structure, dynamics, and
550
+ function using networkx. In In Proceedings of the 7th Python in Science Conference (SciPy,
551
+ pages 11–15. Citeseer.
552
+ Hodges, J. (1958). The significance probability of the smirnov two-sample test. Arkiv f¨or Matem-
553
+ atik, 3(5):469–486.
554
+ Hripcsak, G. and Rothschild, A. S. (2005). Agreement, the F-Measure, and Reliability in Infor-
555
+ mation Retrieval. Journal of the American Medical Informatics Association, 12(3):296–298.
556
+ Kennedy, K., Mac Namee, B., Delany, S., O’Sullivan, M., and Watson, N. (2013). A window of
557
+ opportunity: Assessing behavioural scoring. Expert Systems with Applications, 40(4):1372–
558
+ 1380.
559
+ Kingma, D. P. and Welling, M. (2013).
560
+ Auto-encoding variational bayes.
561
+ arXiv preprint
562
+ arXiv:1312.6114.
563
+ Lei, K., Xie, Y., Zhong, S., Dai, J., Yang, M., and Shen, Y. (2020). Generative adversarial fusion
564
+ network for class imbalance credit scoring. Neural Computing and Applications, 32(12):8451–
565
+ 8462.
566
+ McHugh, M. L. (2013). The chi-square test of independence. Biochemia medica, 23(2):143–149.
567
+ Mu˜noz-Cancino, R., Bravo, C., R´ıos, S. A., and Gra˜na, M. (2021). On the combination of graph
568
+ data for assessing thin-file borrowers’ creditworthiness. arXiv preprint arXiv:2111.13666.
569
+ Mu˜noz-Cancino, R., Bravo, C., R´ıos, S. A., and Gra˜na, M. (2022). On the dynamics of credit
570
+ history and social interaction features, and their impact on creditworthiness assessment per-
571
+ formance.
572
+ Ngwenduna, K. S. and Mbuvha, R. (2021). Alleviating class imbalance in actuarial applications
573
+ using generative adversarial networks. Risks, 9(3).
574
+ ´Oskarsd´ottir, M., Bravo, C., Sarraute, C., Vanthienen, J., and Baesens, B. (2019). The value of
575
+ big data for credit scoring: Enhancing financial inclusion using mobile phone data and social
576
+ network analytics. Applied Soft Computing, 74:26 – 39.
577
+ Park Seong Ho, Goo Jin Mo, J. C.-H. (2004).
578
+ Receiver operating characteristic (roc) curve:
579
+ Practical review for radiologists. kjr, 5(1):11–18.
580
+ Patki, N., Wedge, R., and Veeramachaneni, K. (2016). The synthetic data vault. In 2016 IEEE
581
+ International Conference on Data Science and Advanced Analytics (DSAA), pages 399–410.
582
+ Simumba, N., Okami, S., Kodaka, A., and Kohtake, N. (2021). Spatiotemporal integration of
583
+ mobile, satellite, and public geospatial data for enhanced credit scoring. Symmetry, 13(4).
584
+ The Basel Committee on Banking Supervision (2000). Principles for the management of credit
585
+ risk. Basel Committee Publications, 75.
586
+ Torres, D. G. (2018). Generation of synthetic data with generative adversarial networks. PhD
587
+ thesis, Ph. D. Thesis, Royal Institute of Technology, Stockholm, Sweden, 26 November.
588
+ Wan, Z., Zhang, Y., and He, H. (2017). Variational autoencoder based synthetic data generation
589
+ for imbalanced learning. In 2017 IEEE Symposium Series on Computational Intelligence
590
+ (SSCI), pages 1–7.
591
+ Xu, L. et al. (2020). Synthesizing tabular data using conditional GAN. PhD thesis, Massachusetts
592
+ Institute of Technology.
593
+ Xu, L., Skoularidou, M., Cuesta-Infante, A., and Veeramachaneni, K. (2019). Modeling tabular
594
+ data using conditional GAN. CoRR, abs/1907.00503.
595
+ 9
596
+
0NAzT4oBgHgl3EQfRPtW/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
0tE5T4oBgHgl3EQfOg6n/content/2301.05498v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5f48563f0e4074c7cac9fca5bfabb85686f17adfda70f615caaed5088fafcd67
3
+ size 1209249
0tE5T4oBgHgl3EQfOg6n/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3567d76f7b4c7b939067aa05d7cbd348fbc7e8e413f65c3e241c03c493ccdbad
3
+ size 2818093
0tE5T4oBgHgl3EQfOg6n/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b3b2c223dbabf9a584038ba2ebf1a976b3d459a6517f8f84566d504c6dde72e4
3
+ size 98280
19AyT4oBgHgl3EQfPvYS/content/2301.00028v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3848a72893dfec0c64b0571ac8299a5051dc1053592935ba29286d7e62ed288c
3
+ size 1010285
19AyT4oBgHgl3EQfPvYS/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fc2a8243b83476f80b2637bdc5c2ecd644aaac311be34dfe9d8945b58d51672d
3
+ size 3276845
19AyT4oBgHgl3EQfPvYS/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:13c92966c1d5c7e2c7ea1432a901282797c0f1d66424255d197f6f9289a4824a
3
+ size 146015
19E2T4oBgHgl3EQf5QiW/content/tmp_files/2301.04189v1.pdf.txt ADDED
@@ -0,0 +1,753 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Spectral edge-to-edge topological state transfer in diamond photonic lattices
2
+ Gabriel C´aceres-Aravena†,1, 2 Basti´an Real†,1, 2 Diego Guzm´an-Silva,1, 2 Paloma Vildoso,1, 2
3
+ Ignacio Salinas,1, 2 Alberto Amo,3 Tomoki Ozawa,4 and Rodrigo A. Vicencio1, 2, ∗
4
+ 1Departamento de F´ısica, Facultad de Ciencias F´ısicas y Matem´aticas, Universidad de Chile, Chile
5
+ 2Millenium Institute for Research in Optics - MIRO, Chile
6
+ 3Univ. Lille, CNRS, UMR 8523—PhLAM—Physique des Lasers Atomes et Mol´ecules, F-59000 Lille, France
7
+ 4Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan
8
+ (Dated: January 12, 2023)
9
+ Transfer of information between topological edge states is a robust way of spatially manipulating
10
+ quantum states while preserving their coherence in lattice environments. This method is particularly
11
+ efficient when the edge modes are kept within the topological gap of the lattice during the transfer.
12
+ In this work we show experimentally the transfer of photonic modes between topological edge states
13
+ located at opposite ends of a dimerized one-dimensional photonic lattice. We use a diamond lattice
14
+ of coupled waveguides and show that the transfer is insensitive both to the presence of a high density
15
+ of states in the form of a flat band at an energy close to that of the edge states, and to the presence
16
+ of disorder in the hoppings. We explore dynamics in the waveguide lattice using wavelength-scan
17
+ method, where different input wavelength translates into different effective waveguide length. These
18
+ results open the way to the implementation of more efficient protocols based on the active driving
19
+ of the hoppings.
20
+ Topological edge states are a remarkable resource to
21
+ engineer photonic systems with isolated modes protected
22
+ from the presence of disorder. In two-dimensional lat-
23
+ tices, they can be used to fabricate topological edge mode
24
+ lasers with distributed gain and quantized orbital mo-
25
+ mentum [1, 2], to transfer single photons around cor-
26
+ ners in elaborated photonic circuits [3, 4], and to de-
27
+ sign topological frequency combs with enhanced effi-
28
+ ciency [5, 6].
29
+ One dimensional systems such as the
30
+ Su-Schrieffer-Heeger (SSH) lattice are particularly in-
31
+ teresting because topological edge and interface modes
32
+ are hosted deep into the topological gap of the lattice.
33
+ This gap protection has been shown to be beneficial
34
+ to preserve the quantum state of photons in boundary
35
+ modes [7, 8]. Interestingly, the presence of topological
36
+ edge modes on both sides of one-dimensional lattices can
37
+ be used to transfer a state from one edge of the lattice
38
+ to the other with high fidelity with the advantage of be-
39
+ ing protected from certain types of disorder due to the
40
+ topological nature of the system. Such edge state trans-
41
+ fer is a promising route to store and manipulate photonic
42
+ quantum states in on-chip lattice environments.
43
+ Most topological edge transfer protocols rely on the
44
+ adiabatic evolution of the lattice such that an edge mode
45
+ is driven into quasi-bulk modes and again into an edge
46
+ mode at the other side [9–17].
47
+ While these protocols
48
+ present an optimized transfer rate and fidelity, they are
49
+ limited by the adiabaticity condition that requires the
50
+ adiabatic passage to be slow enough to avoid the Zen-
51
+ ner coupling of the edge state information into the bulk
52
+ modes [18, 19]. Furthermore, the presence of disorder in
53
+ the lattice would enhance this coupling. A variation of
54
+ these protocols include counter-adiabatic driving meth-
55
+ ods [20]. Recently, a different route has been proposed
56
+ based on the coherent coupling of edge modes within the
57
+ gap [19, 21, 22]. The great advantage of this approach
58
+ is that edge modes are kept well into the topological gap
59
+ throughout the protocol, ensuring a high fidelity in re-
60
+ duced times. The simplest version of the coherent state
61
+ transfer of topological edge states is via passive evanes-
62
+ cent coupling of the exponential tails of edge modes at op-
63
+ posite sides of the finite size lattice. In this case, coherent
64
+ transfer between edge modes takes place at a frequency
65
+ determined by the tail overlap, which can be controlled
66
+ via the size of the gap. Observation of such coherent os-
67
+ cillations was reported in a short SSH lattice for Rydberg
68
+ atoms [23].
69
+ In this work, we demonstrate coherent edge-to-edge
70
+ transfer of light in a dimerized diamond lattice of coupled
71
+ waveguides employing a spectral tomographic technique.
72
+ More importantly, we show experimentally that the fi-
73
+ delity of the transfer is robust to a number of perturba-
74
+ tions in the system. First, we show that orthogonality of
75
+ eigenmodes in our undriven protocol preserves the trans-
76
+ fer even in the presence of a high density of states in the
77
+ form of a flat band at energies close to that of the edge
78
+ states. Second, we demonstrate that the transfer mech-
79
+ anism is robust to the presence of lattice defects thanks
80
+ to the underlying chiral symmetry of the system. The
81
+ experimental proof of principle we report in this work
82
+ can be signi���cantly sped up by applying a number of
83
+ driven techniques based on the modulating of the hop-
84
+ pings in time and the use of concatenated topological
85
+ lattices [19, 22, 24]. Such techniques are readily imple-
86
+ mentable in lattices of coupled waveguides.
87
+ To demonstrate the topological edge transfer we use
88
+ a diamond lattice of coupled waveguides with different
89
+ intracell (t1) and intercell (t2) hoppings, as sketched in
90
+ Fig. 1(a). The lattice has three sites per unit cell, denoted
91
+ as A, B and C sites. Considering a tight-binding coupled-
92
+ mode approach, the evolution of the optical field at every
93
+ arXiv:2301.04189v1 [physics.optics] 10 Jan 2023
94
+
95
+ 2
96
+ d2
97
+ <latexit sh
98
+ a1_base64="QWoP/9ql
99
+ 9VWB+2CiEHjrBqaP4="
100
+ >AB5HicdZDLTgIxFIb
101
+ P4A3xhrp04gmrsgM4G1H
102
+ 4sYlRrkMCGdcgYaOpe0
103
+ HRMy4Q10ZdSdT+QL+DZ2
104
+ ABM1+q+nv9vcv7jxYIr
105
+ bdsfVm5peWV1Lb9e2Njc
106
+ 2t4p7u61VJRIhk0WiUh2P
107
+ KpQ8BCbmuBnVgiDTyBb
108
+ W98lfnte5SKR+GdnsToB
109
+ nQYcp8zqs3odtCv9Islu
110
+ 3yZqUrmcJaBXNs5Q4ZX
111
+ umEizU6Bfe4OIJQGmg
112
+ mqVNexY+2mVGrOBE4LvU
113
+ RhTNmYDrFrMKQBKjedrT
114
+ olx34kiR4hmb2/Z1MaKDU
115
+ JPJMJqB6p3142/MvrJtq
116
+ /cFMexonGkJmI8fxEB2
117
+ RrDEZcIlMi4kByiQ3WxI
118
+ 2opIybe5SMPW/OpL/oVUp
119
+ O9Vy5aZWqh8tDpGHAziE
120
+ E3DgHOpwDQ1oAoMhPMIL
121
+ vFq+9WA9Wc/zaM5a/NmH
122
+ H7LePgFuhotw</latexi
123
+ t>
124
+ d1
125
+ <latexit sha
126
+ 1_base64="fIuD4Mpy+/6z
127
+ RDX3Q/0OMETlpys=">AB
128
+ 5HicdZDLTgIxFIbP4A3xhr
129
+ p04gmrsgM4G1H4sYlRrkM
130
+ CGdcgYaOpe0HRMy4Q10ZdS
131
+ dT+QL+DZ2ABM1+q+nv9vc
132
+ v7jxYIrbdsfVm5peWV1Lb9
133
+ e2Njc2t4p7u61VJRIhk0WiU
134
+ h2PKpQ8BCbmuBnVgiDTyB
135
+ bW98lfnte5SKR+GdnsToBn
136
+ QYcp8zqs3odtB3+sWSXb7M
137
+ VCVzOMvArjm2c0qcsj1TCRZ
138
+ q9IvUHEkgBDzQRVquvYs
139
+ XZTKjVnAqeFXqIwpmxMh9g
140
+ 1GNIAlZvOVp2SYz+SRI+Qz
141
+ N7fsykNlJoEnskEVI/Uby8b
142
+ /uV1E+1fuCkP40RjyEzEeH
143
+ 4iI5I1pgMuESmxcQAZKb
144
+ LQkbUmZNncpmPpfHcn/0Kq
145
+ UnWq5clMr1Y8Wh8jDARzC
146
+ ThwDnW4hgY0gcEQHuEFXi3
147
+ ferCerOd5NGct/uzD1lvn
148
+ 20Ii28=</latexit>
149
+ dv
150
+ <latexit sha1_base64=
151
+ "dXV9AHRuUNT6tjCwTQ/A41TDG7Q=">AB5HicdZ
152
+ DLTgIxFIbP4A3xhrp04gmriYzgLcdiRuXGAVJYEI6
153
+ 5Qw0dC5pOySE8Aa6MurOJ/IFfBs7gIka/Vdfz/83O
154
+ f/xE8GVdpwPK7e0vLK6l8vbGxube8Ud/eaKk4lw
155
+ aLRSxbPlUoeIQNzbXAViKRhr7Ae394lfn3I5SKx9G
156
+ dHifohbQf8YAzqs3otcdYslx7MVCFzOMvAqbqO
157
+ e0pc25mpBAvVu8X3Ti9maYiRZoIq1XadRHsTKjVnAq
158
+ eFTqowoWxI+9g2GNEQlTeZrTolx0EsiR4gmb2/Zyc
159
+ 0VGoc+iYTUj1Qv71s+JfXTnVw4U14lKQaI2YixgtS
160
+ QXRMsakxyUyLcYGKJPcbEnYgErKtLlLwdT/6kj+h
161
+ 2bZdit2+aZaqh0tDpGHAziE3DhHGpwDXVoAIM+PMI
162
+ LvFqB9WA9Wc/zaM5a/NmH7LePgHT/ou0</latexi
163
+ t>
164
+ (d)
165
+ (c)
166
+ fs
167
+ glass wafer
168
+ (a)
169
+ (b)
170
+ (e1) (e2)
171
+ +
172
+ +
173
+ Figure 1. (a) Sketch of a dimerized diamond lattice, with A,
174
+ B and C the sites of the unit cell. Thick (thin) line denotes a
175
+ strong (weak) hopping, and t1 (t2) indicates the intra(inter)-
176
+ cell coupling constant. Top (bottom) panel schematizes the
177
+ trivial (topological) case t1 > t2 (t1 < t2).
178
+ (b) Spectrum
179
+ as a function of δ for a finite (lines) and an infinite (shaded
180
+ area) lattice.
181
+ The vertical line denotes δ = 1.
182
+ The color
183
+ indicates the IPR for all the states. Inset: amplitude profiles
184
+ of edge states at δ = 0.4. (c) Sketch of the fs laser writing
185
+ technique. (d) Microscope image of a diamond lattice with
186
+ {d1, d2} = {35, 25} µm (δ = 0.37) and dv = 32 µm. Output
187
+ images for the lattice in (d) and for the excitation at (e1) a
188
+ B left edge site and (e2) an in-phase A-C right edge sites.
189
+ Yellow ellipses indicate the excited sites.
190
+ site of the n-th unit cell is written as:
191
+ −i∂zAn = t1Bn + t2Bn+1 ,
192
+ −i∂zBn = t1(An + Cn) + t2(An−1 + Cn−1) ,
193
+ (1)
194
+ −i∂zCn = t1Bn + t2Bn+1 .
195
+ Here An, Bn and Cn are the amplitudes of the opti-
196
+ cal field at the n-th unit cell.
197
+ z describes the coordi-
198
+ nate along the waveguides and the dynamical variable.
199
+ Moreover, the hopping strengths among nearest-neighbor
200
+ (NN) sites can be varied experimentally by adjusting the
201
+ lattice distances [25]. We then define the control param-
202
+ eter δ ≡ t1/t2 to characterize the different regimes. We
203
+ assume an infinite system and impose a Bloch-like ansatz
204
+ in Eq. (1), obtaining the following bands:
205
+ βz(kx) = 0, ±t2
206
+
207
+ 2 [δ2 + 2δ cos(kxa) + 1] ,
208
+ (2)
209
+ where βz is the propagation constant (energy), a is
210
+ the lattice constant and kx the quasimomentum.
211
+ The
212
+ spectrum is composed of two dispersive and one flat
213
+ band (FB) [see shaded areas and horizontal light-blue
214
+ line at βz = 0 in Fig. 1(b), respectively].
215
+ The gap
216
+ in between both dispersive bands has a size equal to
217
+ 2
218
+
219
+ 2t2|δ − 1|. For δ = 1, this gap closes and the three
220
+ bands touch each other at the edges of the Brillouin
221
+ zone [26].
222
+ The diamond lattice possesses the smallest
223
+ experimentally reported FB states [26, 27], with an in-
224
+ verse participation ratio (IPR) [28] of 1/2 [represented
225
+ as light-blue color in Fig. 1(b)].
226
+ Specifically, in the
227
+ bases of Wannier functions in the A, B and C sites,
228
+ the FB eigenvector is given by: |vF B⟩ = {1, 0, −1}/
229
+
230
+ 2,
231
+ and the ones corresponding to the dispersive bands
232
+ are |v±⟩ = {eiφ(kx), ±
233
+
234
+ 2, eiφ(kx)}/
235
+
236
+ 2, where φ(kx) =
237
+ arctan(− sin(kxa)/[δ + cos(kxa)]).
238
+ Even though this lattice has three sites per unit
239
+ cell, it exhibits similar topological features to the SSH
240
+ model [29], when varying the parameter δ [30]. Indeed,
241
+ a quantized Zak phase of a value 0 or π can be found
242
+ when δ > 1 (t1 > t2) or δ < 1 (t1 < t2), respectively.
243
+ In this case, the nontrivial phase is protected by inver-
244
+ sion symmetry between An and Cn and by chiral sym-
245
+ metry [30, 31]. Thus, we expect the appearance of two
246
+ edge states at zero propagation constant on a lattice with
247
+ open boundaries when δ < 1. To corroborate this, we
248
+ compute the spectrum as a function of δ for dimerized
249
+ diamond lattices of 9 unit cells [see full lines in Fig. 1(b)].
250
+ It can be clearly seen that two states at zero frequency
251
+ (lighter blue) transform into two dispersive states (darker
252
+ blue) around δ = 1. When increasing δ, the degeneracy
253
+ between them is removed at around δ = 0.7 (splitting
254
+ ∆βe
255
+ z ∼ 0.06) [32] due to the finite size of the lattice. The
256
+ flat band remains unchanged at βz = 0, for any value
257
+ of δ.
258
+ The IPR (denoted by color) shows very clearly
259
+ the transition from localized edge states (IPR = 1 or
260
+ 1/2, light blue) into extended propagating modes (IPR
261
+ ∼ 1/N, black).
262
+ Figs. 1(b)-insets show the two edge states for δ = 0.4.
263
+ They exhibit exponentially localized amplitudes at both
264
+ edges. On the left edge, these states present a null ampli-
265
+ tude at A and C sites, whereas the states have a null am-
266
+ plitude at B sites at the right edge. Moreover, one edge
267
+ state is antisymmetric (bottom inset) and the other one is
268
+ symmetric (top inset), with respect to the opposite edge.
269
+ They decay exponentially into the bulk as (−δ)|n−ne| for
270
+ a semi-infinite system, exhibiting a phase shift of π at
271
+ consecutive B or A,C sites, depending on the specific
272
+ edge (ne). Notice in Fig. 1(b) that the edge states are
273
+ degenerate for δ ≲ 0.7; consequently, the sum of these
274
+ states gives a state fully localized at the left edge with
275
+ amplitude on B sites only and, conversely, the subtrac-
276
+ tion of them gives a state fully localized at the right edge
277
+ with amplitude on A and C sublattices. For δ ≳ 0.7, the
278
+ degeneracy of the edge states is lifted, and their frequency
279
+ deviates from 0 to ±βe
280
+ z. Therefore, the excitation of sites
281
+ at the edges is expected to induce an oscillatory pattern
282
+ in between both surfaces with a frequency βe
283
+ z [33], with
284
+ a long-distance state transfer occurring on a dynamical
285
+
286
+ (a)
287
+ >1
288
+ Trivial
289
+ A
290
+ Bs<1
291
+ Topological
292
+ A
293
+ B
294
+ t1
295
+ C4
296
+ -1
297
+ 1
298
+ 2
299
+ βz
300
+ 0
301
+ t2
302
+ -2
303
+ -4
304
+ 0
305
+ 0.5
306
+ 1
307
+ 1.5
308
+ 23
309
+ scale ztransfer = π/βe
310
+ z [32].
311
+ We fabricate several dimerized diamond photonic lat-
312
+ tices, of 9 unit cells each, by using a femtosecond (fs)
313
+ laser writing technique [25, 32, 34], as it is sketched in
314
+ Fig. 1(c).
315
+ For a first set of experiments, the diamond
316
+ geometry is defined by distances d1, d2 and dv = 32 µm,
317
+ as described in Fig. 1(d). For these values, the diagonal
318
+ (NN) distance was swept in the interval {25.6, 43.1} µm,
319
+ as d1 and d2 were varied in the interval {20, 40} µm
320
+ in steps of 1 µm.
321
+ The hopping coefficients (which de-
322
+ cay exponentially on waveguide separation [25]) range in
323
+ the interval ∼ {0.03, 0.21} cm−1 at a wavelength of 640
324
+ nm [32]. Fig. 1(d) shows an output facet of a lattice with
325
+ d1 = 35 and d2 = 25 µm, with t1 = 0.05 and t2 = 0.14
326
+ cm−1 (δ = 0.37). We first test the quality of the lat-
327
+ tices by exciting them at different input positions using
328
+ a 640 nm laser beam (see Ref. [32] for a complete charac-
329
+ terization). For example, topological edge states can be
330
+ efficiently excited by injecting light directly at the lattice
331
+ boundaries [28, 32, 35, 36]. Fig. 1(e1) shows the output
332
+ profile after a B-edge site excitation, with a clear expo-
333
+ nential decaying profile from the edge into the bulk. The
334
+ excitation at the right boundary requires a more com-
335
+ plicated input condition with two in-phase beams. The
336
+ result of this is shown in Fig. 1(e2), with an output profile
337
+ formed by A and C sites mostly.
338
+ We propose a novel technique to characterize the lat-
339
+ tice dynamics. Instead of measuring the output profiles
340
+ at different z values (which also implies the fabrication of
341
+ a larger number of lattices), we implement a wavelength-
342
+ scan method: The dynamics of a wavepacket injected in
343
+ the input facet of a lattice is revealed when varying the
344
+ input wavelength coming from a Supercontinuum (SC)
345
+ laser source. In general, the lattice dynamics depends on
346
+ the excitation wavelength λ: the longer the wavelength
347
+ the wider the mode profile and the larger the coupling
348
+ constants [25, 32]. In this way, by tuning the input wave-
349
+ length, we can study the same lattice at different effective
350
+ lengths.
351
+ We first consider a diamond lattice with d1 = d2 =
352
+ 30 µm. We excite a B site at the central 5-th unit cell and
353
+ scan the input wavelength in the interval 600 − 760 nm,
354
+ with a step of 10 nm. Fig. 2(a) shows the output inten-
355
+ sity for three selected λ’s [32]. Fig. 2(b) shows the second
356
+ moment (width), defined as m2 ≡ �
357
+ n(n−nc)2Pn, versus
358
+ wavelength, with Pn ≡ |An|2 +|Bn|2 +|Cn|2 the unit cell
359
+ power and nc ≡ �
360
+ n nPn the center of mass. We observe
361
+ a growing diffraction pattern [27], with a width that in-
362
+ creases almost linearly with the input wavelength [a lin-
363
+ ear fit is included in Fig. 2(b)]. m2 ∼ z corresponds to a
364
+ diffusive regime [37], as expected for discrete diffraction;
365
+ therefore, a λ increment produces an effectively larger
366
+ propagation distance z or a larger coupling constant t1,2.
367
+ A dimerized diamond lattice has two hoppings which
368
+ simultaneously change while λ is modified. Since we ob-
369
+ serve a linear dependence of coupling constants on wave-
370
+ length, we can assume δ as a constant, as a first approx-
371
+ (c)
372
+ 600 nm
373
+ 680 nm
374
+ 650 nm
375
+ 700 nm
376
+ (a)
377
+ (b)
378
+ Figure 2. (a) Output intensity profiles for a B-site central
379
+ excitation, for a lattice with d1 = d2 = 30 µm, at the indicated
380
+ wavelength.
381
+ (b) m2 versus λ.
382
+ (c) md versus d1 (bottom)
383
+ and δ (top). Insets in (c) show the profile at 700 nm for the
384
+ indicated case. The bar shows the standard deviation. Yellow
385
+ ellipses indicate the excited sites.
386
+ imation. We use the wavelength-scan method to exper-
387
+ imentally determine nc for all the output profiles, after
388
+ exciting a B site at the central (5-th) unit cell of 17 dimer-
389
+ ized lattices, having different values of δ. For each lattice,
390
+ we average nc over λ and obtain the averaged beam dis-
391
+ placement md, from which the topological invariant can
392
+ be inferred [38, 39]. A topologically trivial lattice has a
393
+ md = 0, as an indication of a zero Zak phase. A topolog-
394
+ ically non-trivial system will shift this value to md ∼ 0.5,
395
+ corresponding to a π Zak phase [38]. Our collected results
396
+ are shown in Fig. 2(c). We observe that for d1 < 30 µm
397
+ (δ > 1) the lattice is topologically trivial and the prop-
398
+ agation shows a md around zero. For 30 ⩽ d1 ⩽ 34 µm
399
+ (0.4 < δ ⩽ 1), a transition region without a well defined
400
+ topological phase is observed. For d1 ⩾ 35 µm (δ ⩽ 0.4),
401
+ the lattices express a clear averaged beam displacement
402
+ around 0.5, implying a nontrivial Zak phase. Therefore,
403
+ the wavelength-scan method gives us valuable informa-
404
+ tion about the dynamics on a specific lattice, and it be-
405
+ comes a key method to determine its topological phase
406
+ on a finite size configuration.
407
+ The number of unit cells in the lattice affects the edge
408
+
409
+ 4
410
+ ¥3
411
+ 2
412
+ 0.5
413
+ 0.3
414
+ 0.1
415
+ 0.8
416
+ 0.6
417
+ 0.4
418
+ 0.2
419
+ 0.0
420
+ 25
421
+ 30
422
+ 35
423
+ 40
424
+ di [um]10
425
+ 8
426
+ 6
427
+ 2
428
+ 4
429
+ 2
430
+ 0
431
+ 600
432
+ 650
433
+ 700
434
+ 750
435
+ Wavelength ^ [nm]4
436
+ (d)
437
+ 650 nm
438
+ 680 nm
439
+ 710 nm
440
+ 740 nm
441
+ (a)
442
+ 650 nm
443
+ 670 nm
444
+ 690 nm
445
+ 710 nm
446
+ 730 nm
447
+ 660 nm
448
+ 680 nm
449
+ 700 nm
450
+ 720 nm
451
+ 740 nm
452
+ 640 nm
453
+ (c)
454
+ (b)
455
+ Figure 3. (a) Output profiles of a non-trivial diamond pho-
456
+ tonic lattice at different λ’s, after a B-edge excitation (see
457
+ yellow ellipse). (b) Fidelity versus wavelength for topological
458
+ (black), trivial (gray), topological + defect (red), and trivial
459
+ + defect (orange) lattices. (c) Microscope image of a topolog-
460
+ ical lattice plus two coupling defects (see dashed rectangle).
461
+ (d) Same than (a) for a topological lattice with a coupling
462
+ defect.
463
+ state properties:
464
+ the fewer unit cells, the shorter the
465
+ range of δ in which the edge states keep degenerate in
466
+ βz [32].
467
+ When the degeneracy is lifted, the two edge
468
+ modes hybridize. Therefore, an input on one edge will
469
+ excite coherently both modes and result in periodic os-
470
+ cillations of the amplitude at the two edges.
471
+ Then, a
472
+ transfer of light from one edge to the other becomes pos-
473
+ sible [23, 33].
474
+ To experimentally demonstrate this we
475
+ fabricate a topological lattice with 9 unit cells and dis-
476
+ tances d1 = 18, d2 = 14, and dv = 14 µm (t1 = 0.30 and
477
+ t2 = 0.42 cm−1 at 640 nm, and δ = 0.71). The trivial
478
+ lattice (δ = 1.40) is obtained by inverting these distances
479
+ to d1 = 14 and d2 = 18 µm. We decreased the distances
480
+ to increase the coupling coefficients and favor a faster
481
+ transport in between the edges, while staying at the non-
482
+ degenerate situation. Again, we use a SC laser source in
483
+ the range 610 − 740 nm and sweep the input wavelength
484
+ in steps of 10 nm. We excite the system by injecting light
485
+ at the B left edge waveguide, as shown in Fig. 3(a). For
486
+ λ ≲ 670 nm, the intensity profiles are well localized at the
487
+ left edge, with most of the light intensity at the B sublat-
488
+ tices, with a profile resembling the edge state [Fig. 1(e1)].
489
+ The edge states splitting manifests for λ ≈ 680 nm, where
490
+ we start observing a smooth population of the opposite
491
+ edge, with a weak excitation of the lattice center (a weak
492
+ background radiation is always observed because of the
493
+ excitation of dispersive modes [32]). The connection in
494
+ between both edge patterns [see Figs. 1(b)-insets and (e)],
495
+ with a B-site exponential decaying profile at the left sur-
496
+ face and an A,C exponential profile at the right edge,
497
+ becomes evident for ∼ 710 nm. The spectral state trans-
498
+ fer phenomenon starts occurring at λ ≳ 720 nm: the
499
+ light injected at one edge is mostly transferred into the
500
+ opposite edge [32]. This shows a very interesting trans-
501
+ port mechanism which does not require that the light
502
+ explores the whole lattice; in this case, the light is sud-
503
+ denly transferred from one edge into the other without
504
+ interacting with the lattice bulk.
505
+ We define the fidelity F for an edge-to-edge light
506
+ transfer by measuring the normalized transferred in-
507
+ tensity at the opposite lattice edge: F ≡ (|Aedge|2 +
508
+ |Cedge|2)/ �
509
+ n Pn. If all the light reaches the two right-
510
+ most sites F = 1, and F = 0 in the fully opposite
511
+ case. We show our results in Fig. 3(b), where we plot
512
+ the fidelity F versus λ, for topological and trivial lat-
513
+ tices. We observe how the topological (black) and the
514
+ trivial (gray) cases have a similar dynamical scale; i.e.,
515
+ both processes occur approximately at the same speed.
516
+ However, the fidelity at the A, C surface is larger for the
517
+ topological lattice (∼ 61%). The trivial lattice presents
518
+ a standard discrete diffraction pattern [27], with the en-
519
+ ergy exploring the whole lattice while it moves from one
520
+ edge into the other [32], as the wavelength increases [sim-
521
+ ilar to Fig. 2(a)]. Therefore, once the light arrives at the
522
+ A, C right edge it is reflected back due to the absence of
523
+ the edge states. The fidelity in this case decreases to a
524
+ ∼ 40%.
525
+ A remarkable feature of the state transfer between
526
+ topological edge states is the resilience to certain types of
527
+ disorder. Although the fabrication process can produce
528
+ random on-site or inter-site defects, we fabricate a cou-
529
+ ple of lattices with a symmetric coupling defect, as the
530
+ one shown in Fig. 3(c). We design a different distance in
531
+ between the fourth and the fifth cells and inside the fifth
532
+ cell [see dashed rectangle in Fig. 3(c)]. Specifically, we
533
+ set this distance to 23 µm, implying a coupling defect of
534
+ 0.18 cm−1. Fig. 3(d) shows a set of output images at the
535
+ indicated values of λ, for the topological lattice with a
536
+ defect. We notice that this defect produces some reflec-
537
+ tion and trapping of energy at short wavelengths, con-
538
+ sequently, not all the energy is edge-to-edge transferred.
539
+ Despite this, a significant amount of the light excites the
540
+ topological right-edge state composed of A and C sites.
541
+ The fidelity is ∼ 26% for the topological case, whereas it
542
+ drops to ∼ 15% for the trivial lattice.
543
+ These numbers show that a trivial lattice undergoes
544
+ a stronger back reflection caused by the defect, because
545
+ the light explores the whole lattice and interacts strongly
546
+ with it. On the other hand, in the topological case, the
547
+ light does not travel across the lattice and excite effi-
548
+ ciently the edge state without the need of arriving at the
549
+ boundary by standard transportation. The fidelity is not
550
+ perfect in none of the topological cases because a single
551
+ B-site input always excites part of the dispersive spec-
552
+
553
+ 0.6
554
+ 0.5
555
+ 0.4
556
+ F 0.3
557
+ 0.2
558
+ 0.1
559
+ 0.0
560
+ 620
561
+ 640
562
+ 660
563
+ 680
564
+ 700
565
+ 720
566
+ 740
567
+ Wavelength ^ [nm]888888885
568
+ trum, in which the modes extend over the entire lattice.
569
+ Nonetheless, the strong difference between the topologi-
570
+ cal and trivial cases is the key of success for a topological
571
+ state transfer process, which occurs due to the excitation
572
+ of exponentially localized edge states which live at both
573
+ edges simultaneously and deep in the gap of the lattice
574
+ spectrum. This could be a proof of concept for a long
575
+ distance sensor, which detects away from the interaction
576
+ region.
577
+ The wavelength-scan method proposed in this work of-
578
+ fers a tool for investigating the dynamics in lattices of
579
+ coupled waveguides. Using this method, we evidenced
580
+ the nontrivial topology of dimerized diamond lattices by
581
+ measuring the averaged beam displacement and, addi-
582
+ tionally, we demonstrated an edge-to-edge transfer of
583
+ light via the excitation of the topological edge states.
584
+ This transfer is partially robust to defects across the
585
+ lattice bulk and, hence, it has the potential for a pre-
586
+ cise wavelength filter, as well as an efficient information
587
+ transport mechanism between two distant ports or by
588
+ concatenating several topological lattices in the quantum
589
+ domain [12, 14].
590
+ Acknowledgments. This work was supported in part
591
+ by Millennium Science Initiative Program ICN17−012,
592
+ and FONDECYT Grant 1191205.
593
+ A.A. acknowledges
594
+ the support of European Research Council grant Emer-
595
+ genTopo (865151), the French government through the
596
+ Programme Investissement d’Avenir (I-SITE ULNE /
597
+ ANR-16-IDEX-0004 ULNE) managed by the Agence Na-
598
+ tionale de la Recherche, the Labex CEMPI (ANR-11-
599
+ LABX-0007) and the CPER Wavetech. T.O. acknowl-
600
+ edges the support from JSPS KAKENHI Grant No.
601
+ JP20H01845, JST PRESTO Grant No. JPMJPR19L2,
602
+ and JST CREST Grant No.JPMJCR19T1.
603
+ †Both authors contributed equally.
604
+ ∗ rvicencio@uchile.cl
605
+ [1] B. Bahari, A. Ndao, F. Vallini, A. El Amili, Y. Fainman,
606
+ and B. Kant´e, Nonreciprocal lasing in topological cavities
607
+ of arbitrary geometries, Science 358, 636 (2017).
608
+ [2] M. A. Bandres, S. Wittek, G. Harari, M. Parto, J. Ren,
609
+ M. Segev, D. N. Christodoulides, and M. Khajavikhan,
610
+ Topological insulator laser: Experiments, Science 359,
611
+ aar4005 (2018).
612
+ [3] S. Barik, A. Karasahin, C. Flower, T. Cai, H. Miyake,
613
+ W. DeGottardi, M. Hafezi, and E. Waks, A topological
614
+ quantum optics interface, Science 359, 666 (2018).
615
+ [4] M. Jalali Mehrabad, A. P. Foster, R. Dost, E. Clarke,
616
+ P. K. Patil, A. M. Fox, M. S. Skolnick, and L. R. Wilson,
617
+ Chiral topological photonics with an embedded quantum
618
+ emitter, Optica 7, 1690 (2020).
619
+ [5] S. Mittal, E. A. Goldschmidt, and M. Hafezi, A topolog-
620
+ ical source of quantum light, Nature 561, 502 (2018).
621
+ [6] S. Mittal, G. Moille, K. Srinivasan, Y. K. Chembo, and
622
+ M. Hafezi, Topological frequency combs and nested tem-
623
+ poral solitons, Nat. Phys. 17, 1169 (2021).
624
+ [7] A. Blanco-Redondo, B. Bell, D. Oren, B. J. Eggleton,
625
+ and M. Segev, Topological protection of biphoton states,
626
+ Science 362, 568 LP (2018).
627
+ [8] J.-L. Tambasco, G. Corrielli, R. J. Chapman, A. Crespi,
628
+ O. Zilberberg, R. Osellame, and A. Peruzzo, Quantum in-
629
+ terference of topological states of light, Science Advances
630
+ 4, eaat3187 (2018).
631
+ [9] Y. E. Kraus, Y. Lahini, Z. Ringel, M. Verbin, and O. Zil-
632
+ berberg, Topological States and Adiabatic Pumping in
633
+ Quasicrystals, Phys. Rev. Lett. 109, 106402 (2012).
634
+ [10] W. Liu, C. Wu, Y. Jia, S. Jia, G. Chen, and F. Chen,
635
+ Observation of edge-to-edge topological transport in a
636
+ photonic lattice, Phys. Rev. A 105, L061502 (2022).
637
+ [11] R. J. Chapman, M. Santandrea, Z. Huang, G. Corrielli,
638
+ A. Crespi, M.-H. Yung, R. Osellame, and A. Peruzzo,
639
+ Experimental perfect state transfer of an entangled pho-
640
+ tonic qubit, Nat Commun 7, 11339 (2016).
641
+ [12] N. Lang and H. P. B¨uchler, Topological networks for
642
+ quantum communication between distant qubits, npj
643
+ Quantum Inf 3, 47 (2017).
644
+ [13] X. Li, Y. Ma, J. Han, T. Chen, Y. Xu, W. Cai, H. Wang,
645
+ Y. Song, Z.-Y. Xue, Z.-q. Yin, and L. Sun, Perfect Quan-
646
+ tum State Transfer in a Superconducting Qubit Chain
647
+ with Parametrically Tunable Couplings, Phys. Rev. Ap-
648
+ plied 10, 054009 (2018).
649
+ [14] F. Mei, G. Chen, L. Tian, S.-L. Zhu, and S. Jia, Ro-
650
+ bust quantum state transfer via topological edge states in
651
+ superconducting qubit chains, Phys. Rev. A 98, 012331
652
+ (2018).
653
+ [15] L. Qi, G.-L. Wang, S. Liu, S. Zhang, and H.-F. Wang,
654
+ Engineering the topological state transfer and topological
655
+ beam splitter in an even-sized Su-Schrieffer-Heeger chain,
656
+ Phys. Rev. A 102, 022404 (2020).
657
+ [16] Z.-G. Chen, W. Tang, R.-Y. Zhang, Z. Chen, and
658
+ G. Ma, Landau-Zener Transition in the Dynamic Trans-
659
+ fer of Acoustic Topological States, Phys. Rev. Lett. 126,
660
+ 054301 (2021).
661
+ [17] N. E. Palaiodimopoulos, I. Brouzos, F. K. Diakonos, and
662
+ G. Theocharis, Fast and robust quantum state transfer
663
+ via a topological chain, Phys. Rev. A 103, 052409 (2021).
664
+ [18] P. Boross, J. K. Asb´oth, G. Sz´echenyi, L. Oroszl´any, and
665
+ A. P´alyi, Poor man’s topological quantum gate based
666
+ on the Su-Schrieffer-Heeger model, Phys. Rev. B 100,
667
+ 045414 (2019).
668
+ [19] S. Longhi, Topological pumping of edge states via adia-
669
+ batic passage, Phys. Rev. B 99, 155150 (2019).
670
+ [20] F. M. D’Angelis, F. A. Pinheiro, D. Gu´ery-Odelin,
671
+ S. Longhi, and F. Impens, Fast and robust quantum
672
+ state transfer in a topological Su-Schrieffer-Heeger chain
673
+ with next-to-nearest-neighbor interactions, Phys. Rev.
674
+ Research 2, 033475 (2020).
675
+ [21] M. P. Estarellas, I. D’Amico, and T. P. Spiller, Topologi-
676
+ cally protected localised states in spin chains, Sci Rep 7,
677
+ 42904 (2017).
678
+ [22] J. Yuan, C. Xu, H. Cai, and D.-W. Wang, Gap-protected
679
+ transfer of topological defect states in photonic lattices,
680
+ APL Photonics 6, 030803 (2021).
681
+ [23] S. de L´es´eleuc, V. Lienhard, P. Scholl, D. Barredo, S. We-
682
+ ber, N. Lang, H. P. B¨uchler, T. Lahaye, and A. Browaeys,
683
+ Observation of a symmetry-protected topological phase
684
+ of interacting bosons with Rydberg atoms, Science (New
685
+ York, N.Y.) 365, 775 (2019).
686
+ [24] J. Zurita, C. E. Creffield, and G. Platero, Fast quan-
687
+ tum transfer mediated by topological domain walls,
688
+ arXiv.2208.00797 (2022).
689
+ [25] A. Szameit,
690
+ D. Bl¨omer,
691
+ J. Burghoff,
692
+ T. Schreiber,
693
+
694
+ 6
695
+ T. Pertsch, S. Nolte, A. T¨unnermann, and F. Lederer,
696
+ Discrete nonlinear localization in femtosecond laser writ-
697
+ ten waveguides in fused silica, Opt. Express 13, 10552
698
+ (2005).
699
+ [26] S. Mukherjee and R. R. Thomson, Observation of robust
700
+ flat-band localization in driven photonic rhombic lattices,
701
+ Opt. Lett. 42, 2243 (2017).
702
+ [27] R. A. V. Poblete, Photonic flat band dynamics, Adv
703
+ Phys-X 6, 1878057 (2021).
704
+ [28] G. C´aceres-Aravena, B. Real, D. Guzm´an-Silva, A. Amo,
705
+ L. E. F. Foa Torres, and R. A. Vicencio, Experimental
706
+ observation of edge states in ssh-stub photonic lattices,
707
+ Phys. Rev. Research 4, 013185 (2022).
708
+ [29] W. P. Su, J. R. Schrieffer, and A. J. Heeger, Solitons in
709
+ polyacetylene, Phys. Rev. Lett. 42, 1698 (1979).
710
+ [30] D. Bercioux, O. Dutta, and E. Rico, Solitons in one-
711
+ dimensional lattices with a flat band, Annalen der Physik
712
+ 529, 1600262 (2017).
713
+ [31] A. Ramachandran, A. Andreanov, and S. Flach, Chiral
714
+ flat bands: Existence, engineering, and stability, Phys.
715
+ Rev. B 96, 161104 (2017).
716
+ [32] See Supplemental Material at URL for both simulation
717
+ and experimental details.
718
+ [33] N. K. Efremidis, Topological photonic su-schrieffer-
719
+ heeger-type coupler, Phys. Rev. A 104, 053531 (2021).
720
+ [34] K. M. Davis, K. Miura, N. Sugimoto, and K. Hirao, Writ-
721
+ ing waveguides in glass with a femtosecond laser, Opt.
722
+ Lett. 21, 1729 (1996).
723
+ [35] N. Malkova, I. Hromada, X. Wang, G. Bryant, and
724
+ Z. Chen, Observation of optical shockley-like surface
725
+ states in photonic superlattices, Opt. Lett. 34, 1633
726
+ (2009).
727
+ [36] L.-C. Wang, Y. Chen, M. Gong, F. Yu, Q.-D. Chen, Z.-N.
728
+ Tian, X.-F. Ren, and H.-B. Sun, Edge state, localization
729
+ length, and critical exponent from survival probability
730
+ in topological waveguides, Phys. Rev. Lett. 129, 173601
731
+ (2022).
732
+ [37] U.
733
+ Naether,
734
+ S.
735
+ St¨utzer,
736
+ R.
737
+ A.
738
+ Vicencio,
739
+ M.
740
+ I.
741
+ Molina, A. T¨unnermann, S. Nolte, T. Kottos, D. N.
742
+ Christodoulides, and A. Szameit, Experimental observa-
743
+ tion of superdiffusive transport in random dimer lattices,
744
+ New Journal of Physics 15, 013045 (2013).
745
+ [38] S. Longhi, Probing one-dimensional topological phases
746
+ in waveguide lattices with broken chiral symmetry, Opt.
747
+ Lett. 43, 4639 (2018).
748
+ [39] Z.-Q. Jiao, S. Longhi, X.-W. Wang, J. Gao, W.-H. Zhou,
749
+ Y. Wang, Y.-X. Fu, L. Wang, R.-J. Ren, L.-F. Qiao,
750
+ and X.-M. Jin, Experimentally detecting quantized zak
751
+ phases without chiral symmetry in photonic lattices,
752
+ Phys. Rev. Lett. 127, 147401 (2021).
753
+
19E2T4oBgHgl3EQf5QiW/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
39E4T4oBgHgl3EQf0g2Q/content/2301.05283v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cbd4ab15783e7c9b185b7d2370f00564e1fb0dbeec09f406a0765f121f372183
3
+ size 552512
39E4T4oBgHgl3EQf0g2Q/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cc523ab36427f5e53281295a05b2b9b279084eecb7b4dc8162106d06286ebc41
3
+ size 1376301
39E4T4oBgHgl3EQf0g2Q/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c5e953d64eb2b36cf4b986d2ea6f4e8b90174f48eedd96a776d376bab1d03860
3
+ size 76282
4tE3T4oBgHgl3EQfQQmX/content/tmp_files/2301.04411v1.pdf.txt ADDED
@@ -0,0 +1,846 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Controllable tunnelling of single flux-quanta mediated by quantum phase-slip in
2
+ disordered superconducting loops
3
+ J.A. Potter,∗ J.C. Fenton, and P.A. Warburton
4
+ London Centre for Nanotechnology, UCL, 17-19 Gordon Street, London WC1H 0AH, United Kingdom
5
+ (Dated: January 12, 2023)
6
+ Quantum phase-slip (QPS) is the exact dual to the well-known Josephson effect. Although there
7
+ are numerous proposals for applications of QPS devices, experimental work to develop these remains
8
+ in the relatively early stages. Significant barriers to exploiting QPS nanowires for useful technologies
9
+ still exist, such as establishing robust nanowire fabrication methods that allow coupling to low-loss
10
+ circuits, and demonstrating control over the QPS process with an experimenter-controlled external
11
+ bias. Here we report experiments which show that both of these barriers have been overcome. We
12
+ present measurements at 300 mK of NbN coplanar waveguide (CPW) resonators embedded with
13
+ nanowires fabricated using a neon focused ion-beam. The internal quality factor exceeds 2 × 104 —
14
+ significantly higher than previously reported in comparable experiments. The resonator frequency
15
+ tunes periodically with an applied magnetic field, revealing tunnelling of the order parameter that
16
+ always occurs at half-integer values of the applied flux. In contrast to previous studies of single QPS,
17
+ the order-parameter tunnelling is shown to be adiabatic, demonstrating improved control over energy
18
+ dissipation in nanowire QPS circuits. Our results highlight a promising pathway towards realising
19
+ low-loss nanowire-based QPS devices.
20
+ I.
21
+ INTRODUCTION
22
+ Quantum circuits based on superconducting materials
23
+ are currently the leading candidate for the implementa-
24
+ tion of a scalable quantum computer, already beginning
25
+ to tackle relevant computation and simulation problems
26
+ [1, 2] and recently demonstrating ‘quantum advantage’
27
+ [3]. The Josephson junction is near ubiquitous in these
28
+ circuits, providing the necessary nonlinearity. A quantum
29
+ phase-slip nanowire is the flux-charge dual to the Joseph-
30
+ son junction [4], and in theory every Josephson junction-
31
+ based circuit has a QPS dual. As well as being proposed
32
+ as a qubit with favourable properties over traditional
33
+ Josephson-based technology [5, 6], the QPS nanowire’s
34
+ dual property of a nonlinear quantum capacitance enables
35
+ potential applications such as novel qubit-qubit couplers
36
+ [7], parametric amplification for qubit readout, and a
37
+ primary quantum current standard [8]. As yet, the huge
38
+ potential of QPS nanowires remains to be fully exploited,
39
+ and two key reasons for this stand out. Firstly, consistent
40
+ and reliable fabrication of materials and nanowires with
41
+ the requisite properties remains challenging; secondly, full
42
+ control over individual QPS events in a nanowire has not
43
+ yet been demonstrated.
44
+ The QPS phenomenon is most pronounced in quasi-
45
+ one-dimensional superconducting nanowires, by which we
46
+ mean that the cross-sectional dimensions of the nanowire
47
+ are comparable to the coherence length ξ [9]. In these
48
+ nanowires, quantum (or indeed thermal) fluctuations can
49
+ lead to complete suppression of the superconducting order
50
+ parameter over the cross-section of the wire. This in turn
51
+ leads to a sudden change of 2π in the phase difference
52
+ ∗ jamie.potter@npl.co.uk
53
+ Present address:
54
+ National Physical Laboratory, Teddington,
55
+ TW11 0LW, United Kingdom
56
+ between the two ends of the wire, accompanied by the
57
+ transfer of a quantised amount of magnetic flux equal to
58
+ the magnetic flux quantum Φ0 = h/2e through the wire.
59
+ This tunnelling of a flux quantum can be coherent [10–12]
60
+ or incoherent [13], depending on the relative scales of
61
+ the phase-slip energy ES and the inductive energy EL
62
+ of the nanowire. When ES/EL < 1, the magnetic flux
63
+ quantum number is well-defined, and incoherent transfer
64
+ of individual flux-quanta is observable. This is in direct
65
+ analogy to small Josephson junctions with large charging
66
+ energy, where tunnelling of single Cooper pairs can be
67
+ observed [14]. It is the incoherent QPS regime that is
68
+ the focus of this paper. Incoherent QPS occur probabilis-
69
+ tically, with a frequency characterised by the phase-slip
70
+ rate ΓS ≡ ES/h. However if one waits for a time τ that
71
+ is much longer than 1/ΓS, then flux-quantum tunnelling
72
+ will occur with extremely high likelihood. A device dis-
73
+ playing deterministic transfer of quantised amounts of
74
+ magnetic flux may find useful applications in tasks such
75
+ as energy-efficient classical digital logic processing [15–19].
76
+ Development of such a device is a key enabling technol-
77
+ ogy for control of superconducting quantum processors
78
+ at technologically-useful scales.
79
+ Historically, phase slips were studied in externally con-
80
+ nected, current-biased nanowires, where the collective
81
+ effect of many phase slips manifests as a resistance below
82
+ Tc [20–25]. However, in order to isolate a single phase-
83
+ slip, it is necessary to incorporate the nanowire into a
84
+ flux-biased superconducting loop. The flux-dependent
85
+ energy states of a continuous superconducting loop are
86
+ described by a set of parabolas (see Fig. 1(a)), where
87
+ each parabola corresponds to a unique value N of the
88
+ phase winding number, or equivalently the number of flux
89
+ quanta in the loop. A single phase-slip corresponds to
90
+ a transition between neighbouring parabolas, and if no
91
+ lower-energy state is available at a particular external flux
92
+ bias, then phase slips are forbidden. When sweeping the
93
+ arXiv:2301.04411v1 [cond-mat.supr-con] 11 Jan 2023
94
+
95
+ 2
96
+ externally applied flux, tunnelling of a single flux-quantum
97
+ becomes allowed at Φapp = (N + 1/2)Φ0 (known as the
98
+ degeneracy point, highlighted in red in Fig. 1(a)) [26, 27].
99
+ Tunnelling will occur when the system passes the degen-
100
+ eracy point if the rate of phase slips is much greater than
101
+ the rate at which the flux is swept. However, if the flux is
102
+ swept slowly with respect to ΓS, tunnelling will cause the
103
+ system to enter a metastable state and it will then un-
104
+ dergo irreversible relaxation to the ground state at some
105
+ later time. A number of recent experiments [28–31] have
106
+ demonstrated relaxation via QPS from a higher-energy
107
+ metastable state, but controlled single-flux-quantum tun-
108
+ nelling when passing through the degeneracy point has
109
+ not previously been demonstrated.
110
+ In this paper, we demonstrate for the first time single-
111
+ flux-quantum tunnelling occurring at the degeneracy point
112
+ in a continuous superconducting loop. The flux quanta
113
+ tunnel through NbN nanowires embedded in the loop and
114
+ this is read out via coupling to a high-quality coplanar
115
+ waveguide (CPW) resonator. An important innovation in
116
+ our fabrication technique is that the nanowires were fabri-
117
+ cated by neon focused-ion-beam (FIB) milling. The FIB
118
+ process enables the repeatable fabrication of nanowires
119
+ with width w ≈ 25 nm ensuring a large phase-slip rate,
120
+ while introducing minimal losses to the host resonator.
121
+ FIB milling has previously been shown to be compati-
122
+ ble with low-dissipation superconducting circuits [32, 33];
123
+ however, this is the first report of the use of FIB to fabri-
124
+ cate a device in which quantum phase-slip behaviour has
125
+ been measured. Our results show flux-periodic tuning of
126
+ the resonant frequency ν0 while maintaining a high intrin-
127
+ sic quality factor Qi at all values of applied flux. We show
128
+ that a single quantum phase-slip always occurs when ad-
129
+ jacent winding-number states become degenerate. This is
130
+ ensured by a phase-slip rate — we estimate ΓS = 35 MHz
131
+ — which is large in comparison to 1/τE, where τE is the
132
+ experimental timescale. However, the phase-slip rate is
133
+ less than the inductive energy (EL/h > 1 THz), and less
134
+ than the thermal energy (kBT/h ≈ 6 GHz), which ex-
135
+ cludes the possibility of avoided crossings associated with
136
+ coherent QPS.
137
+ Our demonstration of the ability to control the tun-
138
+ nelling of single flux-quanta represents important progress
139
+ towards applications of QPS devices in quantum infor-
140
+ mation processing that have been proposed elsewhere.
141
+ The low loss in our device suggests the potential for high
142
+ tunnelling rates in QPS devices without a significant in-
143
+ crease in T1-type decoherence. In addition to this, there is
144
+ potential for a QPS digital logic processing device, based
145
+ on the deterministic transfer of single flux-quanta [15–
146
+ 18]. Utilising quantum tunnelling of flux in such a device
147
+ should enable significant reduction in the heat dissipa-
148
+ tion associated with each gate [34], a reduction that will
149
+ be necessary for the scaling up of systems beyond the
150
+ 1,000-qubit level.
151
+ FIG. 1. (a) Flux-dependent energy spectrum of a continuous
152
+ superconducting loop, with blue dashed line highlighting the
153
+ ground state. A single flux-quantum may tunnel into the loop
154
+ at the degeneracy point — highlighted in red. N is the winding
155
+ number and Φ0 the flux quantum. (b) Optical (main image;
156
+ blue contrast) and SEM (inset; grey contrast) images of the
157
+ NbN nanowire-embedded loop located at the short-circuited
158
+ termination of the CPW resonator. The nanowires in this
159
+ device are 25-nm wide and 200-nm long. The lower and upper
160
+ leads to the loop are connected to the CPW centre conductor
161
+ and superconducting ground plane respectively.
162
+ II.
163
+ FABRICATION AND EXPERIMENTAL
164
+ DETAILS
165
+ We fabricated nanowire-embedded resonators from 10-
166
+ nm-thick films of superconducting NbN. The NbN was
167
+ deposited on c-axis oriented sapphire substrates by dc
168
+ magnetron sputtering of a 99.99% pure niobium target in
169
+ a 1:1 Ar:N2 atmosphere at a pressure of 5 × 10−3 mbar
170
+ and a power of 150 W. The resulting film was measured to
171
+ have critical temperature Tc = 8.55 K and sheet resistance
172
+ Rsq = 1.2 kΩ/sq.
173
+
174
+ (a)
175
+ N=0
176
+ N=1
177
+ N=2
178
+ Energy
179
+ -1.0
180
+ -0.5
181
+ 0.0
182
+ 0.5
183
+ 1.0
184
+ 1.5
185
+ Applied Flux (Φo)
186
+ (b)
187
+ sapphire
188
+ NbN
189
+ μm
190
+ 100um3
191
+ FIG. 2. (a) Upper panel: Single-tone spectroscopy of nanowire-embedded resonator measured at T = 305 mK and ⟨n⟩ ≈ 50.
192
+ |S21| is plotted as a function of frequency and applied magnetic field. The top axis shows the applied magnetic flux Φapp seen by
193
+ the nanowire loop, which is inferred from the periodicity of the resonator tuning. Dashed white lines show resonant frequencies
194
+ corresponding to the calculated energy states of the loop. Lower panel: Magnetic-field dependence of the measured intrinsic
195
+ quality factor. (b) Calculated energy states of the loop and values extracted from the measured resonant frequency.
196
+ Quarter-wavelength resonators were patterned by
197
+ electron-beam lithography (EBL) into a 300-nm layer
198
+ of PMMA resist. Multiple resonators on each chip are
199
+ capacitively coupled to a common feedline and are pat-
200
+ terned with narrow loops galvanically coupled at the
201
+ short-circuited end. At this stage, the loops contain ‘pre-
202
+ cursor’ nanowires designed with a width of 400 nm. The
203
+ pattern was transferred into the NbN film by reactive ion
204
+ etching (RIE) using a 2:5 volume ratio of CHF3 and SF6
205
+ at 100 W and 100 mbar.
206
+ Nanowires are then patterned into the loops using a
207
+ neon focused-ion-beam, whereby a beam of Ne ions is
208
+ accelerated from an atomically-defined tip onto the sample
209
+ surface with spot size down to 2 nm and sufficient energy
210
+ to sputter the metal film [35, 36]. The precursor wires
211
+ were milled to a width of 25 nm (see Fig. 1(c)) using a 15-
212
+ keV Ne beam. A Ne dose of 0.5 nC/µm−2 was sufficient
213
+ to clear the 10-nm film.
214
+ The sample was wire-bonded to a copper printed-circuit-
215
+ board (PCB) and enclosed within an ECCOSORB-lined
216
+ brass sample box. This was cooled to a temperature of
217
+ T ∼ 300 mK using a 3He refrigerator. Measurement of the
218
+ rf response of the device was made using a Vector Network
219
+ Analyser (VNA) via an input line with 60 dB of atten-
220
+ uation to reduce thermal noise from room temperature.
221
+ Signals in the output line were amplified with a high-
222
+ electron-mobility-transistor (HEMT) amplifier. Global
223
+ magnetic field was applied perpendicular to the plane of
224
+ the loop using a superconducting solenoid and a precision
225
+ current source. The lines supplying current to the coil
226
+ were filtered at room temperature with an upper cut-off
227
+ frequency of 9.2 kHz.
228
+ III.
229
+ RESULTS AND DISCUSSION
230
+ A. Flux Dependence of Resonant Frequency
231
+ In this paper, we present results on a single NbN
232
+ nanowire-embedded CPW resonator (see Supplemental
233
+ Information for comparison of multiple devices). We mea-
234
+ sured the forward transmission (S21) through the on-chip
235
+ feedline, where the λ/4 resonators appear as a notch-type
236
+ resonance. The upper panel of Fig. 2(a) shows the main
237
+ result of this work: under an applied magnetic field, the
238
+ resonance tuning shows discontinuous changes of gradi-
239
+ ent at periodic values of the applied field. As we will
240
+ demonstrate in the remainder of this paper, these dis-
241
+ continuities occur when two stable states with winding
242
+ number differing by one become degenerate and are due
243
+ to single-flux-quantum tunnelling mediated by quantum
244
+ phase-slips in the nanowire [37].
245
+ The magnetic-field periodicity is 153 µT, which cor-
246
+ responds to a single flux-quantum in our loop assum-
247
+ ing a flux-focusing factor F = 1.7 [38].
248
+ The data in
249
+ Fig. 2(a) corresponds to a single direction of magnetic
250
+ field sweep, but sweeps in the opposite direction were
251
+ found to give the same result. We also observe a non-
252
+ periodic, parabolic decrease of the resonant frequency as
253
+ the magnitude of the applied field is increased. This is the
254
+ expected [39, 40] kinetic-inductance tuning of the NbN
255
+ resonator, and can be parametrised by a phenomenologi-
256
+ cal field-scale B⋆ = 8 mT.
257
+
258
+ (a)
259
+ Dapp(@o)
260
+ (b)
261
+ -3
262
+ -2
263
+ -1
264
+ 0
265
+ 2
266
+ 3
267
+ S21| (dB)
268
+ 45.0
269
+ 500
270
+ 3.384
271
+ 3.383
272
+ 45.2
273
+ 400
274
+ Frequency (GHz)
275
+ 3.382
276
+ 45.4
277
+ 3.381
278
+ 300
279
+ 45.6
280
+ 3.380
281
+ 45.8
282
+ E (GHz)
283
+ 3.379
284
+ 200
285
+ 3.378
286
+ 46.0
287
+ 100
288
+ 3.377
289
+ 46.2
290
+ 0.4
291
+ 0.2
292
+ 0.0
293
+ 0.2
294
+ 0.4
295
+ 0.6
296
+ 10×-01
297
+ N=-1 N=0
298
+ N=1
299
+ N=2
300
+ calculated
301
+ -100
302
+ extracted from measured vo
303
+ 3
304
+ 0.4
305
+ 0.2
306
+ 0.0
307
+ 0.2
308
+ 0.4
309
+ 0.6
310
+ 4
311
+ -2
312
+ 0
313
+ Applied Field (mT)
314
+ Φapp(Φo)4
315
+ Figure 2(a) also shows periodic variation of Qi of the
316
+ resonance as a function of applied field with the same
317
+ field period as the resonant frequency. Quality factors
318
+ were obtained by an analytical fit [41] to the equation
319
+ |S21(ν)| = aeiαe−i2πντ
320
+
321
+ 1 −
322
+
323
+ Ql
324
+ |Qc|
325
+
326
+ eiφ
327
+ 1 + 2iQl(ν/ν0 − 1)
328
+
329
+ ,
330
+ (1)
331
+ where ν is the probe frequency and ν0 is the resonance
332
+ frequency.
333
+ Qc and Ql are the coupling and loaded
334
+ quality factors respectively, and obey the relationship
335
+ 1/Ql = 1/Qi + 1/Qc.
336
+ φ accounts for the effect of
337
+ impedance mismatches in the circuit, the scale factor
338
+ a represents the change in amplitude due to any attenua-
339
+ tion/amplification in the measurement chain, α describes
340
+ any initial phase offset of the signal, and τ accounts
341
+ for frequency-dependent cable delay. We find that Qi
342
+ decreases approximately quadratically from 4 × 103 at
343
+ δΦ ≡ (Φapp −NΦ0)/Φ0 = 0 to 3.4×103 at δΦ = 1/2. We
344
+ attribute this small change to non-equilibrium quasiparti-
345
+ cles excited by the induced screening current providing an
346
+ extra loss mechanism [42]. We observe no sharp decrease
347
+ in Qi at δΦ = 1/2, which suggests that the heat dissipated
348
+ by the quantum phase-slip itself is not large enough to
349
+ cause extra losses in the resonator. We note that the
350
+ intrinsic quality factor exceeds any currently reported in
351
+ the literature for QPS devices, and discuss this further in
352
+ the Supplemental Information.
353
+ The periodic tuning of the resonance is well fitted by
354
+ a model of an inductive superconducting loop remaining
355
+ in its ground state (see Fig. 2(b)), where the system is
356
+ allowed to move between adjacent parabolas by trans-
357
+ ferring a single flux-quantum through the nanowire at
358
+ Φapp = (N + 1/2)Φ0.
359
+ The loop is made up of a wide section and a narrow
360
+ section (as shown in Fig. 1(b)), and so can be modelled
361
+ as two nonlinear kinetic inductances in series. The flux-
362
+ dependent kinetic inductance of the loop Lk(Φ) is there-
363
+ fore
364
+ Lk(I) = Lk,1(0)
365
+
366
+ 1 +
367
+
368
+ Is
369
+ I⋆,1
370
+ �2�
371
+ + Lk,2(0)
372
+
373
+ 1 +
374
+
375
+ Is
376
+ I⋆,2
377
+ �2�
378
+ ,
379
+ (2)
380
+ where I⋆,1 and I⋆,2 are known to be of the order of the
381
+ critical current in the wide and narrow section respectively
382
+ [43]. Since the screening current is Is = Φ/Lk, we can
383
+ insert this into Eq. 2 and solve for Lk(Φ).
384
+ The input impedance Zin of a λ/4 CPW resonator
385
+ terminated by an inductive load, as a function of frequency
386
+ and load impedance, is
387
+ Zin(ν, ZL) = Z0
388
+ ZL + iZ0 tan
389
+ � 2πνl
390
+ c
391
+
392
+ Z0 + iZL tan
393
+ � 2πνl
394
+ c
395
+ �,
396
+ (3)
397
+ where Z0 is the characteristic impedance of the resonator,
398
+ ZL(Φ) = i2πνLk(Φ) is the impedance of the inductive
399
+ load, c is the speed of light in the resonator, and l is its
400
+ FIG. 3. |S21| measured at Φapp = 0 and Φapp = Φ0/2 along
401
+ with fit (black line) to a linear resonance model. This shows
402
+ that at Φapp = Φ0/2 the response is linear, so the current in
403
+ the nanowire is well below the critical current.
404
+ length. At resonance, Im{Zin} → ∞, so given Lk(Φ) one
405
+ can numerically calculate ν0(Φ), or given ν0(Φ) one can
406
+ numerically calculate Lk(Φ).
407
+ One can also calculate the flux-dependent free energy
408
+ of the loop E(Φ) from Lk(Φ), using the relation
409
+ L−1
410
+ k
411
+ = d2E
412
+ dΦ2 .
413
+ (4)
414
+ To obtain the free energy, we simply numerically integrate
415
+ the inverse of the inductance twice with respect to flux.
416
+ We calculated Lk(Φ) for our device from Eq. 2 using
417
+ only independently determined parameters. A critical
418
+ current density of Jc = 4.4 × 105 Acm−2 was obtained
419
+ from a dc measurement of a track etched into the NbN
420
+ film, and a sheet kinetic inductance of Lsq = 0.34 nH/sq
421
+ was inferred from the zero-field ν0 of the resonator. The
422
+ geometry of the loop was measured by SEM and this was
423
+ used to calculate Lk(0) and I⋆ (we set I⋆ = Ic). We then
424
+ calculated the white dashed lines in Fig. 2(a) using Eq. 3,
425
+ and the solid black lines in Fig. 2(b) from Eq. 4. The blue
426
+ points in Fig. 2(b) were extracted from the measured ν0
427
+ using Eqs. 3 and 4.
428
+ B. Mechanisms for Flux Quantum Transfer
429
+ The periodic tuning of the resonator and the associated
430
+ fit to the calculated energy states of the loop constitute
431
+ strong evidence that the loop remains in its ground state
432
+ for all values of Φapp, and this is made possible by a
433
+ single flux-quantum transferring into or out of the loop at
434
+ δΦ = 1/2. It is important to establish the mechanism by
435
+ which the flux is able to enter the loop, so we now turn our
436
+ attention to the transitions between flux states. Across
437
+ multiple devices on multiple chips, we found an onset
438
+
439
+ -45.0
440
+ 6Φ= 0
441
+ -45.2
442
+ 45.4
443
+ (dB
444
+ 45.6
445
+ S21
446
+ 45.8
447
+ -46.0
448
+ 6Φ = 1/2
449
+ 46.2
450
+ 3.378
451
+ 3.380
452
+ 3.382
453
+ 3.384
454
+ Frequency(GHz)5
455
+ of flux-periodic tuning in devices containing nanowires
456
+ with w ≲ 35 nm. This dependence of the behaviour on
457
+ nanowire width suggests that the flux tunnelling occurs
458
+ in the nanowires, and not in the wider part of the loop.
459
+ We can now examine some possible physical processes
460
+ that could occur in the nanowires and see how the data
461
+ fits with them.
462
+ -Does the nanowire current exceed its critical current
463
+ Inw
464
+ c ?
465
+ Niobium-nitride resonators commonly exhibit a
466
+ nonlinear S21 response when they are driven with a high
467
+ microwave power [44] as a result of the current-induced
468
+ nonlinear kinetic inductance. As we see in Eq. 2, the
469
+ kinetic inductance is quadratically dependent on (I/Ic)2,
470
+ and so the nonlinearity must be dominated by the part
471
+ of the conductor with the lowest Ic. This is confirmed by
472
+ measurements of our circuits, where we find that nanowire-
473
+ embedded resonators show a much higher degree of non-
474
+ linearity in their S21 response than bare resonators (see
475
+ Supplemental Information). The quadratic nature of the
476
+ nonlinearity suggests that a strongly nonlinear response is
477
+ a consequence of the magnitude of the rf current Ires in the
478
+ resonator reaching a significant fraction of the nanowire
479
+ critical current Inw
480
+ c . Our NbN resonator readout method
481
+ therefore gives us an indirect readout of whether the
482
+ current in the nanowire is close to Inw
483
+ c .
484
+ Figure 3 shows the S21 response of the nanowire-
485
+ embedded resonator at δΦ = 0 and δΦ = 1/2, both
486
+ measured in the low-power limit with an estimated res-
487
+ onator photon population of ⟨n⟩ ≈ 50. In both cases, the
488
+ response is linear and well fitted by Eq. 1. We calculate,
489
+ using the relation Is = dE(Φ)/dΦ that the maximum
490
+ induced screening current in the nanowires Is(δΦ = 1/2)
491
+ is 120 nA, an order of magnitude less than Inw
492
+ c . Crucially,
493
+ the lack of nonlinearity of the resonance at δΦ = 1/2,
494
+ along with the fact that Qi remains a significant fraction
495
+ of its zero-field value, means that the nanowires are not
496
+ being driven close to their critical current by the applied
497
+ flux. By a similar argument, we know that the nanowires
498
+ are not being driven through Tc by a local heating process,
499
+ as this would also result in nonlinearity of the resonance
500
+ at δΦ = 1/2 due to dissipation in the highly resistive
501
+ normal metal.
502
+ -Is the nanowire a constriction Josephson-junction?
503
+ ‘Dayem-bridge’ Josephson-junction SQUIDs are com-
504
+ monly embedded within CPW resonators [45, 46] to
505
+ provide a flux-tunable resonant frequency.
506
+ However,
507
+ when the SQUID loop has a large inductance, one ob-
508
+ serves hysteretic tuning, characterised by the parameter
509
+ βL = 2LIc/Φ0. When βL ≳ 1, the SQUID behaviour be-
510
+ comes hysteretic with applied flux and the resonator will
511
+ exhibit discontinuous jumps in the resonant frequency,
512
+ as observed in [47, 48]. Our device does not undergo
513
+ any discontinuous jumps, and the tuning over a single
514
+ flux-quantum is symmetric, so βL < 1. Given this and the
515
+ known loop inductance, we can set an upper bound on the
516
+ critical current of any Josephson junction of IJJ
517
+ c
518
+ < 100 nA.
519
+ This bound is 10× smaller than the expected transport
520
+ critical current of our nanowires and also less than Is(δΦ0).
521
+ FIG. 4. Normalised tunnelling flux ∆φ+
522
+ N (defined in the main
523
+ text), as a function of the winding number N.
524
+ The solid
525
+ line corresponds to half a flux quantum, ∆φ+
526
+ N = 0.5.
527
+ In-
528
+ set: Magnetic-field dependence of resonant frequency of the
529
+ nanowire-embedded resonator up to an applied field of 2.4
530
+ mT. The black dotted lines mark transitions between winding
531
+ number states (φ+
532
+ N), and the red dotted lines mark the energy
533
+ minimum of each winding number state (φmin,N).
534
+ Therefore, it is unrealistic to conclude that the flux-tuning
535
+ we observe is a consequence of a dc SQUID formed of
536
+ Dayem-bridge Josephson junctions. We also note that
537
+ the closeness of the fit shown in Fig. 2 suggests there is
538
+ no contribution to the flux-dependent inductance from a
539
+ Josephson junction, which would add a 1/ cos Φ term to
540
+ Eq. 2.
541
+ -Is this a thermal or quantum process? Figure 4 shows
542
+ that tunnelling always occurs at degeneracy. Following
543
+ Petkovi´c et al. [30], ∆φ+
544
+ N is defined as ∆φ+
545
+ N = φ+
546
+ N−φmin,N,
547
+ where φ+
548
+ N is the normalised flux φ = Φ/Φ0 at which tun-
549
+ nelling from state N to state N + 1 occurs, and φmin,N is
550
+ the flux that minimises the loop free-energy for a particu-
551
+ lar winding number N. Our data shows the periodicity,
552
+ defined in this way, to be half a flux quantum for all values
553
+ of the winding number except N = 1 (we attribute the
554
+ latter exception to enhanced flux-focusing at low magnetic
555
+ field). This is in contrast to [30], where a characteristic
556
+ dependence of ∆φ+
557
+ N on N is shown to be a defining fea-
558
+ ture of thermally-activated phase-slips. By following the
559
+ method of [30], we calculate that ∆φ+
560
+ N ≈ 300 would be
561
+ required in order for the energy barrier to phase slips
562
+ in our nanowire to be tuned to ≲ kBT.
563
+ Correspond-
564
+ ingly, we can estimate (see Supplemental Information)
565
+ that ΓQPS = 35 MHz for our nanowire, and we calculate
566
+ a temperature-dependent ΓTAPS that is below 1 Hz for
567
+ T < 1.5 K. Therefore, at our measurement temperature,
568
+ quantum tunnelling of flux is overwhelmingly more likely
569
+ than a thermal transition. For comparison, the inverse
570
+ experimental timescale is 1/τE ≈ 0.2 Hz since, for each
571
+
572
+ 0.5
573
+ 0.4
574
+ 3.380
575
+ Resonant Frequency (GHz)
576
+ 3.378
577
+ 0.3
578
+ +z
579
+ 3.374
580
+ 0.2
581
+ 3.372
582
+ 3.370
583
+ 0.1
584
+ 3.368
585
+ 3.366
586
+ 0.0
587
+ 0.0
588
+ 0.5
589
+ 1.0
590
+ 1.5
591
+ 2.0
592
+ Applied Field (mT)
593
+ 0
594
+ 2
595
+ 4
596
+ 6
597
+ 8
598
+ 10
599
+ 12
600
+ 14
601
+ 16
602
+ Winding NumberN6
603
+ setpoint of the magnetic field, it takes the VNA approxi-
604
+ mately 5 s to collect S21 data across the resonance. Be-
605
+ cause kBT/h > ΓQPS ≫ 1/τE — and to our knowledge
606
+ this is the first reported study in this regime — when
607
+ our device bias is swept through the degeneracy point,
608
+ a single quantum phase-slip always occurs before we are
609
+ able to observe the system in a higher-energy metastable
610
+ state.
611
+ IV.
612
+ CONCLUSIONS
613
+ We have used a Ne FIB to fabricate NbN nanowires
614
+ with widths down to 25 nm embedded within CPW res-
615
+ onators.
616
+ We observe periodic modulation of resonant
617
+ frequency and intrinsic quality factor, which is consis-
618
+ tent with quantum tunnelling of individual flux quanta
619
+ mediated by quantum phase-slip, occurring when states
620
+ of different winding number become degenerate. This
621
+ behaviour has been observed in resonators with intrinsic
622
+ quality factor, Qi, up to 2.7 × 104 at 300 mK, which to
623
+ our knowledge is the highest quality factor measured in
624
+ quantum phase-slip experiments — note that the losses
625
+ here are significantly lower than suggested by comparable
626
+ reports [10]. We estimate that the QPS rate is of the
627
+ order 10–100 MHz, which means that the tunnelling of
628
+ a single flux-quantum is effectively deterministic on the
629
+ timescale of microseconds. This result shows the suitabil-
630
+ ity of the Ne FIB process for fabricating QPS devices. We
631
+ also suggest that an incoherent QPS device with a high
632
+ QPS rate such as ours could be promising for classical
633
+ digital logic processing applications, where the quantum
634
+ nature of the flux tunnelling implies a reduction in heat
635
+ dissipation compared with current state-of-the-art devices,
636
+ opening up a route to resolving an important roadblock
637
+ to the upscaling of qubit control electronics.
638
+ ACKNOWLEDGMENTS
639
+ The authors thank O. W. Kennedy for useful dis-
640
+ cussions. The authors gratefully acknowledge funding
641
+ from the United Kingdom Engineering and Physical
642
+ Sciences Research Council, Grant Nos. EP/L015242/1,
643
+ EP/J017329/1, and EP/T001062/1.
644
+ [1] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin,
645
+ R. Barends, S. Boixo, M. Broughton, B. B. Buck-
646
+ ley, D. A. Buell, B. Burkett, N. Bushnell, Y. Chen,
647
+ Z. Chen, B. Chiaro, R. Collins, W. Courtney, S. De-
648
+ mura, A. Dunsworth, E. Farhi, A. Fowler, B. Foxen,
649
+ C. Gidney, M. Giustina, R. Graff, S. Habegger, M. P. Har-
650
+ rigan, A. Ho, S. Hong, T. Huang, W. J. Huggins, L. Ioffe,
651
+ S. V. Isakov, E. Jeffrey, Z. Jiang, C. Jones, D. Kafri,
652
+ K. Kechedzhi, J. Kelly, S. Kim, P. V. Klimov, A. Ko-
653
+ rotkov, F. Kostritsa, D. Landhuis, P. Laptev, M. Lind-
654
+ mark, E. Lucero, O. Martin, J. M. Martinis, J. R. Mc-
655
+ Clean, M. McEwen, A. Megrant, X. Mi, M. Mohseni,
656
+ W. Mruczkiewicz, J. Mutus, O. Naaman, M. Neeley,
657
+ C. Neill, H. Neven, M. Y. Niu, T. E. O’Brien, E. Ostby,
658
+ A. Petukhov, H. Putterman, C. Quintana, P. Roushan,
659
+ N. C. Rubin, D. Sank, K. J. Satzinger, V. Smelyan-
660
+ skiy, D. Strain, K. J. Sung, M. Szalay, T. Y. Takeshita,
661
+ A. Vainsencher, T. White, N. Wiebe, Z. J. Yao, P. Yeh,
662
+ and A. Zalcman, Hartree-Fock on a superconducting qubit
663
+ quantum computer, Science 369, 1084 (2020).
664
+ [2] S. Yarkoni, F. Neukart, E. M. G. Tagle, N. Magiera,
665
+ B. Mehta, K. Hire, S. Narkhede, and M. Hofmann, Quan-
666
+ tum shuttle: Traffic navigation with quantum computing
667
+ (2020), arXiv:2006.14162 [quant-ph].
668
+ [3] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C.
669
+ Bardin, R. Barends, R. Biswas, S. Boixo, F. G. S. L.
670
+ Brandao, D. A. Buell, B. Burkett, Y. Chen, Z. Chen,
671
+ B. Chiaro, R. Collins, W. Courtney, A. Dunsworth,
672
+ E. Farhi, B. Foxen, A. Fowler, C. Gidney, M. Giustina,
673
+ R. Graff, K. Guerin, S. Habegger, M. P. Harrigan,
674
+ M. J. Hartmann, A. Ho, M. Hoffmann, T. Huang,
675
+ T. S. Humble, S. V. Isakov, E. Jeffrey, Z. Jiang,
676
+ D. Kafri, K. Kechedzhi, J. Kelly, P. V. Klimov, S. Knysh,
677
+ A. Korotkov, F. Kostritsa, D. Landhuis, M. Lind-
678
+ mark, E. Lucero, D. Lyakh, S. Mandr`a, J. R. Mc-
679
+ Clean, M. McEwen, A. Megrant, X. Mi, K. Michielsen,
680
+ M. Mohseni, J. Mutus, O. Naaman, M. Neeley, C. Neill,
681
+ M. Y. Niu, E. Ostby, A. Petukhov, J. C. Platt, C. Quin-
682
+ tana, E. G. Rieffel, P. Roushan, N. C. Rubin, D. Sank,
683
+ K. J. Satzinger, V. Smelyanskiy, K. J. Sung, M. D. Tre-
684
+ vithick, A. Vainsencher, B. Villalonga, T. White, Z. J. Yao,
685
+ P. Yeh, A. Zalcman, H. Neven, and J. M. Martinis, Quan-
686
+ tum supremacy using a programmable superconducting
687
+ processor, Nature (London) 574, 505 (2019).
688
+ [4] J. E. Mooij and Y. V. Nazarov, Superconducting
689
+ nanowires as quantum phase-slip junctions, Nat. Phys. 2,
690
+ 169 (2006).
691
+ [5] J. E. Mooij and C. J. P. M. Harmans, Phase-slip flux
692
+ qubits, New J. Phys. 7, 219 (2005).
693
+ [6] D. T. Le, A. Grimsmo, C. M¨uller, and T. M. Stace,
694
+ Doubly nonlinear superconducting qubit, Phys. Rev. A
695
+ 100, 062321 (2019).
696
+ [7] A. J. Kerman, Superconducting qubit circuit emulation
697
+ of a vector spin-1/2, New J. Phys. 21, 073030 (2019).
698
+ [8] Z. M. Wang, J. S. Lehtinen, and K. Y. Arutyunov, To-
699
+ wards quantum phase slip based standard of electric cur-
700
+ rent, Appl. Phys. Lett. 114, 242601 (2019).
701
+ [9] A. Bezryadin, Quantum suppression of superconductivity
702
+ in nanowires, J. Phys. Condens. Matter 20, 043202 (2008).
703
+ [10] O. Astafiev, L. Ioffe, S. Kafanov, Y. A. Pashkin, K. Y.
704
+ Arutyunov, D. Shahar, O. Cohen, and J. Tsai, Coherent
705
+ quantum phase slip, Nature (London) 484, 355 (2012).
706
+ [11] J. Peltonen, O. Astafiev, Y. P. Korneeva, B. Voronov,
707
+ A. Korneev, I. Charaev, A. Semenov, G. Golt’sman,
708
+ L. Ioffe, T. Klapwijk, et al., Coherent flux tunneling
709
+ through NbN nanowires, Phys. Rev. B 88, 220506 (2013).
710
+ [12] J. Peltonen, Z. Peng, Y. P. Korneeva, B. Voronov, A. Ko-
711
+ rneev, A. Semenov, G. Gol’tsman, J. Tsai, and O. Astafiev,
712
+
713
+ 7
714
+ Coherent dynamics and decoherence in a superconducting
715
+ weak link, Phys. Rev. B 94, 180508 (2016).
716
+ [13] N. G. N. Constantino, M. S. Anwar, O. W. Kennedy,
717
+ M. Dang, P. A. Warburton, and J. C. Fenton, Emergence
718
+ of quantum phase-slip behaviour in superconducting NbN
719
+ nanowires: DC electrical transport and fabrication tech-
720
+ nologies, Nanomaterials (Basel) 8 (2018).
721
+ [14] L. J. Geerligs, V. F. Anderegg, J. Romijn, and J. E.
722
+ Mooij, Single Cooper-pair tunneling in small-capacitance
723
+ junctions, Phys. Rev. Lett. 65, 377 (1990).
724
+ [15] K. K. Likharev and V. K. Semenov, RSFQ logic/memory
725
+ family:
726
+ a
727
+ new
728
+ Josephson-junction
729
+ technology
730
+ for
731
+ sub-terahertz-clock-frequency
732
+ digital
733
+ systems,
734
+ IEEE
735
+ Trans. Appl. Supercond. 1, 3 (1991).
736
+ [16] O. A. Mukhanov, Energy-efficient single flux quantum
737
+ technology, IEEE Trans. Appl. Supercond. 21, 760 (2011).
738
+ [17] Q. P. Herr, A. Y. Herr, O. T. Oberg, and A. G. Ioannidis,
739
+ Ultra-low-power superconductor logic, J. Appl. Phys. 109,
740
+ 103903 (2011).
741
+ [18] D. E. Kirichenko, S. Sarwana, and A. F. Kirichenko, Zero
742
+ static power dissipation biasing of RSFQ circuits, IEEE
743
+ Trans. Appl. Supercond. 21, 776 (2011).
744
+ [19] M. H. Volkmann, A. Sahu, C. J. Fourie, and O. A.
745
+ Mukhanov, Implementation of energy efficient single flux
746
+ quantum digital circuits with sub-aJ/bit operation, Su-
747
+ percond. Sci. Tech. 26, 015002 (2012).
748
+ [20] J. Lukens, R. Warburton, and W. Webb, Onset of quan-
749
+ tized thermal fluctuations in “one-dimensional” supercon-
750
+ ductors, Phys. Rev. Lett. 25, 1180 (1970).
751
+ [21] R. Newbower, M. Beasley, and M. Tinkham, Fluctuation
752
+ effects on the superconducting transition of tin whisker
753
+ crystals, Phys. Rev. B 5, 864 (1972).
754
+ [22] A. Van Run, J. Romijn, and J. Mooij, Superconduction
755
+ phase coherence in very weak aluminium strips, Japanese
756
+ J. Appl. Phys. 26, 1765 (1987).
757
+ [23] N. Giordano, Evidence for macroscopic quantum tunnel-
758
+ ing in one-dimensional superconductors, Phys. Rev. Lett.
759
+ 61, 2137 (1988).
760
+ [24] A. Bezryadin, C. N. Lau, and M. Tinkham, Quantum
761
+ suppression of superconductivity in ultrathin nanowires,
762
+ Nature (London) 404, 971 (2000).
763
+ [25] C. N. Lau, N. Markovic, M. Bockrath, A. Bezryadin, and
764
+ M. Tinkham, Quantum phase slips in superconducting
765
+ nanowires, Phys. Rev. Lett. 87, 217003 (2001).
766
+ [26] K. A. Matveev, A. I. Larkin, and L. I. Glazman, Persistent
767
+ current in superconducting nanorings, Phys. Rev. Lett.
768
+ 89, 096802 (2002).
769
+ [27] X. Zhang and J. C. Price, Susceptibility of a mesoscopic
770
+ superconducting ring, Phys. Rev. B 55, 3128 (1997).
771
+ [28] A. Belkin, M. Brenner, T. Aref, J. Ku, and A. Bezryadin,
772
+ Little–Parks oscillations at low temperatures: Gigahertz
773
+ resonator method, Appl. Phys. Lett. 98, 242504 (2011).
774
+ [29] A. Belkin, M. Belkin, V. Vakaryuk, S. Khlebnikov, and
775
+ A. Bezryadin, Formation of quantum phase slip pairs
776
+ in superconducting nanowires, Phys. Rev. X 5, 021023
777
+ (2015).
778
+ [30] I. Petkovi´c, A. Lollo, L. Glazman, and J. Harris, Deter-
779
+ ministic phase slips in mesoscopic superconducting rings,
780
+ Nat. Commun. 7, 13551 (2016).
781
+ [31] I. Petkovic, A. Lollo, and J. G. E. Harris, Phase-slip
782
+ statistics of a single isolated flux-biased superconducting
783
+ ring, Phys. Rev. Lett. 125, 067002 (2020).
784
+ [32] J. Burnett, J. Sagar, P. Warburton, and J. Fenton, Em-
785
+ bedding NbN nanowires into quantum circuits with a
786
+ neon focused ion beam, IEEE Trans. Appl. Supercond.
787
+ 26, 1 (2016).
788
+ [33] J. Burnett, J. Sagar, O. W. Kennedy, P. A. Warburton,
789
+ and J. C. Fenton, Low-loss superconducting nanowire
790
+ circuits using a neon focused ion beam, Phys. Rev. Applied
791
+ 8, 014039 (2017).
792
+ [34] R. McDermott, M. G. Vavilov, B. L. T. Plourde, F. K.
793
+ Wilhelm, P. J. Liebermann, O. A. Mukhanov, and T. A.
794
+ Ohki, Quantum–classical interface based on single flux
795
+ quantum digital logic, Quantum Sci. Technol. 3, 024004
796
+ (2018).
797
+ [35] D. Petit, C. C. Faulkner, S. Johnstone, D. Wood, and
798
+ R. P. Cowburn, Nanometer scale patterning using focused
799
+ ion beam milling, Rev. Sci. Instr. 76, 026105 (2005).
800
+ [36] H. Wu, D. Ferranti, and L. Stern, Precise nanofabrica-
801
+ tion with multiple ion beams for advanced circuit edit,
802
+ Microelectron. Reliab. 54, 1779 (2014).
803
+ [37] K. Y. Arutyunov, D. S. Golubev, and A. D. Zaikin, Super-
804
+ conductivity in one dimension, Phys. Rep. 464, 1 (2008).
805
+ [38] D. Bothner, D. Wiedmaier, B. Ferdinand, R. Kleiner,
806
+ and D. Koelle, Improving superconducting resonators in
807
+ magnetic fields by reduced field focussing and engineered
808
+ flux screening, Phys. Rev. Appl. 8, 034025 (2017).
809
+ [39] J. E. Healey, T. Lindstr¨om, M. S. Colclough, C. M. Muir-
810
+ head, and A. Y. Tzalenchuk, Magnetic field tuning of
811
+ coplanar waveguide resonators, Appl. Phys. Lett. 93,
812
+ 043513 (2008).
813
+ [40] C. W. Zollitsch, J. O’Sullivan, O. Kennedy, G. Dold,
814
+ and J. J. L. Morton, Tuning high-Q superconducting
815
+ resonators by magnetic field reorientation, AIP Adv. 9,
816
+ 125225 (2019).
817
+ [41] S. Probst, F. Song, P. Bushev, A. Ustinov, and M. Weides,
818
+ Efficient and robust analysis of complex scattering data
819
+ under noise in microwave resonators, Rev. Sci. Instr. 86,
820
+ 024706 (2015).
821
+ [42] J. L. Levine, Dependence of superconducting energy gap
822
+ on transport current by the method of electron tunneling,
823
+ Phys. Rev. Lett. 15, 154 (1965).
824
+ [43] J. Zmuidzinas, Superconducting microresonators: Physics
825
+ and applications, Annu. Rev. Condens. Matter Phys. 3,
826
+ 169 (2012).
827
+ [44] C. N. Thomas, S. Withington, Z. Sun, T. Skyrme, and
828
+ D. J. Goldie, Nonlinear effects in superconducting thin
829
+ film microwave resonators, New Journal of Physics 22,
830
+ 073028 (2020).
831
+ [45] A. Palacios-Laloy, F. Nguyen, F. Mallet, P. Bertet,
832
+ D. Vion, and D. Esteve, Tunable resonators for quan-
833
+ tum circuits, J. Low Temp. Phys. 151, 1034 (2008).
834
+ [46] M. Sandberg, C. M. Wilson, F. Persson, T. Bauch, G. Jo-
835
+ hansson, V. Shumeiko, T. Duty, and P. Delsing, Tuning
836
+ the field in a microwave resonator faster than the photon
837
+ lifetime, Appl. Phys. Lett. 92, 203501 (2008).
838
+ [47] E. M. Levenson-Falk, R. Vijay, and I. Siddiqi, Nonlinear
839
+ microwave response of aluminum weak-link josephson
840
+ oscillators, Appl. Phys. Lett. 98, 123115 (2011).
841
+ [48] O. Kennedy, J. Burnett, J. Fenton, N. Constantino,
842
+ P. Warburton, J. Morton, and E. Dupont-Ferrier, Tun-
843
+ able Nb superconducting resonator based on a constriction
844
+ nano-SQUID fabricated with a Ne focused ion beam, Phys.
845
+ Rev. Appl. 11, 014006 (2019).
846
+
4tE3T4oBgHgl3EQfQQmX/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
5dE1T4oBgHgl3EQfmgRl/content/tmp_files/2301.03298v1.pdf.txt ADDED
@@ -0,0 +1,1313 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Joint analysis constraints on the physics of the first
2
+ galaxies with low frequency radio astronomy data
3
+ Harry T. J. Bevins1,2,∗, Stefan Heimersheim3, Irene Abril-Cabezas3, Anastasia Fialkov2,3,
4
+ Eloy de Lera Acedo1,2, William Handley1,2, Saurabh Singh4, and Rennan Barkana5,6
5
+ 1 Astrophysics Group, Cavendish Laboratory, J. J. Thomson Avenue, Cambridge, CB3 0HE, UK
6
+ 2Kavli Institute for Cosmology, Madingley Road, Cambridge CB3 0HA, UK
7
+ 3 Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK
8
+ 4Raman Research Institute, C V Raman Avenue, Sadashivanagar, Bangalore 560080, India
9
+ 5School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv, 69978, Israel
10
+ 6Institute for Advanced Study, 1 Einstein Drive, Princeton, New Jersey 08540, USA and
11
+ ∗ htjb2@cam.ac.uk
12
+ (Dated: January 10, 2023)
13
+ Observations of the first billion years of cosmic history are currently limited. We demonstrate
14
+ the synergy between observations of the sky-averaged 21-cm signal from neutral hydrogen and
15
+ interferometric measurements of the corresponding spatial fluctuations. By jointly analysing data
16
+ from SARAS3 (redshift z ≈ 15−25) and limits from HERA (z ≈ 8 and 10), we produce the tightest
17
+ constraints to date on the astrophysics of galaxies 200 million years after the Big Bang. We disfavour
18
+ at 95% confidence scenarios in which power spectra are ≥ 126 mK2 at z = 25 and the sky-averaged
19
+ signals are ≤ −277 mK.
20
+ PROBING THE INFANT UNIVERSE
21
+ The infant Universe, corresponding to cosmic time between 100 and 700 million years after the Big Bang, remains
22
+ largely unexplored. This epoch in cosmic history covers the birth of primordial stars, formation of the very first black
23
+ holes and assembly of the earliest galaxies. The nature of the first bright objects to form and the exact timing of these
24
+ events are yet to be constrained by observations. Theoretical studies and numerical simulations suggest that first
25
+ stars form between z ∼ 20 − 60, i.e. around 35 − 200 million years after the Big Bang[1–3], and, thus, are currently
26
+ out of reach of the modern telescopes.
27
+ The newly launched James Webb Space Telescope (JWST) [4–6], with an increased sensitivity over previous in-
28
+ struments such as the Hubble Space Telescope (HST), is advancing the observational frontier [7] with the prospect of
29
+ infrared observations of the brightest early galaxies out to z ≈ 20 [4]. A complementary view of the infant Universe
30
+ will be offered by radio telescopes such as the upcoming Square Kilometre Array (SKA) [8–10] which will probe
31
+ the astrophysical processes at early times by measuring the redshifted 21-cm line of neutral hydrogen gas located
32
+ in-between the first star forming regions. This signal, sensitive to the processes of star formation, cosmic heating and
33
+ reionziation, can inform us about the state of the Universe between 100 and 1000 million years after the Big Bang
34
+ [11–13]) and provide an insight into the properties of the first sources of light [8–10]. This joined effort across the broad
35
+ wavelength range will lift the veil on the period between the formation of the Cosmic Microwave Background (CMB),
36
+ when the Universe was approximately 300, 000 years old, and the end of the Epoch of Reionization (EoR).
37
+ The field of 21-cm cosmology is rapidly evolving with the very first, yet unconfirmed, detection of the sky-averaged
38
+ (or global) 21-cm signal made with the EDGES Low Band antenna and reported in 2018 [14]. This tentative detection
39
+ is much deeper than what is predicted by conventional theoretical modelling [15–19] and, thus, is hard to interpret,
40
+ and the cosmological nature itself of the EDGES absorption feature has been disputed by a number of works [20–24]
41
+ which suggest the existence of unaccounted for systematics in the data. However, if this signal is of cosmological
42
+ origin, the redshift range of the detected absorption feature implies an onset of efficient star formation at z ∼ 22
43
+ followed (with some delay) by a strong heating of the neutral gas. To explain the anomalously strong absorption,
44
+ exotic mechanisms need to be invoked such as cooling of neutral gas via interactions with charged cold dark matter
45
+ [25–32] or production of strong radio background in addition to the CMB [33–36], e.g. by radio-luminous galaxies
46
+ such as considered here.
47
+ Although the EDGES signal is the only detection of the high-redshift 21-cm signal reported to date, advances have
48
+ been made by other existing radio telescopes with upper limits reported by both the interferometers such as PAPER
49
+ [37], MWA [38, 39], LOFAR [40, 41], AARTFAAC [42] and HERA [43–45] on the 21-cm power spectrum, which
50
+ quantifies the variation in the 21-cm brightness field as a function of angular scale and time, and on the global 21-cm
51
+ signal by SARAS [46–49], EDGES High Band [50–52] and LEDA [53]. These upper limits are becoming increasingly
52
+ constraining and have already being used to put limits on the properties of high-redshift luminous objects [44–49, 54].
53
+ The ongoing and upcoming experiments including SARAS [55], MIST [56], REACH [57], LOFAR [58], NenuFAR [59],
54
+ arXiv:2301.03298v1 [astro-ph.CO] 9 Jan 2023
55
+
56
+ 2
57
+ HERA [60], the SKA and future proposed space based missions such as DAPPER and FARSIDE [61] aim to further
58
+ improve our understanding of the infant Universe.
59
+ Existing upper limits on the 21-cm signal provide the first very weak constraints on the astrophysical sources at a
60
+ broad range of redshifts. In this paper, we take the current tightest publicly available upper limits to date from the
61
+ HERA interferometer on the magnitude of the 21-cm power spectrum at redshifts z ≈ 8 and ≈ 10 which provides a
62
+ window to the EoR when ultraviolet photons emitted by first massive galaxies efficiently ionize the neutral hydrogen
63
+ gas [44], and the SARAS3 radiometer [55] that probes the sky-averaged 21-cm emission at higher redshifts between
64
+ z ≈ 15 − 25 when the first stars and X-ray emitting objects are expected to have formed in small galaxies during
65
+ the Cosmic Dawn. We combine these two data sets for the first time to improve constraints on the properties of the
66
+ first galaxies and the state of the neutral gas. We develop the methods to perform the joint analysis using a machine
67
+ learning enhanced Bayesian workflow and pave the way for future discoveries. We find that when considered together,
68
+ these two experiments provide a better leverage on theoretical scenarios that bridge across the wide redshift range
69
+ compared to the constraints from each individual experiment. In synergy, the two experiments leave only 64.9+0.3
70
+ −0.1%
71
+ of the explored broad theoretical parameter space to be consistent with the joint data set in comparison to 92.3+0.3
72
+ −0.1%
73
+ for SARAS3 and 79.0+0.5
74
+ −0.2% for HERA alone. We use the joint analysis to limit star formation efficiency, minimum
75
+ halo mass for star formation, X-ray luminosity of early emitters and the radio luminosity of early galaxies. The joint
76
+ analysis disfavours at 68% confidence a combination of galaxies with X-ray emission that is ≲ 33 and radio emission
77
+ that is ≳ 32 times as efficient as present day galaxies.
78
+ In Methodology we review the data and the specifics of the experiments incorporated in our analysis. This is followed
79
+ by a discussion about the synergies between the power spectrum and sky-averaged 21-cm experiments in the same
80
+ section. We present the implications of our work for the astrophysical constraints and the validity of the EDGES
81
+ absorption feature as a sky-averaged 21-cm signal in Results. This is followed by a summary in Conclusion. Additional
82
+ information about the methodology and additional results can be found in Supplementary materials.
83
+ METHODOLOGY
84
+ The SARAS3 radiometer experiment took 15 hours of data, integrated in the frequency range 55 − 85 MHz, from a
85
+ lake in Southern India. After corrections were made for the receiver noise temperature, radio frequency interference
86
+ and emission from the water beneath the antenna, the data was appropriately scaled by the total efficiency of the
87
+ system to produce a measurement of the average sky temperature which is expected to include the Galactic and
88
+ extra-galactic foregrounds as well as the 21-cm signal. SARAS3 reported a null detection of the EDGES absorption
89
+ feature with a confidence of 95.3% [55] and more recently the data has been used to place constraints on the properties
90
+ of the first galaxies which we discuss in more detail below [49].
91
+ SARAS2, the previous iteration of the instrumentation recorded data at higher frequencies (lower redshifts) of
92
+ 110 − 200 MHz and was found to contain a non-smooth systematic structure possibly caused by emission from the
93
+ ground that the antenna was placed on. The data has been used to derive constraints on galaxies in the infant
94
+ Universe initially by fitting the foreground and systematic structure together with high order polynomials [46, 47] and
95
+ subsequently by modelling the two components separately [48]. In Supplementary materials we combine constraints
96
+ from the latter with constraints from SARAS3 and HERA.
97
+ To date, interferometric experiments have only observed upper limits of the cosmological 21-cm power spectrum,
98
+ which still allow for a large range of realistic astrophysical scenarios. The tightest constraints are derived from the
99
+ data from the HERA interferometer [43], followed by MWA in the redshift range z = 6.5−8.7 [38] and LOFAR, which
100
+ provide the tightest upper limits at redshifts z ∼ 9.1 [40] and z ∼ 9.3 − 10.6 [41]. The HERA telescope is a radio
101
+ interferometer located in the Karoo Desert of South Africa [60]. Already, this first public data release delivered the
102
+ strongest constraints on the 21-cm power spectrum to date. The publicly available HERA data[62] from the analysis
103
+ of Internal Data Release 2 that we use in this paper is based on 18 nights of observations, with 39 antennas operating
104
+ at science quality level. For our analysis, we employ the publicly available spherically averaged power spectra derived
105
+ from this data [43], in the wavenumber range k = 0.128 hMpc−1 to 0.960 hMpc−1 and from the two bands focusing
106
+ on redshifts z = 7.9 and 10.3. In Supplementary materials we consider the implications of including the upper limits
107
+ on the power spectrum from MWA and LOFAR in our joint analysis.
108
+ In 21-cm cosmology, data analysis efforts are increasingly employing Bayes theorem
109
+ P(θ|D, M) = L(θ)π(θ)
110
+ Z
111
+ ,
112
+ (1)
113
+ to derive constraints on the astrophysical scenarios of the early Universe. Here the likelihood, L(θ), represents the
114
+
115
+ 3
116
+ probability that we observe the data, D, from SARAS3 or HERA, given a particular model, M. The prior, π(θ),
117
+ represents our assumed knowledge before we consider any data and the evidence, Z, is a normalisation constant. The
118
+ posterior, P(θ|D, M), tells us which parts of the parameter space, θ, given the data and chosen model, are more
119
+ probable than others. The evaluation of Bayes theorem is usually performed with Nested Sampling or Markov Chain
120
+ Monte Carlo (MCMC) algorithms (see Supplementary materials). In many 21-cm experiments, θ is composed of
121
+ parameters that describe instrumental effects, θI, foregrounds, θfg, and the astrophysical processes that influence the
122
+ 21-cm signal, θ21. We typically refer to the set of θI and θfg as the nuisance parameters. Since we are only interested
123
+ in the 21-cm signal, we work with the marginal or nuisance-free posteriors and nuisance-free likelihoods, L(θ21), which
124
+ can be estimated using normalising flows and the marginal Bayesian statistics code margarine [63, 64]. We give an
125
+ overview of this in Supplementary materials however we note that it allows for efficient combination of the HERA and
126
+ SARAS3 constraints. We detail the astrophysical processes included in the modelling, and the definition of θ21, next.
127
+ In order to realistically model the range of time covered by the Cosmic Dawn and Epoch of Reionization, we need
128
+ a consistent modelling of the cosmological and astrophysical processes from redshift 60, when star formation might
129
+ have began, all the way to redshift 5 at the end of the EoR. To that end we employ semi-numerical simulations
130
+ [18, 65–68] that have previously been used in the HERA [44], SARAS2 [48] and SARAS3 [49] analyses as well
131
+ as similar analysis of the LOFAR [54] and EDGES High-Band [52] data. We model the three-dimensional 21-cm
132
+ field as a function of cosmic time during the infant Universe taking into account important astrophysical process
133
+ including the Wouthuysen-Field (WF) effect [68–70], heating of the intergalactic medium by X-ray [67], Ly-α [18]
134
+ and CMB photons [35], multiple scattering of Ly-α, relative velocity between dark matter and gas [65], feedback of
135
+ Lyman-Werner radiation on star formation [66], and radio emission from galaxies [36]. The key parameters in the
136
+ astrophysical model are: the star formation efficiency, f∗, which quantifies the percentage of the baryonic mass in
137
+ the star forming halos that is converted into stars; the minimum virial circular velocity, Vc, which is proportional
138
+ to the cube root of the halo mass, M; the X-ray production efficiency, fX, which is directly proportional to the
139
+ X-ray luminosity per star formation rate, LX/SFR measured in erg s−1 M−1
140
+ ⊙ yr, between 0.2 and 95 keV; the CMB
141
+ optical depth, τ; finally, we model the contribution of high redshift radio-luminous galaxies to the radio background
142
+ by specifying a radio production efficiency, fradio, which is proportional to the radio luminosity per star formation
143
+ rate, Lr, measured in W Hz−1 M−1
144
+
145
+ yr at 150 MHz, and normalized such that it has a value of one for the present
146
+ day population of radio galaxies [36]. The X-ray spectral energy density is modelled based on a population of X-ray
147
+ binaries as in [71]. In our Bayesian analysis, θ21, therefore, comprises the set of parameters {f∗, Vc, fX, τ, fradio} or
148
+ equivalently {f∗, M, LX/SFR, τ, Lr/SFR}.
149
+ We explore wide prior ranges on all the parameters in an attempt to let the data inform us about the high-redshift
150
+ astrophysical processes. Specifically, the model for radio-luminous galaxies that we employ here is not conventionally
151
+ considered in 21-cm cosmology where typically the CMB is assumed to be the only source of radio background photons.
152
+ Here we expect that early galaxies will contribute to the radio background, thus increasing the amplitude of both the
153
+ sky-averaged 21-cm signal [72] and the power spectrum [35, 36].
154
+ Both the sky-averaged 21-cm signal and the power spectrum rely on the same underlying physics, and constraints
155
+ from experiments targeting the different probes can be effectively combined to improve our knowledge of the infant
156
+ Universe. The semi-numerical simulations take of order a few hours to produce a signal per parameter set, which
157
+ is impractical for nested sampling or MCMC runs. We therefore train neural networks on outputs of the detailed
158
+ simulations. Typically, these networks take of order a few tens of milliseconds to evaluate meaning they are much
159
+ more well suited for computationally intensive fitting algorithms. The specific emulators used in this analysis and
160
+ more details regarding the signal modelling can be found in Supplementary materials.
161
+ RESULTS
162
+ Although the constraints presented here are weak, through the novelty of combining the previously reported HERA
163
+ and SARAS3 constraints we produce the tightest constraints to date on the properties of the infant Universe as
164
+ detailed below. This is the first time a joint analysis between a global signal data and interferometric limits has been
165
+ attempted.
166
+ To visualize the importance of combining the constraining power of HERA and SARAS3 we show, in the top panel
167
+ of Fig. 1, constraints on the ratio of the spin temperature of neutral hydrogen and background radiation temperature.
168
+ The background radiation temperature is the sum of the CMB temperature and radio background from galaxies.
169
+ The ratio determines the maximum absorption of the sky-averaged 21-cm signal, the smaller the ratio the larger the
170
+ signal can be. The SARAS3 limits on the 21-cm signal (grey markers) correspond to lower limits on Ts/Tr, with the
171
+ corresponding 1 and 2 σ contours shown as lines and extrapolated out of the SARAS3 band. Our simulations provide
172
+
173
+ 4
174
+ FIG. 1. Key results from the joint analysis. Top Panel: The ratio of the spin temperature of neutral hydrogen, Ts, and
175
+ the radio background temperature, Tr, as a function of redshift for the joint HERA and SARAS3 analysis in green. We show the
176
+ HERA and SARAS3 68% and 95% confidence constraints in blue and grey respectively as triangles at the relevant redshifts and
177
+ solid and dashed lines. As a guideline, we show the ratio for Tr = TCMB and assuming adiabatically cooled gas in an expanding
178
+ Universe in the absence of any heating but with saturated coupling between Ts and the gas kinetic temperature (dashed black
179
+ line). Bottom Left: The 2D PDF from the joint analysis on the minimum virial circular velocity, Vc, in combination with the
180
+ star formation efficiency, f∗, marginalising over fradio, fX and τ. The solid black line shows the 68% contour, approximated by
181
+ the pink dashed line, and the black dashed line shows the 95% contour. The joint analysis disfavours low values of Vc and high
182
+ f∗ corresponding to efficient star formation. Bottom right: The constraint on the X-ray and radio luminosities from the joint
183
+ analysis marginalising over Vc, f∗ and τ. The joint analysis disfavours at 68% confidence low X-ray efficiencies in combination
184
+ with high radio production efficiencies.
185
+ a natural link between the power spectra and the global quantities, e.g. Ts/Tr, meaning that we can use the limits on
186
+ the power spectrum from HERA to derive an equivalent constraint on Ts/Tr. These constraints are shown in Fig. 1
187
+ (blue markers and lines). The joint constraint, as shown by the green contours, provides the strongest constraints on
188
+ the ratio, and in particular at redshifts z = 15 − 20, gives better constraints than either experiment alone. Further,
189
+ the combination of the two experimental data sets improves the constraints at intermediate redshifts over a pure
190
+ extrapolation of each one of the sets of constraints. As a guideline, the dashed black line in the figure shows the
191
+ ratio for Tr = TCMB, i.e. in the absence of radio emission from galaxies, and assuming adiabatically cooled gas in
192
+ an expanding Universe in the absence of any astrophysical heating sources but with saturated coupling between the
193
+ 21-cm spin temperature and the gas kinetic temperature. This limit is often used in the literature to give context to
194
+ the constraints (e.g. [44, 45]). However, we note that for the models tested here the gas does not cool adiabatically
195
+ because of the CMB and Ly-α heating at early times, and we have an excess radio background above the CMB.
196
+ Next, we explore the functional constraints in the T21−z and ∆21−z planes as shown in Fig. 2. These are calculated
197
+ by taking the samples of θ21 output from our fits and using the neural network emulators to produce corresponding
198
+ global signals and power spectra. Using our theoretical models we can easily map between the constraints on the
199
+
200
+ 0.0
201
+ -0.5
202
+ log(T/Tr)
203
+ SARAS3 + HERA
204
+ .1.0
205
+ HERA
206
+ SARAS3
207
+ HERA Band
208
+ -1.5
209
+ SARAS3 Band
210
+ -2.0
211
+ 10
212
+ 15
213
+ 20
214
+ 25
215
+ 30
216
+ Z
217
+ 26
218
+ log(Lr /SFR)
219
+ 1.5
220
+ 1.0
221
+ 22
222
+ -2
223
+ 38
224
+ 40
225
+ 42
226
+ log(f*)
227
+ log(Lx/SFR)5
228
+ FIG. 2. Functional constraints on T21 and ∆2. The functional prior (purple), SARAS3 (grey), HERA (blue) and joint
229
+ (green) posteriors for the sky-averaged 21-cm signal (top row) and power spectrum (bottom row). The yellow shaded region
230
+ shows the SARAS3 band and the dashed yellow lines show the HERA redshifts.
231
+ The functional prior and posteriors are
232
+ calculated by taking representative samples from the corresponding probability distributions for the astrophysical parameters
233
+ and generating the corresponding signals using neural networks. We see that by combining the constraining power of HERA and
234
+ SARAS3, we significantly reduce the 3σ (lightest shaded regions) constraints on the magnitude of both signals from −2630 mK
235
+ to −1770 mK at z = 15 for the global signal and 103.7 mK2 to 103.2 mK2 for the power spectrum at z = 25. The figure is
236
+ produced with fgivenx [74].
237
+ power spectra and global signals. We see that for both the power spectra and the sky-averaged signals, although more
238
+ clearly for the latter, the range of plausible models is reduced by our joint analysis. The signals that are inconsistent
239
+ with the data typically have strong power spectra and corresponding deep absorption trough in the global signal, and
240
+ belong to scenarios with weak X-ray heating and strong radio luminosity. Further, we see that the 2σ region for the
241
+ functional constraints correspond to signals with the power spectra ≲ 102.1 mK2 at z = 25, which via our modelling
242
+ maps to global 21-cm signals shallower than −277 mK. We note that the 3σ limit on the power spectrum at z = 25 of
243
+ ≲ 103.2 mK2 is approximately equivalent to the expected sensitivity of NenuFAR from 1000 hours of observations [73].
244
+ For the global 21-cm signal 3σ limit on the magnitude reduces from ≈ −2630 mK from HERA to ≈ −1770 mK from
245
+ the joint analysis. Remarkably, we find that for the sky-averaged signal, the 2σ limit is very close to the minimum
246
+ depth of the ‘standard astrophysical’ models, ≈ −165 mK [18], where the radio background is equated to the CMB,
247
+ the contributions from radio galaxies and X-ray heating sources are assumed to be negligible, while the CMB and
248
+ Ly-α heating are present. The relatively tight constraints on the global signal and power spectrum suggest that future
249
+ improved measurements will allow us to dig deeper into the models with weak excess radio background radiation. It
250
+ is clear from our analysis, that the joint constraint improves limits on the range of plausible global signals and power
251
+ spectra.
252
+ We now interpret the constraints on the temperatures in terms of constraints on the properties of the first galaxies.
253
+ The key constraints from the joint analysis are shown in the bottom panels of Fig. 1 including the limits on the high-
254
+ redshift star formation which drives the high-redshift portion of the 21-cm signal via the process of Ly-α coupling
255
+ (constraints in the planes Vc − f∗) and the constraints on the luminosity of X-ray and radio sources (Lr − LX) which
256
+ primarily regulates the depth of the absorption trough. The full marginalised 1D and 2D posteriors corresponding
257
+ to the joint analysis are shown in Fig. S1 and the key numerical results are summarized in Tab. I alongside the
258
+ individual constraints from SARAS3 and HERA. We find that the combination of the two experiments leads to
259
+
260
+ Prior
261
+ SARAS3
262
+ HERA
263
+ Joint
264
+ 0
265
+ [mK]
266
+ -2500
267
+ T21
268
+ 0
269
+ 0
270
+ SARAS3
271
+ L250
272
+ -250
273
+ -250
274
+ -5000
275
+ HERA
276
+ 10
277
+ 20
278
+ 30
279
+ 10
280
+ 20
281
+ 30
282
+ 10
283
+ 20
284
+ 30
285
+ 6
286
+ [mK²]
287
+ 4
288
+ 2
289
+ 10
290
+ 20
291
+ 30 10
292
+ 20
293
+ 30 10
294
+ 20
295
+ 30 10
296
+ 20
297
+ 30
298
+ Z
299
+ Z
300
+ Z
301
+ Z
302
+ 1g
303
+ 2g
304
+ 3g6
305
+ SARAS3
306
+ HERA
307
+ SARAS3 + HERA
308
+ Signal
309
+ Sky-averaged
310
+ Power Spectrum
311
+ Both
312
+ z
313
+ ≈ 15 − 25
314
+ ≈ 8 & ≈ 10
315
+ ≈ 8, ≈ 10 &
316
+ ≈ 15 − 25
317
+ Lr/SFR
318
+ ≳ 1.55 × 1025
319
+ ≳ 4.00 × 1024
320
+ ≳ 3.31 × 1024
321
+ LX/SFR
322
+
323
+ ≲ 7.60 × 1039
324
+ ≲ 3.71 × 1039
325
+ Lr/SFR
326
+ &
327
+ LX/SFR
328
+ ≳ 1.00 × 1025 &
329
+ ≲ 1.09 × 1042
330
+ ≳ 4.00 × 1024 &
331
+ ≲ 7.60 × 1039
332
+ ≳ 3.16 × 1023 &
333
+ ≲ 1.00 × 1042
334
+ M
335
+ 4.40 × 105 ≲ M
336
+ ≲ 1.10 × 107
337
+
338
+ 2.55 × 105 ≲ M
339
+ ≲ 7.04 × 106
340
+ f∗
341
+ ≳ 0.05
342
+
343
+ ≳ 0.06
344
+ f∗ & M
345
+ ≳ 0.03 &
346
+ ≲ 8.53 × 108
347
+
348
+ ≳ 0.02 &
349
+ ≲ 4.50 × 107
350
+ TABLE I. Key parameter constraints from SARAS3, HERA and the joint analysis. Here the SARAS3 and HERA
351
+ limits are taken from the respective papers. In the top two rows we show the type of signal targeted by each set of analysis and the
352
+ corresponding redshifts. The joint analysis produces improved constraints on the radio and X-ray backgrounds while retaining
353
+ the constraining power of SARAS3 on the star formation properties of early galaxies. Lr is measured in W Hz−1 M−1
354
+
355
+ yr at a
356
+ reference frequency of 150 MHz, LX in erg s−1 M−1
357
+
358
+ yr, and is calculated by integrating X-ray spectral distribution of sources
359
+ between 0.2 and 95 keV assuming an X-ray SED consistent with that for X-ray binaries [71]. The halo mass, M, is measured
360
+ in solar masses. These constraints are derived from Kernel Density estimates (KDE) of the 1D and 2D posterior distributions.
361
+ stronger constraints in the two-dimensional probability distribution of Lr − LX than either of the two experiments
362
+ individually. Where HERA constrains the population of high redshift radio-luminous galaxies to be ≲ 400 times
363
+ brighter in the radio band than the current population, the combination of the data sets constrains the galaxies to be
364
+ ≲ 300 times brighter when marginalising over the other parameters (Vc, f∗, fX and τ). Similarly, HERA disfavours at
365
+ 68% confidence galaxies with an X-ray luminosity ≲ 0.25 times the present day value in combination with the radio
366
+ luminosity of galaxies in the early universe that is ≳ 400 times the present day value. The joint analysis provides a
367
+ stronger constraint, ruling out scenarios where the X-ray luminosity is ≲ 33 times the present day value and the radio
368
+ luminosity of the first galaxies is ≳ 32 times the present day value at 68% confidence.
369
+ We find comparable constraints on f∗ and minimum mass of star forming halos, M, as was found with SARAS3
370
+ alone [49] when combining the data sets. Marginalising over the radio and X-ray luminosities, we disfavour at 68%
371
+ confidence galaxies in which ≳ 2% of the gas is converted into stars and the minimum mass for star forming halos is
372
+ ≲ 45 million solar masses.
373
+ Further, we explore the structure of the global 21-cm signals which are consistent with the data from SARAS3,
374
+ HERA and the two sets together. In Supplementary materials and Constraints on Phemenological Parameters, we
375
+ see that when considered individually, the SARAS3 and HERA experiments allow for astrophysically motivated
376
+ sky-averaged 21-cm signals that have a minimum temperature, location and width in agreement with the EDGES
377
+ detection, while the joint analysis rules out models with a depth that is consistent with EDGES at greater than a 2σ
378
+ significance. The joint analysis has a preference for shallower (lower values of |Tmin|) and narrower signals with higher
379
+ central frequencies, as can be seen in the corresponding 1D PDFs, which is driven largely by the HERA constraints.
380
+ We also consider the impact of SARAS2 on our joint constraints as well as MWA and LOFAR in Supplementary
381
+ materials.
382
+ The latter two data sets have no effect on our results and the inclusion of SARAS2 leads to weaker
383
+ constraints on the star formation properties. We focus in the main text on SARAS3 and HERA, due to the uncertainty
384
+ in the modelling of and presence of systematic structures in the SARAS2 data which is discussed in more detail in
385
+ Supplementary materials.
386
+ CONCLUSION
387
+ Through a combination of constraints on fluctuations and the sky-averaged 21-cm signal of neutral hydrogen, we
388
+ have improved our understanding of the first galaxies that formed in the infant Universe between 200 and 700 million
389
+ years after the Big Bang. This is the first time the data from the two different 21-cm probes have been combined
390
+
391
+ 7
392
+ to derive constraints on the astrophysical properties of the early galaxies. Even though the existing constraints are
393
+ weak, we develop novel methodology and outline the approach which will become increasingly more useful as the
394
+ next-generation experiments deliver stronger observational constraints.
395
+ Considering a wide space of plausible astrophysical models including high-redshift sources of ultraviolet, X-ray and
396
+ radio photons which affect the 21-cm signal, we calculate corresponding sky-averaged spectra as well as the power
397
+ spectra of fluctuations. Using an upper limit on the fluctuations from the HERA interferometer and non-detection of
398
+ the global 21-cm signal by the SARAS3 radiometer, we find that only 64.9+0.3
399
+ −0.1% of the explored theoretical parameter
400
+ space is consistent with the joint SARAS3 and HERA constraint, which is a significant improvement over the individual
401
+ values of 92.3+0.3
402
+ −0.1% and 78.7 ± 0.2% respectively.
403
+ Using the newly developed methodology we place the tightest constraints to date on the properties of cosmic
404
+ gas, such as the spin temperature of the 21-cm hydrogen line (closely related, but not equal, to the gas kinetic
405
+ temperature) and the radio background temperature, Tr, as well as on the radio and X-ray luminosities of the first
406
+ galaxies disfavouring at 68% confidence galaxies that are approximately 32 times more efficient radio emitters than
407
+ present galaxies and simultaneously are less than 33 times bright in the X-ray band. This work reports an increased
408
+ degree of confidence over a wider range of redshifts than previous works which typically extrapolate outside the
409
+ redshifts targeted by individual experiments, while here we interpolated between the observations of SARAS3 at
410
+ z = 15 − 25 and the HERA limits at lower redshifts z ∼ 8 and 10.
411
+ In this work we also considered the addition of interferometric data sets from MWA and LOFAR to our analysis,
412
+ which led to a negligible improvement in the results. Similarly to HERA, these experiments probe the physics of the
413
+ EoR covering a similar redshift range to HERA (between z ≈ 6 − 10), with the current HERA data providing the
414
+ tightest constraints on our models. Of the current global or sky-averaged 21-cm experiments only SARAS2, SARAS3
415
+ and EDGES were able to place limits on the astrophysics of the infant Universe. Our main focus is on the SARAS3
416
+ limits (although we also consider SARAS2), as there are concerns surrounding the cosmological nature of the signal
417
+ reported in EDGES and a degree of uncertainty in the modelling of systematics in the SARAS2 data. We note that
418
+ the SARAS2 data covers a similar redshift range as the HERA data and based on our analysis does not lead to a
419
+ significant improvement in our constraints.
420
+ The new methodology developed in this paper will allow for synergies between the upcoming observations, e.g. of
421
+ the power spectrum from cosmic dawn measured by the NenuFAR [59], HERA, LOFAR or the SKA [8], as well as
422
+ the measurements of the global signal by the wide-band REACH experiment covering the redshift range z ≈ 7 − 28
423
+ [57], PRIZM [75], MIST [56] and missions to the moon [61] among others.
424
+ [1] H. E. Bond, Where is population III ?, Astrophys. J. 248, 606 (1981).
425
+ [2] V. Bromm and R. B. Larson, The first stars, Annual Review of Astronomy and Astrophysics 42, 79 (2004).
426
+ [3] R. Klessen, Formation of the first stars, in Formation of the First Black Holes, edited by M. Latif and D. Schleicher (2019)
427
+ pp. 67–97.
428
+ [4] R. A. Windhorst, S. H. Cohen, R. A. Jansen, C. Conselice, and H. Yan, How JWST can measure first light, reionization
429
+ and galaxy assembly, Nature 50, 113 (2006), arXiv:astro-ph/0506253 [astro-ph].
430
+ [5] J. Park, N. Gillet, A. Mesinger, and B. Greig, Properties of reionization-era galaxies from JWST luminosity functions and
431
+ 21-cm interferometry, Mon. Not. R. Astron. Soc. 491, 3891 (2020), arXiv:1909.01348 [astro-ph.CO].
432
+ [6] B. E. Robertson, Galaxy Formation and Reionization: Key Unknowns and Expected Breakthroughs by the James Webb
433
+ Space Telescope, Annu. Rev. Astron. Astrophys. 60, 121 (2022), arXiv:2110.13160 [astro-ph.CO].
434
+ [7] C. T. Donnan, D. J. McLeod, J. S. Dunlop, R. J. McLure, A. C. Carnall, R. Begley, F. Cullen, M. L. Hamadouche, R. A. A.
435
+ Bowler, H. J. McCracken, B. Milvang-Jensen, A. Moneti, and T. Targett, The evolution of the galaxy UV luminosity
436
+ function at redshifts z ˜8-15 from deep JWST and ground-based near-infrared imaging, arXiv e-prints , arXiv:2207.12356
437
+ (2022), arXiv:2207.12356 [astro-ph.GA].
438
+ [8] G. Mellema, L. V. E. Koopmans, F. A. Abdalla, G. Bernardi, B. Ciardi, S. Daiboo, A. G. de Bruyn, K. K. Datta,
439
+ H. Falcke, A. Ferrara, I. T. Iliev, F. Iocco, V. Jeli´c, H. Jensen, R. Joseph, P. Labroupoulos, A. Meiksin, A. Mesinger,
440
+ A. R. Offringa, V. N. Pandey, J. R. Pritchard, M. G. Santos, D. J. Schwarz, B. Semelin, H. Vedantham, S. Yatawatta,
441
+ and S. Zaroubi, Reionization and the Cosmic Dawn with the Square Kilometre Array, Experimental Astronomy 36, 235
442
+ (2013), arXiv:1210.0197 [astro-ph.CO].
443
+ [9] L. Koopmans, J. Pritchard, G. Mellema, J. Aguirre, K. Ahn, R. Barkana, I. van Bemmel, G. Bernardi, A. Bonaldi,
444
+ F. Briggs, A. G. de Bruyn, T. C. Chang, E. Chapman, X. Chen, B. Ciardi, P. Dayal, A. Ferrara, A. Fialkov, F. Fiore,
445
+ K. Ichiki, I. T. Illiev, S. Inoue, V. Jelic, M. Jones, J. Lazio, U. Maio, S. Majumdar, K. J. Mack, A. Mesinger, M. F. Morales,
446
+ A. Parsons, U. L. Pen, M. Santos, R. Schneider, B. Semelin, R. S. de Souza, R. Subrahmanyan, T. Takeuchi, H. Vedantham,
447
+ J. Wagg, R. Webster, S. Wyithe, K. K. Datta, and C. Trott, The Cosmic Dawn and Epoch of Reionisation with SKA, in
448
+ Advancing Astrophysics with the Square Kilometre Array (AASKA14) (2015) p. 1, arXiv:1505.07568 [astro-ph.CO].
449
+
450
+ 8
451
+ [10] B. Greig, A. Mesinger, and L. V. E. Koopmans, Reionization and cosmic dawn astrophysics from the Square Kilometre
452
+ Array: impact of observing strategies, Mon. Not. R. Astron. Soc. 491, 1398 (2020), arXiv:1906.07910 [astro-ph.CO].
453
+ [11] S. R. Furlanetto, S. P. Oh, and F. H. Briggs, Cosmology at low frequencies: The 21 cm transition and the high-redshift
454
+ Universe, Phys. Rep. 433, 181 (2006), arXiv:astro-ph/0608032 [astro-ph].
455
+ [12] R. Barkana, The rise of the first stars: Supersonic streaming, radiative feedback, and 21-cm cosmology, Phys. Rep. 645,
456
+ 1 (2016), arXiv:1605.04357 [astro-ph.CO].
457
+ [13] A. Mesinger, The Cosmic 21-cm Revolution; Charting the first billion years of our universe (2019).
458
+ [14] J. D. Bowman, A. E. E. Rogers, R. A. Monsalve, T. J. Mozdzen, and N. Mahesh, An absorption profile centred at 78
459
+ megahertz in the sky-averaged spectrum, Nature 555, 67 (2018), arXiv: 1810.05912.
460
+ [15] A. Mesinger, S. Furlanetto, and R. Cen, 21CMFAST: a fast, seminumerical simulation of the high-redshift 21-cm signal,
461
+ Mon. Not. R. Astron. Soc. 411, 955 (2011), arXiv:1003.3878 [astro-ph.CO].
462
+ [16] J. Mirocha, S. R. Furlanetto, and G. Sun, The global 21-cm signal in the context of the high- z galaxy luminosity function,
463
+ Mon. Not. R. Astron. Soc. 464, 1365 (2017), arXiv:1607.00386 [astro-ph.GA].
464
+ [17] A. Cohen, A. Fialkov, R. Barkana, and M. Lotem, Charting the parameter space of the global 21-cm signal, Mon. Not. R.
465
+ Astron. Soc. 472, 1915 (2017), arXiv:1609.02312 [astro-ph.CO].
466
+ [18] I. Reis, A. Fialkov, and R. Barkana, The subtlety of Ly α photons: changing the expected range of the 21-cm signal, Mon.
467
+ Not. R. Astron. Soc. 506, 5479 (2021), arXiv:2101.01777 [astro-ph.CO].
468
+ [19] J. B. Mu˜noz, Y. Qin, A. Mesinger, S. G. Murray, B. Greig, and C. Mason, The impact of the first galaxies on cosmic dawn
469
+ and reionization, Mon. Not. R. Astron. Soc. 511, 3657 (2022), arXiv:2110.13919 [astro-ph.CO].
470
+ [20] R. Hills, G. Kulkarni, P. D. Meerburg, and E. Puchwein, Concerns about modelling of the EDGES data, Nature 564, E32
471
+ (2018), arXiv:1805.01421 [astro-ph.CO].
472
+ [21] S. Singh and R. Subrahmanyan, The Redshifted 21 cm Signal in the EDGES Low-band Spectrum, Astrophys. J. 880, 26
473
+ (2019), arXiv:1903.04540 [astro-ph.CO].
474
+ [22] R. F. Bradley, K. Tauscher, D. Rapetti, and J. O. Burns, A Ground Plane Artifact that Induces an Absorption Profile in
475
+ Averaged Spectra from Global 21 cm Measurements, with Possible Application to EDGES, Astrophys. J. 874, 153 (2019),
476
+ arXiv:1810.09015 [astro-ph.IM].
477
+ [23] P. H. Sims and J. C. Pober, Testing for calibration systematics in the EDGES low-band data using Bayesian model
478
+ selection, Mon. Not. R. Astron. Soc. 492, 22 (2020), arXiv:1910.03165 [astro-ph.CO].
479
+ [24] H. T. J. Bevins, W. J. Handley, A. Fialkov, E. de Lera Acedo, L. J. Greenhill, and D. C. Price, MAXSMOOTH: rapid
480
+ maximally smooth function fitting with applications in Global 21-cm cosmology, Mon. Not. R. Astron. Soc. 502, 4405
481
+ (2021), arXiv:2007.14970 [astro-ph.CO].
482
+ [25] R. Barkana, Possible interaction between baryons and dark-matter particles revealed by the first stars, Nature 555, 71
483
+ (2018), arXiv:1803.06698 [astro-ph.CO].
484
+ [26] R. Barkana, N. J. Outmezguine, D. Redigol, and T. Volansky, Strong constraints on light dark matter interpretation of
485
+ the EDGES signal, Phys. Rev. D 98, 103005 (2018).
486
+ [27] T. R. Slatyer and C. Wu, Early-Universe constraints on dark matter-baryon scattering and their implications for a global
487
+ 21 cm signal, Phys. Rev. D 98, 023013 (2018).
488
+ [28] A. Berlin, D. Hooper, G. Krnjaic, and S. D. McDermott, Severely Constraining Dark-Matter Interpretations of the 21-cm
489
+ Anomaly, prl 121, 011102 (2018).
490
+ [29] E. D. Kovetz, V. Poulin, V. Gluscevic, K. K. Boddy, R. Barkana, and M. Kamionkowski, Tighter limits on dark matter
491
+ explanations of the anomalous EDGES 21 cm signal, Phys. Rev. D 98, 103529 (2018).
492
+ [30] J. B. Mu˜noz and A. Loeb, A small amount of mini-charged dark matter could cool the baryons in the early universe,
493
+ Nature 557, 684 (2018).
494
+ [31] A. Fialkov, R. Barkana, and A. Cohen, Constraining Baryon-Dark-Matter Scattering with the Cosmic Dawn 21-cm Signal,
495
+ prl 121, 011101 (2018), arXiv:1802.10577 [astro-ph.CO].
496
+ [32] H. Liu, N. J. Outmezguine, D. Redigolo, and T. Volansky, Reviving millicharged dark matter for 21-cm cosmology, Phys.
497
+ Rev. D 100, 123011 (2019).
498
+ [33] A. Ewall-Wice, T. C. Chang, J. Lazio, O. Dor´e, M. Seiffert, and R. A. Monsalve, Modeling the Radio Background from
499
+ the First Black Holes at Cosmic Dawn: Implications for the 21 cm Absorption Amplitude, Astrophys. J. 868, 63 (2018).
500
+ [34] R. Jana, B. B. Nath, and P. L. Biermann, Radio background and IGM heating due to Pop III supernova explosions, Mon.
501
+ Not. R. Astron. Soc. 483, 5329 (2019).
502
+ [35] A. Fialkov and R. Barkana, Signature of excess radio background in the 21-cm global signal and power spectrum, Monthly
503
+ Notices of the Royal Astronomical Society 486, 1763 (2019).
504
+ [36] I. Reis, A. Fialkov, and R. Barkana, High-redshift radio galaxies: a potential new source of 21-cm fluctuations, Mon. Not.
505
+ R. Astron. Soc. 499, 5993 (2020), arXiv:2008.04315 [astro-ph.CO].
506
+ [37] D. C. Jacobs, J. C. Pober, A. R. Parsons, J. E. Aguirre, Z. S. Ali, J. Bowman, R. F. Bradley, C. L. Carilli, D. R. DeBoer,
507
+ M. R. Dexter, N. E. Gugliucci, P. Klima, A. Liu, D. H. E. MacMahon, J. R. Manley, D. F. Moore, I. I. Stefan, and W. P.
508
+ Walbrugh, Multiredshift Limits on the 21 cm Power Spectrum from PAPER, Astrophys. J. 801, 51 (2015), arXiv:1408.3389
509
+ [astro-ph.CO].
510
+ [38] C. M. Trott, C. H. Jordan, S. Midgley, N. Barry, B. Greig, B. Pindor, J. H. Cook, G. Sleap, S. J. Tingay, D. Ung,
511
+ P. Hancock, A. Williams, J. Bowman, R. Byrne, A. Chokshi, B. J. Hazelton, K. Hasegawa, D. Jacobs, R. C. Joseph, W. Li,
512
+ J. L. B. Line, C. Lynch, B. McKinley, D. A. Mitchell, M. F. Morales, M. Ouchi, J. C. Pober, M. Rahimi, K. Takahashi,
513
+ R. B. Wayth, R. L. Webster, M. Wilensky, J. S. B. Wyithe, S. Yoshiura, Z. Zhang, and Q. Zheng, Deep multiredshift
514
+ limits on Epoch of Reionization 21 cm power spectra from four seasons of Murchison Widefield Array observations, Mon.
515
+
516
+ 9
517
+ Not. R. Astron. Soc. 493, 4711 (2020), arXiv:2002.02575 [astro-ph.CO].
518
+ [39] M. Kolopanis, J. Pober, D. C. Jacobs, and S. McGraw, New EoR Power Spectrum Limits From MWA Phase II Using
519
+ the Delay Spectrum Method and Novel Systematic Rejection, arXiv e-prints , arXiv:2210.10885 (2022), arXiv:2210.10885
520
+ [astro-ph.CO].
521
+ [40] A. H. Patil, S. Yatawatta, L. V. E. Koopmans, A. G. de Bruyn, M. A. Brentjens, S. Zaroubi, K. M. B. Asad, M. Hatef,
522
+ V. Jeli´c, M. Mevius, A. R. Offringa, V. N. Pandey, H. Vedantham, F. B. Abdalla, W. N. Brouw, E. Chapman, B. Ciardi,
523
+ B. K. Gehlot, A. Ghosh, G. Harker, I. T. Iliev, K. Kakiichi, S. Majumdar, G. Mellema, M. B. Silva, J. Schaye, D. Vrbanec,
524
+ and S. J. Wijnholds, Upper Limits on the 21 cm Epoch of Reionization Power Spectrum from One Night with LOFAR,
525
+ Astrophys. J. 838, 65 (2017), arXiv:1702.08679 [astro-ph.CO].
526
+ [41] F. G. Mertens, M. Mevius, L. V. E. Koopmans, A. R. Offringa, G. Mellema, S. Zaroubi, M. A. Brentjens, H. Gan, B. K.
527
+ Gehlot, V. N. Pandey, A. M. Sardarabadi, H. K. Vedantham, S. Yatawatta, K. M. B. Asad, B. Ciardi, E. Chapman,
528
+ S. Gazagnes, R. Ghara, A. Ghosh, S. K. Giri, I. T. Iliev, V. Jeli´c, R. Kooistra, R. Mondal, J. Schaye, and M. B. Silva,
529
+ Improved upper limits on the 21 cm signal power spectrum of neutral hydrogen at z ≈ 9.1 from LOFAR, Mon. Not. R.
530
+ Astron. Soc. 493, 1662 (2020), arXiv:2002.07196 [astro-ph.CO].
531
+ [42] B. K. Gehlot, F. G. Mertens, L. V. E. Koopmans, A. R. Offringa, A. Shulevski, M. Mevius, M. A. Brentjens, M. Kuiack,
532
+ V. N. Pandey, A. Rowlinson, A. M. Sardarabadi, H. K. Vedantham, R. A. M. J. Wijers, S. Yatawatta, and S. Zaroubi, The
533
+ AARTFAAC Cosmic Explorer: observations of the 21-cm power spectrum in the EDGES absorption trough, Mon. Not.
534
+ R. Astron. Soc. 499, 4158 (2020), https://academic.oup.com/mnras/article-pdf/499/3/4158/34068575/staa3093.pdf.
535
+ [43] Z. Abdurashidova, J. E. Aguirre, P. Alexander, Z. S. Ali, Y. Balfour, A. P. Beardsley, G. Bernardi, T. S. Billings, J. D.
536
+ Bowman, R. F. Bradley, P. Bull, J. Burba, S. Carey, C. L. Carilli, C. Cheng, D. R. DeBoer, M. Dexter, E. de Lera
537
+ Acedo, T. Dibblee-Barkman, J. S. Dillon, J. Ely, A. Ewall-Wice, N. Fagnoni, R. Fritz, S. R. Furlanetto, K. Gale-Sides,
538
+ B. Glendenning, D. Gorthi, B. Greig, J. Grobbelaar, Z. Halday, B. J. Hazelton, J. N. Hewitt, J. Hickish, D. C. Jacobs,
539
+ A. Julius, N. S. Kern, J. Kerrigan, P. Kittiwisit, S. A. Kohn, M. Kolopanis, A. Lanman, P. La Plante, T. Lekalake,
540
+ D. Lewis, A. Liu, D. MacMahon, L. Malan, C. Malgas, M. Maree, Z. E. Martinot, E. Matsetela, A. Mesinger, M. Molewa,
541
+ M. F. Morales, T. Mosiane, S. G. Murray, A. R. Neben, B. Nikolic, C. D. Nunhokee, A. R. Parsons, N. Patra, R. Pascua,
542
+ S. Pieterse, J. C. Pober, N. Razavi-Ghods, J. Ringuette, J. Robnett, K. Rosie, P. Sims, S. Singh, C. Smith, A. Syce,
543
+ N. Thyagarajan, P. K. G. Williams, H. Zheng, and HERA Collaboration, First Results from HERA Phase I: Upper Limits
544
+ on the Epoch of Reionization 21 cm Power Spectrum, Astrophys. J. 925, 221 (2022), arXiv:2108.02263 [astro-ph.CO].
545
+ [44] Z. Abdurashidova, J. E. Aguirre, P. Alexander, Z. S. Ali, Y. Balfour, R. Barkana, A. P. Beardsley, G. Bernardi, T. S.
546
+ Billings, J. D. Bowman, R. F. Bradley, P. Bull, J. Burba, S. Carey, C. L. Carilli, C. Cheng, D. R. DeBoer, M. Dexter,
547
+ E. de Lera Acedo, J. S. Dillon, J. Ely, A. Ewall-Wice, N. Fagnoni, A. Fialkov, R. Fritz, S. R. Furlanetto, K. Gale-Sides,
548
+ B. Glendenning, D. Gorthi, B. Greig, J. Grobbelaar, Z. Halday, B. J. Hazelton, S. Heimersheim, J. N. Hewitt, J. Hickish,
549
+ D. C. Jacobs, A. Julius, N. S. Kern, J. Kerrigan, P. Kittiwisit, S. A. Kohn, M. Kolopanis, A. Lanman, P. La Plante,
550
+ T. Lekalake, D. Lewis, A. Liu, Y.-Z. Ma, D. MacMahon, L. Malan, C. Malgas, M. Maree, Z. E. Martinot, E. Matsetela,
551
+ A. Mesinger, J. Mirocha, M. Molewa, M. F. Morales, T. Mosiane, J. B. Mu˜noz, S. G. Murray, A. R. Neben, B. Nikolic, C. D.
552
+ Nunhokee, A. R. Parsons, N. Patra, S. Pieterse, J. C. Pober, Y. Qin, N. Razavi-Ghods, I. Reis, J. Ringuette, J. Robnett,
553
+ K. Rosie, M. G. Santos, S. Sikder, P. Sims, C. Smith, A. Syce, N. Thyagarajan, P. K. G. Williams, and H. Zheng, HERA
554
+ Phase I Limits on the Cosmic 21 cm Signal: Constraints on Astrophysics and Cosmology during the Epoch of Reionization,
555
+ Astrophys. J. 924, 51 (2022), arXiv:2108.07282 [astro-ph.CO].
556
+ [45] The HERA Collaboration, Z. Abdurashidova, T. Adams, J. E. Aguirre, P. Alexander, Z. S. Ali, R. Baartman, Y. Balfour,
557
+ R. Barkana, A. P. Beardsley, G. Bernardi, T. S. Billings, J. D. Bowman, R. F. Bradley, D. Breitman, P. Bull, J. Burba,
558
+ S. Carey, C. L. Carilli, C. Cheng, S. Choudhuri, D. R. DeBoer, E. de Lera Acedo, M. Dexter, J. S. Dillon, J. Ely, A. Ewall-
559
+ Wice, N. Fagnoni, A. Fialkov, R. Fritz, S. R. Furlanetto, K. Gale-Sides, H. Garsden, B. Glendenning, A. Gorce, D. Gorthi,
560
+ B. Greig, J. Grobbelaar, Z. Halday, B. J. Hazelton, S. Heimersheim, J. N. Hewitt, J. Hickish, D. C. Jacobs, A. Julius, N. S.
561
+ Kern, J. Kerrigan, P. Kittiwisit, S. A. Kohn, M. Kolopanis, A. Lanman, P. La Plante, D. Lewis, A. Liu, A. Loots, Y.-Z.
562
+ Ma, D. H. E. MacMahon, L. Malan, K. Malgas, C. Malgas, M. Maree, B. Marero, Z. E. Martinot, L. McBride, A. Mesinger,
563
+ J. Mirocha, M. Molewa, M. F. Morales, T. Mosiane, J. B. Mu˜noz, S. G. Murray, V. Nagpal, A. R. Neben, B. Nikolic,
564
+ C. D. Nunhokee, H. Nuwegeld, A. R. Parsons, R. Pascua, N. Patra, S. Pieterse, Y. Qin, N. Razavi-Ghods, J. Robnett,
565
+ K. Rosie, M. G. Santos, P. Sims, S. Singh, C. Smith, H. Swarts, N. Thyagarajan, M. J. Wilensky, P. K. G. Williams,
566
+ P. van Wyngaarden, and H. Zheng, Improved Constraints on the 21 cm EoR Power Spectrum and the X-Ray Heating of
567
+ the IGM with HERA Phase I Observations, arXiv e-prints , arXiv:2210.04912 (2022), arXiv:2210.04912 [astro-ph.CO].
568
+ [46] S. Singh, R. Subrahmanyan, N. Udaya Shankar, M. Sathyanarayana Rao, A. Fialkov, A. Cohen, R. Barkana, B. S. Girish,
569
+ A. Raghunathan, R. Somashekar, and K. S. Srivani, First Results on the Epoch of Reionization from First Light with
570
+ SARAS 2, Astrophys. J. Lett. 845, L12 (2017), arXiv:1703.06647 [astro-ph.CO].
571
+ [47] S. Singh, R. Subrahmanyan, N. Udaya Shankar, M. Sathyanarayana Rao, A. Fialkov, A. Cohen, R. Barkana, B. S. Girish,
572
+ A. Raghunathan, R. Somashekar, and K. S. Srivani, SARAS 2 Constraints on Global 21 cm Signals from the Epoch of
573
+ Reionization, Astrophys. J. 858, 54 (2018), arXiv:1711.11281 [astro-ph.CO].
574
+ [48] H. T. J. Bevins, E. de Lera Acedo, A. Fialkov, W. J. Handley, S. Singh, R. Subrahmanyan, and R. Barkana, A comprehen-
575
+ sive Bayesian reanalysis of the SARAS2 data from the epoch of reionization, Mon. Not. R. Astron. Soc. 513, 4507 (2022),
576
+ arXiv:2201.11531 [astro-ph.CO].
577
+ [49] H. T. J. Bevins, E. de Lera Acedo, A. Fialkov, W. J. Handley, S. Singh, R. Subrahmanyan, and R. Barkana, Astrophysical
578
+ constraints from the saras3 non-detection of the cosmic dawn sky-averaged 21-cm signal, Accepted for Nature Astronomy
579
+ (2022).
580
+ [50] R. A. Monsalve, A. E. E. Rogers, J. D. Bowman, and T. J. Mozdzen, Results from EDGES High-band. I. Constraints on
581
+
582
+ 10
583
+ Phenomenological Models for the Global 21 cm Signal, Astrophys. J. 847, 64 (2017), arXiv:1708.05817 [astro-ph.CO].
584
+ [51] R. A. Monsalve, B. Greig, J. D. Bowman, A. Mesinger, A. E. E. Rogers, T. J. Mozdzen, N. S. Kern, and N. Mahesh, Results
585
+ from EDGES High-band. II. Constraints on Parameters of Early Galaxies, Astrophys. J. 863, 11 (2018), arXiv:1806.07774
586
+ [astro-ph.CO].
587
+ [52] R. A. Monsalve, A. Fialkov, J. D. Bowman, A. E. E. Rogers, T. J. Mozdzen, A. Cohen, R. Barkana, and N. Mahesh,
588
+ Results from EDGES High-Band. III. New Constraints on Parameters of the Early Universe, Astrophys. J. 875, 67 (2019),
589
+ arXiv:1901.10943 [astro-ph.CO].
590
+ [53] G. Bernardi, J. T. L. Zwart, D. Price, L. J. Greenhill, A. Mesinger, J. Dowell, T. Eftekhari, S. W. Ellingson, J. Kocz, and
591
+ F. Schinzel, Bayesian constraints on the global 21-cm signal from the Cosmic Dawn, Mon. Not. R. Astron. Soc. 461, 2847
592
+ (2016), arXiv:1606.06006 [astro-ph.CO].
593
+ [54] R. Mondal, A. Fialkov, C. Fling, I. T. Iliev, R. Barkana, B. Ciardi, G. Mellema, S. Zaroubi, L. V. E. Koopmans, F. G.
594
+ Mertens, B. K. Gehlot, R. Ghara, A. Ghosh, S. K. Giri, A. Offringa, and V. N. Pandey, Tight constraints on the excess
595
+ radio background at z = 9.1 from LOFAR, Mon. Not. R. Astron. Soc. 498, 4178 (2020), arXiv:2004.00678 [astro-ph.CO].
596
+ [55] S. Singh, N. T. Jishnu, R. Subrahmanyan, N. Udaya Shankar, B. S. Girish, A. Raghunathan, R. Somashekar, K. S. Srivani,
597
+ and M. Sathyanarayana Rao, On the detection of a cosmic dawn signal in the radio background, Nature Astronomy 6, 607
598
+ (2022), arXiv:2112.06778 [astro-ph.CO].
599
+ [56] R. Monsalve, MIST Global 21cm Experiment (2022).
600
+ [57] E. de Lera Acedo, D. I. L. de Villiers, N. Razavi-Ghods, W. Handley, A. Fialkov, A. Magro, D. Anstey, H. T. J. Bevins,
601
+ R. Chiello, J. Cumner, A. T. Josaitis, I. L. V. Roque, P. H. Sims, K. H. Scheutwinkel, P. Alexander, G. Bernardi, S. Carey,
602
+ J. Cavillot, W. Croukamp, J. A. Ely, T. Gessey-Jones, Q. Gueuning, R. Hills, G. Kulkarni, R. Maiolino, P. D. Meerburg,
603
+ S. Mittal, J. R. Pritchard, E. Puchwein, A. Saxena, E. Shen, O. Smirnov, M. Spinelli, and K. Zarb-Adami, The REACH
604
+ radiometer for detecting the 21-cm hydrogen signal from redshift z ≈ 7.5-28, Nature Astronomy 6, 984 (2022).
605
+ [58] L. V. E. Koopmans and LOFAR EoR KSP Team, Current Status of the LOFAR EoR Key Science Project, in Peering
606
+ towards Cosmic Dawn, Vol. 333, edited by V. Jeli´c and T. van der Hulst (2018) pp. 71–76.
607
+ [59] P. Zarka, A. Coffre, L. Denis, C. Dumez-Viou, J. Girard, J.-M. Grießmeier, A. Loh, and M. Tagger, The low-frequency
608
+ radiotelescope nenufar, in 2018 2nd URSI Atlantic Radio Science Meeting (AT-RASC) (2018) pp. 1–1.
609
+ [60] D. DeBoer, A. Parsons, J. Aguirre, P. Alexander, Z. Ali, A. Beardsley, G. Bernardi, J. Bowman, R. Bradley, C. Carilli,
610
+ C. Cheng, E. de Lera Acedo, J. Dillon, A. Ewall-Wice, G. Fadana, N. Fagnoni, R. Fritz, S. Furlanetto, B. Glendenning,
611
+ B. Greig, J. Grobbelaar, B. Hazelton, J. Hewitt, J. Hickish, D. Jacobs, A. Julius, M. Kariseb, S. Kohn, T. Lekalake,
612
+ A. Liu, A. Loots, D. MacMahon, L. Malan, C. Malgas, M. Maree, Z. Martinot, N. Mathison, E. Matsetela, A. Mesinger,
613
+ M. Morales, A. Neben, N. Patra, S. Pieterse, J. Pober, N. Razavi-Ghods, J. Ringuette, J. Robnett, K. Rosie, R. Sell,
614
+ C. Smith, A. Syce, M. Tegmark, N. Thyagarajan, P. Williams, and H. Zheng, Hydrogen Epoch of Reionization Array
615
+ (HERA), Publ. Astron. Soc. Pac. 129, 45001 (2017), arXiv:1606.07473 [astro-ph.IM].
616
+ [61] J. Burns, S. Bale, R. Bradley, Z. Ahmed, S. W. Allen, J. Bowman, S. Furlanetto, R. MacDowall, J. Mirocha, B. Nhan,
617
+ M. Pivovaroff, M. Pulupa, D. Rapetti, A. Slosar, and K. Tauscher, Global 21-cm Cosmology from the Farside of the Moon,
618
+ arXiv e-prints , arXiv:2103.05085 (2021), arXiv:2103.05085 [astro-ph.CO].
619
+ [62] Note that an analysis of Internal Data Release 3 was recently published [45] which, at the time of writing, is not publicly
620
+ available.
621
+ [63] H. T. J. Bevins, W. J. Handley, P. Lemos, P. H. Sims, E. de Lera Acedo, A. Fialkov, and J. Alsing, Removing the fat from
622
+ your posterior samples with margarine, arXiv e-prints , arXiv:2205.12841 (2022), arXiv:2205.12841 [astro-ph.IM].
623
+ [64] H. Bevins, W. Handley, P. Lemos, P. Sims, E. de Lera Acedo, and A. Fialkov, Marginal Bayesian Statistics Using Masked
624
+ Autoregressive Flows and Kernel Density Estimators with Examples in Cosmology, arXiv e-prints , arXiv:2207.11457
625
+ (2022), arXiv:2207.11457 [astro-ph.CO].
626
+ [65] E. Visbal, R. Barkana, A. Fialkov, D. Tseliakhovich, and C. M. Hirata, The signature of the first stars in atomic hydrogen
627
+ at redshift 20, Nature 487, 70 (2012), arXiv:1201.1005 [astro-ph.CO].
628
+ [66] A. Fialkov, R. Barkana, E. Visbal, D. Tseliakhovich, and C. M. Hirata, The 21-cm signature of the first stars during the
629
+ Lyman-Werner feedback era, Mon. Not. R. Astron. Soc. 432, 2909 (2013), arXiv:1212.0513 [astro-ph.CO].
630
+ [67] A. Fialkov, R. Barkana, and E. Visbal, The observable signature of late heating of the Universe during cosmic reionization,
631
+ Nature 506, 197 (2014), arXiv:1402.0940 [astro-ph.CO].
632
+ [68] A. Fialkov and R. Barkana, The rich complexity of 21-cm fluctuations produced by the first stars, Mon. Not. R. Astron.
633
+ Soc. 445, 213 (2014), arXiv:1409.3992 [astro-ph.CO].
634
+ [69] S. A. Wouthuysen, On the excitation mechanism of the 21-cm (radio-frequency) interstellar hydrogen emission line., Astron.
635
+ J. 57, 31 (1952).
636
+ [70] G. B. Field, The Spin Temperature of Intergalactic Neutral Hydrogen., Astrophys. J. 129, 536 (1959).
637
+ [71] T. Fragos, B. D. Lehmer, S. Naoz, A. Zezas, and A. Basu-Zych, ENERGY FEEDBACK FROM x-RAY BINARIES IN
638
+ THE EARLY UNIVERSE, The Astrophysical Journal 776, L31 (2013).
639
+ [72] C. Feng and G. Holder, Enhanced Global Signal of Neutral Hydrogen Due to Excess Radiation at Cosmic Dawn, Astrophys.
640
+ J. Lett. 858, L17 (2018).
641
+ [73] F. G. Mertens, B. Semelin, and L. V. E. Koopmans, Exploring the Cosmic Dawn with NenuFAR, in SF2A-2021: Proceedings
642
+ of the Annual meeting of the French Society of Astronomy and Astrophysics, edited by A. Siebert, K. Bailli´e, E. Lagadec,
643
+ N. Lagarde, J. Malzac, J. B. Marquette, M. N’Diaye, J. Richard, and O. Venot (2021) pp. 211–214, arXiv:2109.10055
644
+ [astro-ph.CO].
645
+ [74] W. Handley, fgivenx: Functional posterior plotter, The Journal of Open Source Software 3, 10.21105/joss.00849 (2018).
646
+ [75] L. Philip, Z. Abdurashidova, H. C. Chiang, N. Ghazi, A. Gumba, H. M. Heilgendorff, J. M. J´auregui-Garc´ıa, K. Malepe,
647
+
648
+ 11
649
+ C. D. Nunhokee, J. Peterson, J. L. Sievers, V. Simes, and R. Spann, Probing Radio Intensity at High-Z from Marion: 2017
650
+ Instrument, Journal of Astronomical Instrumentation 8, 1950004 (2019), arXiv:1806.09531 [astro-ph.IM].
651
+ [76] P. Madau, A. Meiksin, and M. J. Rees, 21 Centimeter Tomography of the Intergalactic Medium at High Redshift, Astrophys.
652
+ J. 475, 429 (1997), arXiv:astro-ph/9608010 [astro-ph].
653
+ [77] L. Chuzhoy and P. R. Shapiro, Heating and Cooling of the Early Intergalactic Medium by Resonance Photons, Astrophys.
654
+ J. 655, 843 (2007), arXiv:astro-ph/0604483 [astro-ph].
655
+ [78] A. Cohen, A. Fialkov, and R. Barkana, Charting the parameter space of the 21-cm power spectrum, Mon. Not. R. Astron.
656
+ Soc. 478, 2193 (2018), arXiv:1709.02122 [astro-ph.CO].
657
+ [79] T. Venumadhav, L. Dai, A. Kaurov, and M. Zaldarriaga, Heating of the intergalactic medium by the cosmic microwave
658
+ background during cosmic dawn, Phys. Rev. D 98, 103513 (2018), arXiv:1804.02406 [astro-ph.CO].
659
+ [80] Planck Collaboration, N. Aghanim, Y. Akrami, M. Ashdown, J. Aumont, C. Baccigalupi, M. Ballardini, A. J. Banday,
660
+ R. B. Barreiro, N. Bartolo, S. Basak, R. Battye, K. Benabed, J. P. Bernard, M. Bersanelli, P. Bielewicz, J. J. Bock,
661
+ J. R. Bond, J. Borrill, F. R. Bouchet, F. Boulanger, M. Bucher, C. Burigana, R. C. Butler, E. Calabrese, J. F. Cardoso,
662
+ J. Carron, A. Challinor, H. C. Chiang, J. Chluba, L. P. L. Colombo, C. Combet, D. Contreras, B. P. Crill, F. Cuttaia,
663
+ P. de Bernardis, G. de Zotti, J. Delabrouille, J. M. Delouis, E. Di Valentino, J. M. Diego, O. Dor´e, M. Douspis, A. Ducout,
664
+ X. Dupac, S. Dusini, G. Efstathiou, F. Elsner, T. A. Enßlin, H. K. Eriksen, Y. Fantaye, M. Farhang, J. Fergusson,
665
+ R. Fernandez-Cobos, F. Finelli, F. Forastieri, M. Frailis, A. A. Fraisse, E. Franceschi, A. Frolov, S. Galeotta, S. Galli,
666
+ K. Ganga, R. T. G´enova-Santos, M. Gerbino, T. Ghosh, J. Gonz´alez-Nuevo, K. M. G´orski, S. Gratton, A. Gruppuso,
667
+ J. E. Gudmundsson, J. Hamann, W. Handley, F. K. Hansen, D. Herranz, S. R. Hildebrandt, E. Hivon, Z. Huang, A. H.
668
+ Jaffe, W. C. Jones, A. Karakci, E. Keih¨anen, R. Keskitalo, K. Kiiveri, J. Kim, T. S. Kisner, L. Knox, N. Krachmalnicoff,
669
+ M. Kunz, H. Kurki-Suonio, G. Lagache, J. M. Lamarre, A. Lasenby, M. Lattanzi, C. R. Lawrence, M. Le Jeune, P. Lemos,
670
+ J. Lesgourgues, F. Levrier, A. Lewis, M. Liguori, P. B. Lilje, M. Lilley, V. Lindholm, M. L´opez-Caniego, P. M. Lubin, Y. Z.
671
+ Ma, J. F. Mac´ıas-P´erez, G. Maggio, D. Maino, N. Mandolesi, A. Mangilli, A. Marcos-Caballero, M. Maris, P. G. Martin,
672
+ M. Martinelli, E. Mart´ınez-Gonz´alez, S. Matarrese, N. Mauri, J. D. McEwen, P. R. Meinhold, A. Melchiorri, A. Mennella,
673
+ M. Migliaccio, M. Millea, S. Mitra, M. A. Miville-Deschˆenes, D. Molinari, L. Montier, G. Morgante, A. Moss, P. Natoli,
674
+ H. U. Nørgaard-Nielsen, L. Pagano, D. Paoletti, B. Partridge, G. Patanchon, H. V. Peiris, F. Perrotta, V. Pettorino,
675
+ F. Piacentini, L. Polastri, G. Polenta, J. L. Puget, J. P. Rachen, M. Reinecke, M. Remazeilles, A. Renzi, G. Rocha,
676
+ C. Rosset, G. Roudier, J. A. Rubi˜no-Mart´ın, B. Ruiz-Granados, L. Salvati, M. Sandri, M. Savelainen, D. Scott, E. P. S.
677
+ Shellard, C. Sirignano, G. Sirri, L. D. Spencer, R. Sunyaev, A. S. Suur-Uski, J. A. Tauber, D. Tavagnacco, M. Tenti,
678
+ L. Toffolatti, M. Tomasi, T. Trombetti, L. Valenziano, J. Valiviita, B. Van Tent, L. Vibert, P. Vielva, F. Villa, N. Vittorio,
679
+ B. D. Wandelt, I. K. Wehus, M. White, S. D. M. White, A. Zacchei, and A. Zonca, Planck 2018 results. VI. Cosmological
680
+ parameters, A&A 641, A6 (2020), arXiv:1807.06209 [astro-ph.CO].
681
+ [81] J. Mirocha and S. R. Furlanetto, What does the first highly redshifted 21-cm detection tell us about early galaxies?, Mon.
682
+ Not. R. Astron. Soc. 483, 1980 (2019).
683
+ [82] S. Mittal and G. Kulkarni, Implications of the cosmological 21-cm absorption profile for high-redshift star formation and
684
+ deep JWST surveys, Mon. Not. R. Astron. Soc. 10.1093/mnras/stac1961 (2022), arXiv:2203.07733 [astro-ph.CO].
685
+ [83] W. J. Handley, M. P. Hobson, and A. N. Lasenby, PolyChord: nested sampling for cosmology, MNRAS: Letters 450, L61
686
+ (2015), arXiv: 1502.01856.
687
+ [84] W. J. Handley, M. P. Hobson, and A. N. Lasenby, PolyChord: next-generation nested sampling, Mon. Not. R. Astron. Soc.
688
+ 453, 4385 (2015), arXiv: 1506.00171.
689
+ [85] D. Foreman-Mackey, D. W. Hogg, D. Lang, and J. Goodman, emcee: The MCMC Hammer, Publ. Astron. Soc. Pac. 125,
690
+ 306 (2013), arXiv:1202.3665 [astro-ph.IM].
691
+ [86] J. Skilling, Nested Sampling, AIP Conference Proceedings 735, 395 (2004).
692
+ [87] G. Ashton, N. Bernstein, J. Buchner, X. Chen, G. Cs´anyi, A. Fowlie, F. Feroz, M. Griffiths, W. Handley, M. Habeck,
693
+ E. Higson, M. Hobson, A. Lasenby, D. Parkinson, L. B. P´artay, M. Pitkin, D. Schneider, J. S. Speagle, L. South, J. Veitch,
694
+ P. Wacker, D. J. Wales, and D. Yallup, Nested sampling for physical scientists, arXiv e-prints , arXiv:2205.15570 (2022),
695
+ arXiv:2205.15570 [stat.CO].
696
+ [88] H. T. J. Bevins, W. J. Handley, A. Fialkov, E. de Lera Acedo, and K. Javid, GLOBALEMU: a novel and robust approach
697
+ for emulating the sky-averaged 21-cm signal from the cosmic dawn and epoch of reionization, Mon. Not. R. Astron. Soc.
698
+ 508, 2923 (2021), arXiv:2104.04336 [astro-ph.CO].
699
+ [89] B. D. Lehmer, Y. Q. Xue, W. N. Brandt, D. M. Alexander, F. E. Bauer, M. Brusa, A. Comastri, R. Gilli, A. E. Horn-
700
+ schemeier, B. Luo, M. Paolillo, A. Ptak, O. Shemmer, D. P. Schneider, P. Tozzi, and C. Vignali, The 4 Ms Chandra Deep
701
+ Field-South Number Counts Apportioned by Source Class: Pervasive Active Galactic Nuclei and the Ascent of Normal
702
+ Galaxies, Astrophys. J. 752, 46 (2012), arXiv:1204.1977 [astro-ph.CO].
703
+ [90] D. J. Fixsen, A. Kogut, S. Levin, M. Limon, P. Lubin, P. Mirel, M. Seiffert, J. Singal, E. Wollack, T. Villela, and
704
+ C. A. Wuensche, ARCADE 2 Measurement of the Absolute Sky Brightness at 3-90 GHz, Astrophys. J. 734, 5 (2011),
705
+ arXiv:0901.0555 [astro-ph.CO].
706
+ [91] J. Dowell and G. B. Taylor, The Radio Background below 100 MHz, Astrophys. J. Lett. 858, L9 (2018), arXiv:1804.08581
707
+ [astro-ph.CO].
708
+
709
+ 12
710
+ ACKNOWLEDGMENTS
711
+ HTJB acknowledges the support of the Science and Technology Facilities Council (STFC) through grant number
712
+ ST/T505997/1. WJH and AF were supported by Royal Society University Research Fellowships. EdLA was supported
713
+ by the STFC through the Ernest Rutherford Fellowship. RB acknowledges the support of the Israel Science Foundation
714
+ (grant No. 2359/20), The Ambrose Monell Foundation and the Institute for Advanced Study.
715
+ AUTHOR CONTRIBUTION
716
+ HTJB lead the data analysis and the writing of the manuscript. SH provided the power spectrum emulator, assisted
717
+ with the writing and data analysis. IAC performed the combined analysis of HERA, LOFAR and MWA data and
718
+ assisted with the writing of the manuscript. AF generated the idea, supervised the project and contributed to the
719
+ writing of the article. EdLA supervised the work and helped with the revision of the article. WJH supervised the
720
+ analysis, helped with revision of the article and provided advice on the Bayesian methodology. The astrophysical
721
+ signal models were provided by AF and RB and the SARAS3 data was provided by SS. RB and SS provided comments
722
+ on the manuscript and assisted with revisions.
723
+
724
+ 13
725
+ SUPPLEMENTARY MATERIALS
726
+ Modelling the Thermal History of the Infant Universe: Power Spectrum and Global Signal Synergies
727
+ At high redshifts around z ≈ 20−30, the first stars begin to form and produce Ly-α photons that interacts with the
728
+ baryonic matter, predominantly composed of neutral hydrogen, in the Universe. Neutral hydrogen atoms absorb and
729
+ remit ambient Ly-α photons in a process known as the Wouthuysen-Field (WF) effect [69, 70] that drives the relative
730
+ number of atoms with aligned and anti-aligned proton and electron spins. This process couples the spin temperature
731
+ of the neutral hydrogen, Ts, which describes the distribution of hydrogen atom spins, to the gas temperature, Tk,
732
+ which is cooling at a faster rate than the radio background as the Universe expands. Further, interactions between
733
+ the neutral hydrogen and Ly-α emission result in the transfer of kinetic energy that raises the gas temperature, and
734
+ coupled spin temperature, in a process known as Ly-α heating [76, 77] preventing the gas from cooling adiabatically.
735
+ However, despite the heating, the dominant WF effect produces an absorption feature in the sky-averaged 21-cm
736
+ signal, which is measured relative to the radio background. Further, it leads to a peak in the power spectrum at high
737
+ z ≈ 25 on angular scales corresponding to the effective horizon of the Ly-α emission and the distribution of galaxies,
738
+ which disappears when the coupling becomes saturated [78].
739
+ The intensity and spatial fluctuations of the Ly-α
740
+ emission evolve with the population of early galaxies and consequently it is dependent on their star formation rate
741
+ and the minimum halo mass for star formation. We parameterize these quantities with the star formation efficiency,
742
+ f∗, which quantifies the percentage of the baryonic mass in the star forming halos that is converted into stars, and
743
+ the minimum virial circular velocity, Vc, which is proportional to the cube root of the halo mass, M.
744
+ At intermediate redshifts of z ≈ 10 − 20 the gas is further heated by X-ray binaries [67, 71], continuing Ly-α
745
+ heating, CMB heating [79] and heating through structure formation. X-ray heating is dependent on processes such as
746
+ X-ray production in high redshift galaxies and black hole binary formation. This means that it has to be separately
747
+ parameterized and in our semi-numerical simulations, we model the X-ray production efficiency, fX, which is directly
748
+ proportional to the X-ray luminosity per star formation rate, LX/SFR measured in erg s−1 M−1
749
+ ⊙ yr, between 0.2 and
750
+ 95 keV. The heating affects the redshift of the minimum and depth of the sky-averaged 21-cm signal. If sufficiently
751
+ efficient it can raise the temperature of the gas, and coupled 21-cm brightness temperature, above the radio background
752
+ resulting in emission in the sky-averaged signal at low redshifts. The heating rate has a direct impact on how fast
753
+ the brightness temperature transforms from absorption to 0 K or emission. In the power spectrum, due to the non-
754
+ uniformity of the heating, the various mechanisms can produce a peak in the signal at around z ≈ 15. Although this
755
+ redshift is model dependent (see [78]) and in some cases when heating is done by hard X-rays (energies > 1 keV with
756
+ long mean free paths) X-ray heating is smooth and no peak is imprinted in the power spectrum [67, 68].
757
+ Finally, at more recent times, z ≈ 5 − 15, ultraviolet emission from the first massive galaxies begins to ionize the
758
+ neutral hydrogen, stripping the abundant gas of its electrons. This reduces the sky-averaged 21-cm signal and when
759
+ reionization is complete, the signal disappears. The process produces a peak in the power spectrum at the scales
760
+ corresponding to the typical size of ionized bubbles, but again the signal is destroyed once reionization is complete.
761
+ The process of reionization is highly dependent on the ionizing efficiency of sources, ζ, which in the models explored
762
+ here is normalized by the CMB optical depth, τ. While τ has been weakly constrained by cosmological experiments
763
+ such as Planck [80], we treat it as a free parameter and note that 21-cm cosmology offers a means by which to break
764
+ degeneracies between τ and other cosmological parameters.
765
+ Throughout our analysis, we explore a broad range of radio luminosities that produce radio excesses above the
766
+ CMB of between ≈ 0.5 − 270 times the CMB temperature at z = 20 and ≈ 1 − 32000 times the CMB at z = 10.
767
+ While moderate radio emission might be expected [81], the extreme values of radio production efficiencies are usually
768
+ invoked to explain the anomalously deep EDGES signal [14, 33–36, 72, 81] but struggle to explain the rapid star
769
+ formation and rapid heating of the gas [82] that is implied by the shape of the EDGES signal.
770
+ Combining Constraints with margarine
771
+ We use the marginal Bayesian statistics code margarine [63] to combine constraints from different data sets.
772
+ margarine uses neural networks known as Masked Autoregressive Flows (MAFs) to model the probability distribu-
773
+ tion, P(θ|D, M), of a set of samples, here θ21, marginalising over nuisance parameters describing the instrumental
774
+ systematics, θI, and foregrounds, θfg in the process. It does this by shifting and scaling a base standard normal
775
+ distribution, making the probability of the distribution easily tractable, to replicate the target samples, where the
776
+ shifting and scaling are determined by the outputs of the MAFs.
777
+
778
+ 14
779
+ This can subsequently be used to calculate a nuisance-free likelihood given a prior distribution and the Bayesian
780
+ evidence using
781
+ L(θ21) ≡
782
+
783
+ L(θ21, α)π(θ21, α)dα
784
+
785
+ π(θ21, α)dα
786
+ = P(θ21|D, M)Z
787
+ π(θ21)
788
+ ,
789
+ (2)
790
+ where α = {θI, θfg} [64]. In instances when the prior is flat then the following is true up to a normalisation constant
791
+ L(θ21) ≈ P(θ21|D, M).
792
+ (3)
793
+ With margarine we can subsequently evaluate log(L(θ21)) for any set of θ21 for any existing posterior distribution,
794
+ P(θ|D, M), from previous analysis of a data set like HERA or SARAS3
795
+ θ = {θI, θfg, θ21} → {θ21} → margarine → log(P(θ21|D, M) → log(L(θ21)),
796
+ (4)
797
+ where the log is base 10. The likelihood evaluations can then be combined,
798
+ log(Ljoint(θ21)) = log(LHERA(θ21)) + log(LSARAS3(θ21)),
799
+ (5)
800
+ as discussed in the main text, to be sampled over using MCMC methods or in our case nested sampling implemented
801
+ with polychord [83, 84].
802
+ MCMC sampling methods approximate the unnormalised posterior distribution by directly sampling the product
803
+ P(θ) ≈ L(θ)π(θ) and do not provide estimates of the evidence, Z. The family of algorithms typically use random
804
+ walkers to traverse the parameter space, with points accepted and rejected based on some probabilistic criteria in an
805
+ effort to explore the space fully. The HERA analysis [44] of the excess radio background models explored here used
806
+ the emcee [85] implementation of MCMC sampling [44].
807
+ Nested sampling [86] numerically approximates the integral
808
+ Z =
809
+
810
+ L(θ)π(θ)δθ,
811
+ (6)
812
+ which can be derived from equation 1 and the requirement that the posterior must integrate to 1, by evolving a series
813
+ of live points to higher and higher likelihood values. By approximating the evidence, the algorithm produces samples
814
+ on the normalised posterior distribution, which we subsequently use to determine preferred and disfavoured regions
815
+ of the parameter space. A comprehensive review of nested sampling can be found in [87].
816
+ Emulating Signals from the EoR and CD
817
+ As described in the main text, semi-numerical simulations typically have a runtime of multiple hours for a given set
818
+ of astrophysical parameters, thus performing parameter inference with the simulation directly is very costly. However,
819
+ as both the sky-averaged signal and the power spectrum change smoothly when we vary parameters, we can interpolate
820
+ values at intermediate parameters from existing simulations. An increasingly common practice to achieve this are the
821
+ fast and precise neural network based emulators we discuss in the following sections.
822
+ The sky-averaged 21-cm signal
823
+ To emulate the sky-averaged 21-cm signal in models with an excess radio background from high redshift radio-
824
+ luminous galaxies we use the publicly available emulator globalemu [88] trained on sets of astrophysical simulations.
825
+ The simulations include the effects of Ly-α and CMB heating. The mean free path of ionizing photons, Rmfp, is fixed
826
+ at 40 Mpc and the and X-ray heating is powered by a population of X-ray binaries with a realistic spectral energy
827
+ distribution [67]. The models correspond to the parameterisation detailed above and in [36].
828
+ The emulator has previously been used in the individual analysis of data from SARAS2 [48] and SARAS3 [49]
829
+ and detailed in the corresponding papers. We therefore only briefly summarise the accuracy of the neural network
830
+ here. The original set of simulations comprise approximately 10,000 models however the explored range of τ, the
831
+ CMB optical depth, is large and when training our neural network we filter out models that have a value of τ in the
832
+ range given by Planck ±3σ. This results in a training set of approximately 4,300 models and the network is tested
833
+ on approximately 500 models. A root mean squared error (RMSE) of 5.11 mK is found and a 95 percentile RMSE of
834
+ 20.53 mK indicating a high level of accuracy (see Table M.2 in [49]).
835
+
836
+ 15
837
+ The 21-cm power spectrum
838
+ For comparing models with the HERA measurements we use the same 21-cm power spectrum emulator used in the
839
+ HERA analysis [44], based on the same suit of simulations of the sky-averaged signal emulator used in the SARAS2
840
+ and SARAS3 analysis. Based on an input of the 5 model parameters, this emulator returns the 21-cm power spectrum
841
+ with a relative accuracy of 20% at the wave numbers and redshifts observed by HERA. For HERA the impact of τ is
842
+ more significant because the data corresponds to lower redshifts and so the full prior range on the parameter is used
843
+ for training. This results in a training set of ∼8,000 simulations and another 2,000 independent samples for testing.
844
+ Full details and tests of this emulator can be found in the HERA analysis paper [44], Appendix B.
845
+ We note that when performing our joint analysis we use the narrow prior on τ defined by Planck, since the SARAS3
846
+ posterior is not defined in the original analysis for values outside this range.
847
+ Temperatures
848
+ To emulate physical properties such as the spin temperature and temperature of the radio background (as seen in
849
+ Figure 1) we use a globalemu-style emulator. In this framework, the emulator takes in the five astrophysical pa-
850
+ rameters and a single redshift and returns a single corresponding temperature. In practice, this means that vectorised
851
+ calls have to be made to emulate the spin temperature, Ts(z), and the radio background temperature, Tr(z), as a
852
+ function of redshift, but the method is found to be more accurate, quicker and allows for interpolation at a range of
853
+ different redshifts. We use the same training and test sets as used for the 21-cm power spectrum emulator, and a
854
+ similar architecture of 4 layers, with a reduced size of 100, 30, 10, and 5 nodes per layer. This allows us to emulate
855
+ the spin temperature Ts within ±6% accuracy (95% confidence interval), and the radio background temperature Tr
856
+ within ±4% accuracy (95% confidence interval).
857
+ Constraints on the Astrophysical Parameters
858
+ Fig. S1 shows the 1D and 2D marginal posteriors found for the joint analysis of SARAS3 and HERA. The graph
859
+ shows that the combined constraining power of the two experiments leads to a strong constraint on the combination
860
+ of the radio and X-ray luminosities per star formation rate for an early population of galaxies when marginalising
861
+ over the other astrophysical parameters. We also see constraints in the plane of Vc − f∗ when marginalizing over the
862
+ radio background and X-ray heating params. The constraints are summarized in detail in the main text.
863
+ Constraints on Phemenological Parameters
864
+ In order to explore the structure of the global 21-cm signal we look at the minimum temperature, Tmin, the
865
+ corresponding central redshift, z0, and an approximate full width at half max, ∆z, of each absorption trough as
866
+ defined in the top right of Fig. S2. More specifically, for each parameter set θ21 (either from the prior parameter
867
+ range, or from the posterior ranges consistent with SARAS3, HERA, and the joint analysis) we generate a global
868
+ signal using the neural network emulator globalemu [88]. We then measure the values of Tmin, z0, and ∆z for
869
+ each signal producing probability distributions for each parameter corresponding to the constraints from each data
870
+ and showing the extent of the prior (see results in Fig. S2). We compare these distributions with the values used to
871
+ parameterise the phemenological EDGES flattened Gaussian signal with the EDGES 99% confidence ranges shown
872
+ by the black crosses in the corner plot in Fig. S2.
873
+ Constraints on the Radio and X-ray Backgrounds
874
+ The product f∗fradio is proportional to the total radio background created by radio-luminous galaxies, and, equiv-
875
+ alently, f∗fX is a proxy for the total X-ray background created by the early population of X-ray sources. This is
876
+ demonstrably true for our model parameterisation as the star formation rate is proportional to f∗ and the radio lumi-
877
+ nosity and X-ray luminosities per star formation rate are proportional to fradio and fX respectively. Both X-ray and
878
+ radio backgrounds are responsible for regulating the depth of the absorption feature, and they can also be observed
879
+ independently by other telescopes (e.g. observations of the unresolved X-ray background by Chandra [89] and of the
880
+
881
+ 16
882
+ FIG. S1. Parameter constraints from the joint anlaysis. The astrophysical parameter constraints on models with excess
883
+ radio background in addition to the CMB derived when combining an upper limit on the 21-cm power spectrum at z ≈ 8
884
+ and ≈ 10 from HERA with data from the 21-cm sky-averaged experiment SARAS3 in the band z ≈ 15 − 25. Through the
885
+ combination of these two data sets probing different statistical properties of the 21-cm signal at different redshifts we are able
886
+ to improve constraints on the radio and X-ray luminosities of early radio-luminous galaxies and maintain constraints provided
887
+ by SARAS3 on the star formation properties of these early galaxies. Lr is measured in units of W Hz−1 M−1
888
+
889
+ yr at 150 MHz
890
+ and LX is in units of erg s−1 M−1
891
+
892
+ yr calculated between 0.2 and 95 keV assuming a realistic SED of an early X-ray binary
893
+ population. The pink dashed lines approximate regions that are disfavoured with 68% confidence.
894
+ low-frequency radio background by ARCADE2/LWA [90, 91]. In Fig. S3 we show constraints on the values of f∗ fX
895
+ and f∗ fradio achieved by SARAS3, HERA and the joint analysis. Since these combinations of the parameters regu-
896
+ late the absorption depth of the global 21-cm signal, we can also condition our prior on the astrophysical parameters
897
+ to produce signals with the same central frequency and depth as the absorption feature found in the EDGES data
898
+ [18, 35, 49]. In each panel of Fig. S3, we show black contours corresponding to these EDGES-like physical signals. We
899
+ see that while HERA and SARAS3 allow for combinations of fX f∗ and fradio f∗ that could partially explain EDGES,
900
+ the combination of the two experiments, which produces a tighter constraint on the X-ray and radio luminosities of
901
+ early galaxies, disfavours a large portion of the EDGES-like parameter space (i.e. most of the EDGES-like parameter
902
+ space is beyond the 95% contours of the joint constraints, while it is well within the 95% contours for SARAS3 and
903
+ HERA individually). This demonstrates further the power of combining different data sets. However, we note that the
904
+ explored theoretical signals do not fit EDGES data well as none of them closely reproduces the flattened Gaussian-like
905
+ feature found in the data [14].
906
+
907
+ 95% Confidence
908
+ 68% Confidence
909
+ 1.5
910
+ 1.0
911
+ log(PR)
912
+ 42.5
913
+ 40.0
914
+ 37.5
915
+ 0.075
916
+ 0.050
917
+ 25.0
918
+ 22.5
919
+ 2
920
+ 5
921
+ 5.
922
+ 0
923
+ 5.
924
+ 0.050
925
+ 0.075
926
+ 25.0
927
+ 0.
928
+ 4
929
+ T
930
+ log( FR
931
+ log(sFR)17
932
+ FIG. S2. Phenomenological constraints. The triangular plots shows the prior (purple) and posteriors (grey for SARAS3,
933
+ blue for HERA, green for joint) of the features of a typical global absorption signal: the central redshift, z0, the corresponding
934
+ minimum temperature, Tmin, and the width of the signal, ∆z, as is depicted in the top right corner. Darker shaded regions
935
+ show 1σ constraints, lighter shaded regions show 2σ constraints. Overlaid on the posterior distributions are the 99% confidence
936
+ intervals, black crosses, reported for the corresponding phemenological parameterisation of the EDGES absorption feature in
937
+ [14]. Note that this is not the same as the physical EDGES-like distribution explored in Fig. S3. We see that individually
938
+ the experiments allow for signals with depths that are consistent with EDGES. However, the combination of the two data
939
+ sets disfavours these signals with greater than 2σ significance. We do not disfavour signals with the same width or central
940
+ frequency as EDGES, but note that the joint analysis indicates a preference for shallower and narrower signals with higher
941
+ central redshifts as can be seen in the 1D PDFs.
942
+ The impact of SARAS2
943
+ Previous analysis of the SARAS2 data revealed some weak constraints, most notably in the plane of LX − Lr
944
+ in agreement with HERA and SARAS3, on the properties of galaxies in the infant Universe [48]. SARAS2 is at
945
+ much lower redshifts than SARAS3 but overlaps with the redshifts probed by HERA having recorded observations
946
+ in the band z ≈ 7 − 12. The data is contaminated by a sinusoidal systematic and a number of different models
947
+ were fitted to this feature. The model corresponds to a signal introduced prior to the antenna possibly from ground
948
+ emission or some unknown component of the foreground and separately a signal introduced in the system electronics
949
+ potentially from cable reflections.
950
+ The sinusoidal systematic was fitted alongside a signal model generated with
951
+ globalemu and a foreground model that is conditioned to be smooth preventing it fitting out non-smooth systematics
952
+ or signals in the data [24]. Here we take the best fitting model, with a systematic from ground emission or a non-
953
+ smooth component from the foreground, with the highest evidence from the original analysis [48] and combine the
954
+ corresponding constraints on the astrophysical parameters Vc, f∗, fX, fradio and τ with the joint constraints from
955
+ HERA and SARAS3 to assess the impact.
956
+ As can be seen in Fig. S4, the addition of SARAS2 to our analysis washes out the constraint in the plane f∗ − Vc.
957
+
958
+ Physical
959
+ EDGES
960
+ 0
961
+ Az
962
+ K
963
+ m.
964
+ -250
965
+ (Z0, Tmin)
966
+ -500
967
+ (Z0, Tmin)
968
+ 10
969
+ 20
970
+ 30 10
971
+ 20
972
+ 30
973
+
974
+
975
+ Prior
976
+ [mK]
977
+ SARAS3
978
+ 500
979
+ HERA
980
+ SARAS3+HERA
981
+ -1000
982
+ 16
983
+ 8
984
+ 8
985
+ 16
986
+ 24
987
+ -1000
988
+ -500
989
+ 8
990
+ 16
991
+ Tmin [mK]
992
+ Az
993
+ 2018
994
+ FIG. S3. Background constraints. The figure shows constraints on the radio and X-ray backgrounds, parameterized by
995
+ f∗fradio and f∗fX respectively, from SARAS3 (grey), HERA (blue) and the joint analysis (green). The SARAS3 and HERA
996
+ posteriors are based on the results presented in [49] and [44] respectively. We show each distribution individually on the top
997
+ row, overlaid pairs of distributions for comparison in the middle, and all three on the same figure in the bottom row. In
998
+ all panels, we show 68% and 95% contours (black solid and dashed lines respectively) for physical signal models that have
999
+ similar depths and central frequencies as the EDGES absorption feature as defined by the inequality in [35]. These physical
1000
+ EDGES-like models have previously been explored in the literature in [35, 36]. We note that while individually both HERA
1001
+ and SARAS3 allow for astrophysically motivated signal models that could explain the depth of the EDGES feature, together
1002
+ they rule the corresponding parameter space out with approximately greater than 2σ confidence, although some EDGES-like
1003
+ signals are still viable. We stress again, that the explored physical models cannot fully explain the shape of the EDGES signal.
1004
+ One possible explanation for this is that the addition of SARAS2, while constraining the properties that affect the
1005
+ signal at low redshifts, increases the envelope of possible models at higher redshifts, where star formation is more
1006
+ important, that are plausible even given the constraints from the SARAS3 data.
1007
+ Despite this, we note that we
1008
+ maintain the constraint in the plane LX − Lr when we add SARAS2 into our analysis.
1009
+ We can quantify the impact of SARAS2 on our analysis by looking at the percentage of the astrophysical prior volume
1010
+ which is consistent with the different combinations of the three different data sets. To calculate this percentage, we use
1011
+ margarine to calculate the marginal Kullback-Liebler divergence, D, between the flat prior on the five astrophysical
1012
+ parameters in the set θ21 and the corresponding posteriors. The KL divergence is related to the percentage via
1013
+ % = 100 × exp(−D) ≈ 100 × VP
1014
+
1015
+ ,
1016
+ (7)
1017
+
1018
+ Individual Constraints
1019
+ SARAS3
1020
+ HERA
1021
+ Joint
1022
+ 104
1023
+ radio.
1024
+ 103
1025
+ f 102
1026
+ 101
1027
+ 10-2
1028
+ 100
1029
+ 10-2
1030
+ 100
1031
+ 10-2
1032
+ 100
1033
+ fxf*
1034
+ fxf*
1035
+ fxf*
1036
+ Comparison of Pairs
1037
+ SARAS3 vs HERA
1038
+ SARAS3 vs Joint
1039
+ HERA vs Joint
1040
+ 104
1041
+ *
1042
+ 103
1043
+ 102
1044
+ 101
1045
+ 100
1046
+ 10-2
1047
+ 100
1048
+ 10-2
1049
+ 100
1050
+ 10-2
1051
+ fxf*
1052
+ fxf*
1053
+ fxf*
1054
+ Comparison with Joint
1055
+ SARAS3 vs HERA vs Joint
1056
+ SARAS3
1057
+ 104
1058
+ HERA
1059
+ Joint
1060
+ 103
1061
+ EDGES-like
1062
+ Signals
1063
+ 102
1064
+ 101
1065
+ 10-2
1066
+ 100
1067
+ fxf*19
1068
+ HERA + SARAS3
1069
+ 1.0
1070
+ 1.5
1071
+ log(Vc)
1072
+ 37.5
1073
+ 40.0
1074
+ 42.5
1075
+ log( LX
1076
+ SFR)
1077
+ 0.050
1078
+ 0.075
1079
+ τ
1080
+ −2
1081
+ −1
1082
+ log(f∗)
1083
+ 22.5
1084
+ 25.0
1085
+ log( Lr
1086
+ SFR)
1087
+ 1.0
1088
+ 1.5
1089
+ log(Vc)
1090
+ 37.5
1091
+ 40.0
1092
+ 42.5
1093
+ log( LX
1094
+ SFR)
1095
+ 0.050
1096
+ 0.075
1097
+ τ
1098
+ 22.5
1099
+ 25.0
1100
+ log( Lr
1101
+ SFR)
1102
+ HERA + SARAS3 + SARAS2
1103
+ 95% Confidence
1104
+ 68% Confidence
1105
+ 1.0
1106
+ 1.5
1107
+ 37.5
1108
+ 40.0
1109
+ 42.5
1110
+ 0.050
1111
+ 0.075
1112
+ −2
1113
+ −1
1114
+ log(f∗)
1115
+ 22.5
1116
+ 25.0
1117
+ 1.0
1118
+ 1.5
1119
+ log(Vc)
1120
+ 37.5
1121
+ 40.0
1122
+ 42.5
1123
+ log( LX
1124
+ SFR)
1125
+ 0.050
1126
+ 0.075
1127
+ τ
1128
+ 22.5
1129
+ 25.0
1130
+ log( Lr
1131
+ SFR)
1132
+ 0
1133
+ max
1134
+ FIG. S4. The impact of SARAS2 data on the astrophysical constraints. We show the joint posterior distributions for
1135
+ HERA and SARAS3 on the left panel (identical to Figure S1, but shown here for comparison) and for HERA, SARAS3 and
1136
+ SARAS2 on the right panel. SARAS2 covers the band z ≈ 7 − 12 and therefore has some overlap with HERA but not with
1137
+ SARAS3. The addition of SARAS2 to the joint analysis washes out the constraint on star formation properties, Vc and f∗,
1138
+ because it leads to increased uncertainty in the structure of the signals at high redshifts. However, we still see a consistent
1139
+ disfavouring of a population of radio galaxies with high radio and low X-ray luminosities. The one dimensional posteriors for
1140
+ τ appear to be in disagreement, however, we note that these are basically flat. We exclude SARAS2 from our main results in
1141
+ the text because of uncertainty in the modelling of systematics in the data.
1142
+ where Vπ is the prior volume and VP is the posterior volume. This quantity is useful as it quantifies the constraining
1143
+ power of the different data sets in all five dimensions, including correlations that may not be visible in the one and
1144
+ two dimensional projections used to produce the corner plots in this paper and in the literature.
1145
+ We show in Fig. S5 the percentage of the astrophysical parameter prior volume that is consistent with different
1146
+ combinations of the data sets discussed in this work (including additional interferometric measurements of the power
1147
+ spectrum discussed in Other Power Spectrum Experiments). We see that the combination of either or both of the
1148
+ SARAS data sets with HERA lead to a percentage consistency with the data of ≈ 63 − 65% and this is likely
1149
+ dominated by HERA. Individually, HERA allows for ≈ 80% of the astrophysical parameter space, SARAS2 for
1150
+ ≈ 90% and SARAS3 for ≈ 92%. Due to the uncertainty in the modelling of the systematics in the SARAS2 analysis,
1151
+ we leave SARAS2 out of the main results.
1152
+ Other Power Spectrum Experiments
1153
+ In Fig. S6, we show the projected posteriors derived using HERA data alone (left panel) and HERA, MWA and
1154
+ LOFAR together (right panel). We note that the constraints from the different interferometers are all at low redshifts
1155
+ between z ≈ 6 − 10 and varying wavenumbers or angular scales.
1156
+ These are detailed in Tab. S1 along with the
1157
+ constraints from the individual experiments on key parameters.
1158
+ We derived parameter constraints from the MWA and LOFAR data using the approach taken in the orginal HERA
1159
+ analysis. Specifically, we take the measured upper limits, the mean power spectrum and uncertainty, and treat it as a
1160
+ measurement of cosmological signal plus systematics. As in HERA [44] we take this uncertainty to be Gaussian and
1161
+ marginalize over a uniform prior on the systematics, yielding the likelihood
1162
+
1163
+ 20
1164
+ 60
1165
+ 65
1166
+ 70
1167
+ 75
1168
+ 80
1169
+ 85
1170
+ 90
1171
+ 95
1172
+ 100
1173
+ % Prior Consistent with Data
1174
+ SARAS2 +
1175
+ HERA
1176
+ SARAS2 + SARAS3 +
1177
+ HERA
1178
+ SARAS3 +
1179
+ HERA
1180
+ SARAS3 +
1181
+ SARAS2
1182
+ HERA + MWA +
1183
+ LOFAR
1184
+ HERA
1185
+ SARAS2
1186
+ SARAS3
1187
+ FIG. S5. Constraining power of different data sets. The percentage of the wide astrophysical parameter prior that is
1188
+ found to be consistent with the different data sets and different combinations of data sets explored in this work. A lower
1189
+ value indicates a better set of constraints, although a difference of a few percent does not necessarily translate into significant
1190
+ differences in the parameter constraints as can be seen when comparing the results from HERA and HERA + LOFAR + MWA.
1191
+ HERA
1192
+ LOFAR
1193
+ MWA
1194
+ LOFAR + MWA +
1195
+ HERA
1196
+ z
1197
+ ≈ 8 & ≈ 10
1198
+ 9.1 & 9.3 − 10.6
1199
+ 6.5 − 8.7
1200
+ Discrete and contin-
1201
+ uous ranges of z be-
1202
+ tween 6.5 − 10.6
1203
+ k [h Mpc−1]
1204
+ 0.128 − 0.960
1205
+ 0.075−0.432 & 0.053 0.070 − 3.000
1206
+ Discrete and continu-
1207
+ ous ranges of k
1208
+ Lr/SFR
1209
+ ≳ 4.00 × 1024
1210
+ ≳ 1.20 × 1025
1211
+ ≳ 1.58 × 1025
1212
+ ≳ 4.00 × 1024
1213
+ LX/SFR
1214
+ ≲ 7.60 × 1039
1215
+ ≲ 8.70 × 1038
1216
+ ≲ 1.16 × 1039
1217
+ ≲ 1.58 × 1040
1218
+ Lr/SFR
1219
+ &
1220
+ LX/SFR
1221
+ ≳ 4.00 × 1024 & ≲
1222
+ 7.60 × 1039
1223
+ ≳ 3.16 × 1025 & ≲
1224
+ 1.00 × 1040
1225
+ ≳ 1.00 × 1025 & ≲
1226
+ 1.00 × 1040
1227
+ ≳ 4.00 × 1024 & ≲
1228
+ 1.58 × 1040
1229
+ TABLE S1. Constraints from interferometers. The table shows the various constraints on the radio and X-ray luminosities
1230
+ for HERA, MWA, LOFAR and the combination of all three along with their respective wavenumbers and redshift ranges. The
1231
+ joint analysis only marginally improves our understanding of the infant universe.
1232
+ L(θ21) =
1233
+ Nd
1234
+
1235
+ i
1236
+ 1
1237
+ 2
1238
+
1239
+ 1 − erf
1240
+ �di − mi(θ21)
1241
+ √2σi
1242
+ ��
1243
+ ,
1244
+ (8)
1245
+ where Nd represents the number of data points, di and σi correspond to the mean and standard deviation in each
1246
+ data point, and mi(θ21) is the model prediction for that redshift and wave number. Thus a model prediction m ≫ d
1247
+ gives L ≈ 0 while m ≪ d gives a constant. This likelihood is effectively a step function that disfavours models above
1248
+ a given amplitude. A full discussion of its derivation can be found in [44].
1249
+ We performed this joint analysis using a full analytic likelihood approach (independent of margarine) since there
1250
+ are no nuisance parameters describing the systematics. We find that each of the experiments disfavours individually
1251
+ similar regions of the Lr − LX plane. However, the joint analysis does not improve the results derived from HERA
1252
+ data alone (as we summarise in Tab. S1 and is further illustrated in Fig. S5) which motivates our decision to only use
1253
+ HERA in the main text.
1254
+
1255
+ 21
1256
+ FIG. S6. The impact of MWA and LOFAR on the parameter constraints. Projected posterior distribution functions
1257
+ (PDFs) for the 5 simulation parameters, obtained by assuming flat priors and combining different observations: HERA alone
1258
+ (left, as in [44]) and LOFAR, HERA and MWA (right). Solid (dashed) lines correspond to regions containing the highest 68%
1259
+ (95%) probability. We see that HERA constraints are not significantly improved by adding the published limits on the power
1260
+ spectrum from other interferometers.
1261
+
1262
+ HERA
1263
+ HERA + MWA + LOFAR
1264
+ 95% Confidence
1265
+ 68% Confidence
1266
+ 1.5
1267
+ 1.5
1268
+ 0
1269
+ 1.0
1270
+ 1.0
1271
+ max
1272
+ 6'68 >
1273
+ < 40.2
1274
+ 42.5
1275
+ 42.5
1276
+ 40.0
1277
+ 40.0
1278
+ 37.5
1279
+ 37.5
1280
+ 0.075
1281
+ 0.075
1282
+ 0.050
1283
+ > 24.6
1284
+ 0.050
1285
+ > 24.6
1286
+ 25.0
1287
+ 25.0
1288
+ 22.5
1289
+ 22.5
1290
+ 37.5
1291
+ 40.0
1292
+ 42.5
1293
+ 0.050
1294
+ 0.075
1295
+ 25.0
1296
+ 5.
1297
+ 5
1298
+ 5
1299
+ 40.0
1300
+ 42.5
1301
+ 0.050
1302
+ 0.075
1303
+ 22.5
1304
+ 3
1305
+ 2
1306
+ 5
1307
+ 2
1308
+ 0.
1309
+ 2
1310
+ <
1311
+ log(f*)
1312
+ log(f*)
1313
+ log(sFR)
5dE1T4oBgHgl3EQfmgRl/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
6NAyT4oBgHgl3EQfcffh/content/2301.00286v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6759ee85398434c892f8e0c6d33e1f2351aec38ee75016c5edd6d9735bb279b3
3
+ size 275722
6NAyT4oBgHgl3EQfcffh/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4bb2b4e4ffa27f23e243b3270ce2b6576602984aacb20e5a5591bb404bdd44dd
3
+ size 37435
6dAzT4oBgHgl3EQf-P4i/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:349fd2c9ffa0874b3ab9e12bd030400ea42a2519cdd487d0897a04775154d3bc
3
+ size 3735597
8NE1T4oBgHgl3EQfTwPq/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fcb5974894972270501b7cf84e496cb8d5549b9cb8b450879862da76dc688ff1
3
+ size 6946861
8tE4T4oBgHgl3EQf3A1I/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:45473f395d2ab4a38f6be788bf7418e6575b17e66c322c9e2b33c4fb774d7b0a
3
+ size 4849709
8tE4T4oBgHgl3EQf3A1I/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:46dc632dd73946357985ae842adfbce3685dbf615ed6b1703bef0aae8f0c8cf9
3
+ size 206141
9dE0T4oBgHgl3EQffwCf/content/tmp_files/2301.02409v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
9dE0T4oBgHgl3EQffwCf/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
9dFAT4oBgHgl3EQfpx0O/content/2301.08641v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ac1fb5bf9121077455e6217a6260d2739dbe077b4ee824b816c5b38e1e6a7b15
3
+ size 1120393
9dFAT4oBgHgl3EQfpx0O/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f621b80faa36675d7bf5a8286f0897006740e3f6f52d7f0e54d16ac60f3a7ddc
3
+ size 4849709
ANE4T4oBgHgl3EQfEgyT/content/tmp_files/2301.04878v1.pdf.txt ADDED
@@ -0,0 +1,486 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Draft version January 13, 2023
2
+ Typeset using LATEX default style in AASTeX62
3
+ Intensity Interferometry observations of the Hα envelope of γ Cas with M´eO and a portable telescope
4
+ Nolan Matthews,1 Jean-Pierre Rivet,2 David Vernet,3 Mathilde Hugbart,1 Guillaume Labeyrie,1
5
+ Robin Kaiser,1 Julien Chab´e,4 Cl´ement Courde,4 Olivier Lai,2 Farrokh Vakili,2 Olivier Garde,5, 6 and
6
+ William Guerin1
7
+ 1Universit´e Cˆote d’Azur, CNRS, Institut de Physique de France, France
8
+ 2Universit´e Cˆote d’Azur, Observatoire de la Cˆote d’Azur, CNRS, Laboratoire Lagrange, France
9
+ 3Universit´e Cˆote d’Azur, Observatoire de la Cˆote d’Azur, CNRS, UMS Galil´ee, France
10
+ 4Universit´e Cˆote d’Azur, Observatoire de la Cˆote d’Azur, CNRS, Laboratoire G´eoazur, France
11
+ 52SPOT (Southern Spectrocopic Project Observatory Team)
12
+ 6Observatoire de la Tourbi`ere - 38690 Chˆabons - France
13
+ (Received January 13, 2023)
14
+ ABSTRACT
15
+ We report on observations of the extended environment of the bright Be star γ-Cas performed using
16
+ intensity interferometry measurements within its Hα emission line. These observations were performed
17
+ using a modified version of the I2C intensity interferometry instrument installed onto the 1.54 meter
18
+ M´eO optical metrology telescope and a portable 1-meter telescope (T1M). In order to better constrain
19
+ the extent of the H α envelope, observations were performed for two different positions of the T1M
20
+ telescope, corresponding to an intermediate and long baselines in which the extended region was
21
+ partially and fully resolved. We find that the observed data are consistent with past interferometric
22
+ observations of γ-Cas. These observations demonstrate the capability to equip optical telescopes of
23
+ different optical designs with intensity interferometry capabilities and illustrate the potential to scale
24
+ a similar system onto many additional telescopes.
25
+ Keywords: stars: emission-line, Be — instrumentation: high angular resolution — techniques: inter-
26
+ ferometric
27
+ 1. INTRODUCTION
28
+ Recognized as the first stellar object displaying emission line spectra (Secchi A. 1867), γ-Cas is the prototype of the
29
+ Be stellar class. The emission line features originate from radiative processes with up to X-ray energies (Smith et al.
30
+ 2012) occurring in an extended disc surrounding the star. The disc formation is primarily attributed to mass ejection
31
+ from the central star enabled from a combination of strong radiative pressure, and low effective surface gravity near
32
+ the equatorial latitudes. The latter is a consequence of the extremely high rotation rate that is nearly critical, in which
33
+ the outward centrifugal force is equal to the inward gravitational force.
34
+ Due to its bright stellar magnitude and characteristic stellar size, optical interferometry has been extensively used
35
+ to study the disk emission of γ-Cas. The extended atmosphere of γ-Cas was first resolved with the I2T interferometer
36
+ (Thom et al. 1986) and subsequently by the GI2T interferometer showing that the Hα region could be fit by a
37
+ disk model and was in Keplerian motion (Mourard et al. 1989). Observations by Quirrenbach A. et al. (1997) with
38
+ the MkIII interferometer demonstrated that the emission-line region were not compatible with circularly symmetric
39
+ models and required the assumption of an elongated profile. Density and velocity relationships in the equatorial plane
40
+ were constrained and accounted for by a radiative wind driven model in Stee et al. (1995). Subsequently, spectro-
41
+ interferometric measurements of the envelope size were performed across both the Hα and Hβ lines, as well as in the
42
+ near-by continuum emission (Stee et al. 1998) leading to a measurement of the disk mass and opening angle (Stee et
43
+ Corresponding author: Nolan Matthews
44
+ nolankmatthews@gmail.com
45
+ arXiv:2301.04878v1 [astro-ph.IM] 12 Jan 2023
46
+
47
+ 2
48
+ al. 2003). In addition, the Navy Precision Optical Interferometer (NPOI) was used to characterize the disc geometry
49
+ and further confirmed the oblateness of the disc (Tycner et al. 2006). The CHARA interferometric array measured
50
+ the disk extent in the K’ photometric band for the first time, found to be slightly smaller than previous observations
51
+ in Hα (Gies. D. R. et al.
52
+ 2007). Finally, high sensitivity spectro-interferometric measurements with CHARA were
53
+ performed in the near-infrared, as well across the Hα line and near-by continuum suggesting a larger disk size than
54
+ prior measurements and linking the origin of X-ray emission to a compact binary companion due to the absence of
55
+ one-armed spiral structures or secondary star (Stee et al. 2012).
56
+ In this work we present the first known intensity interferometry (II) measurements of the extended atmosphere of
57
+ γ-Cas using a modified version of our intensity interferometry instrument (I2C) installed onto the 1.54-meter telescope
58
+ of the M´eO laser ranging facility and a mobile 1-meter telescope (hereafter T1M), both located on the Calern Plateau
59
+ site of the Observatoire de la Cˆote d’Azur. While the I2C instrument shares similarities with past II observations
60
+ using the telescopes of the Centre P´edagogique Plan`ete Univers (C2PU) (Guerin et al. 2017, 2018; Rivet et al. 2020;
61
+ de Almeida et al. 2022), there were several modifications required to outfit these telescopes with II capabilities, and
62
+ to be compatible with each other in an interferometric mode. The experimental setup is thus described in Section 2
63
+ with additional details also presented in Matthews et al. (2022). The observations and results are shown in Section 3
64
+ with an analysis presented in Section 4. Finally, we discuss the results and present an outlook for future intensity
65
+ interferometry measurements in Section 5.
66
+ 2. EXPERIMENTAL SETUP
67
+ 2.1. Principles of Intensity Interferometry
68
+ An intensity interferometer correlates the intensity fluctuations of starlight between separated telescopes in order
69
+ to measure the squared visibility. For two telescopes with a projected baseline r between them, the second order
70
+ coherence function is
71
+ g(2)(r, τ) = ⟨I1(t)I2(r, t + τ)⟩
72
+ ⟨I1⟩⟨I2⟩
73
+ (1)
74
+ where I1 and I2 are the intensities recorded at each of the two telescopes, τ is the relative time-lag between the signals,
75
+ and the brackets indicate an average over time t. The Siegert relation (Siegert 1943; Ferreira et al. 2020) relates the
76
+ second-order coherence function g(2) to the first order coherence function g(1) by
77
+ g(2)(r, τ) = 1 + |g(1)(r, τ)|2
78
+ (2)
79
+ where the first-order coherence function can be separated into spatial and temporal components
80
+ g(1)(r, τ) = V (r)g(1)(τ)
81
+ (3)
82
+ where V (r) is the interferometric visibility of the source, given by the Fourier transform of the source sky brightness
83
+ distribution. For an unresolved point-like source V (r) = 1, and the resulting second order coherence function will
84
+ depend only on the temporal component g(1)(τ) given by the Fourier transform of the measured light spectral den-
85
+ sity (Wiener 1930; Khintchine 1934). For linearly polarized thermal light at zero optical path delay g(1)(τ = 0) = 1
86
+ where for time-lags much greater than the coherence or correlation time the first order coherence function should be
87
+ equal to zero such that there is a “bunching peak” centered about zero optical path delay with an effective temporal
88
+ width given by the coherence time. The peak amplitude at zero time-lag of g(2) thus measures the squared visibility at
89
+ some projected baseline assuming that the instrumental resolving time is shorter than the light coherence time. The
90
+ coherence time can be defined by the integral of the squared first-order coherence function (Mandel, L., & Wolf, E.
91
+ 1995),
92
+ Tc =
93
+
94
+ |g(1)(τ)|2dτ =
95
+
96
+ |s(ν)|2dν,
97
+ (4)
98
+ which is equal to the integral of the squared normalized spectral density s(ν) by Parseval’s theorem. For visible light
99
+ with a bandpass of ∆λ ∼ 1 nm the corresponding coherence time is of order 1 ps, much shorter than what can be
100
+ achieved with conventional detectors. In this case, a measurement averages over many coherence times and reduces
101
+ the value of the g(2) peak amplitude at τ = 0 by a factor of ∼ Tc/Td where Td is the effective time-resolution of the
102
+ detector. The amplitude of the g(2) peak therefore measures this loss of contrast times the squared visibility. The
103
+ squared visibility can be extracted by dividing the value of g(2)(r) − 1 peak amplitude measured between telescopes
104
+
105
+ 3
106
+ Figure 1.
107
+ Photographs of the coupling assemblies mounted on the Nasmyth arm of the M´eO telescope (left) and at the
108
+ Newtonian focus of the T1M portable telescope (right).
109
+ to the g(2)(r = 0) − 1 peak amplitude measured at zero-baseline under the assumption that the profile of the g(2)(τ)
110
+ peak is constant. In practice, we measure the ratio of the area of the g(2)(r) − 1 peak to the area of the g(2)(r = 0) − 1
111
+ peak for the squared visibility,
112
+ |V (r)|2 =
113
+ � �
114
+ g(2)(r, τ) − 1
115
+
116
+
117
+ � �
118
+ g(2)(r = 0, τ) − 1
119
+
120
+ dτ .
121
+ (5)
122
+ The denominator, or equivalently the area of the g(2) peak at zero baseline, corresponds to the coherence time that can
123
+ be calculated from the measured spectrum as given by Equation 4. The equivalence between the coherence time from
124
+ intensity interferometry and spectral measurements assumes that the spectral resolution is narrower than any spectral
125
+ lines within the instrumental bandpass. Since intensity interferometry measurements probe the intrinsic spectrum it
126
+ is a useful method for characterizing narrow spectral lines present in, for example, studies of light scattering off of
127
+ atomic clouds (Dussaux et al. 2016), with potential applications in astrophysics (Tan & Kurtsiefer 2017).
128
+ 2.2. Telescopes
129
+ The II observations presented in this paper were performed by outfitting two telescopes located on the Calern Plateau
130
+ site of the Observatoire de la Cˆote d’Azur with individual coupling assemblies (CAs). A CA is mounted near the focus
131
+ of each telescope, both shown in Figure 1. The first facility was the 1.54 m diameter M´eO (M´etrologie Optique)
132
+ telescope primarily used for satellite laser ranging (Bertrand, B. et al. 2021), lunar ranging measurements (Bourgoin,
133
+ A. et al. 2021) and low Earth orbit satellite laser communication (Giggenbach, D. et al. 2022). The optical design
134
+ is based upon a Ritchey-Chr´etien configuration on an altitude-azimuth mount with a primary focal length of 31.0 m
135
+ giving an approximate focal ratio of f/20.1. In typical operation the light is brought to a Coud´e focus, but for II
136
+ observations the light is redirected to the CA along the Nasmyth arm using a removable 45 degree mirror. In addition,
137
+ a f=150 mm lens is inserted before the CA in order to decrease the effective focal length.
138
+ The second facility is the portable 1 m diameter T1M, a Newtonian telescope on a Dobson-type fully motorized
139
+ azimuthal mount. The portability of the telescope enables configurable baselines to expand the accessible coverage of
140
+ the uv-plane where the telescope can be disassembled and moved in just a few hours. The telescope has a primary
141
+ focal length of 3 m, and a Barlow lens is included in order to expand the effective length at the input of the CA.
142
+ While both telescopes are azimuthal, there will be a relative field rotation due to the Newtonian versus Nasmyth
143
+ optical designs. However, each CA utilizes polarizing filters that must be aligned with respect to one another, although
144
+ not with respect to the target as astrophysical polarization effects are not investigated. To compensate, the M´eO
145
+ telescope CA is mounted into a rotation stage that orients the CA such that the polarization axes are aligned. The
146
+
147
+ 地4
148
+ Figure 2. Schematic of the experimental setup. The light collected by both telescopes are brought to individualized coupling
149
+ assemblies (CA), shown in detail in the right inset.
150
+ A tip-tilt corrects the beam with respect to transverse displacements.
151
+ The converging beam is collimated using a diverging lens (L1). A dichroic (D) reflects short wavelengths to a guiding camera
152
+ (GC) used in a closed loop with the tip-tilt. The transmitted light passes through a narrowband filter (NF) centered on Hα.
153
+ A polarizing beam splitter (PBS) separates the light into orthogonal polarizations where each polarization is injected into a
154
+ graded-index multimode fiber (GRIN-MMF). A linear polarizer (P) is included on the reflected arm to improve polarization
155
+ purity. Not shown is the rotation stage used for the M´eO telescope, and additional focal reducers/extenders, which are described
156
+ in the text. The light for each polarization mode for each telescope is split by a 50/50 fiber beamsplitter, and passed to single
157
+ photon resolving detectors. The photon arrival times are recorded by the TDC that also produces intensity correlations.
158
+ stage is actively controlled throughout the observation where the amount of rotation is determined from the target
159
+ sky position.
160
+ The relative position of both telescopes must be known with a precision less than a few centimeters for optical path
161
+ delay corrections. For M´eO, the position was previously determined to millimeter accuracy in terrestrial coordinates
162
+ due to its use in geodetic surveys. To determine an absolute position of the mobile T1M telescope, geodetic markers
163
+ were installed by the National Institute of Geographic and Forest Information at the ground level for several positions
164
+ and their positions were measured from differential GPS methods. The T1M was installed above these markers and
165
+ the offset between the marker and the T1M reference point was estimated. The estimated cumulative error on the
166
+ reference position is ±1.5 cm in all directions.
167
+ 2.3. Instrumental Setup
168
+ The primary function of the CAs (shown in Figure 2) is to perform spectral/polarization filtering, and fiber injection.
169
+ The current version includes an automated tip-tilt device that provides stable fiber injection over several hours without
170
+ manual intervention (Matthews et al. 2022). The detector signal output is fed to a time-to-digital converter (TDC)
171
+ that measures photon arrival times, and produces the correlation between all relevant pairs of detectors. Across both
172
+ telescopes, there are 4 independent measurements of the zero baseline correlation g(2)(r = 0, τ) enabled by using fiber
173
+ splitters in each polarization mode. These allow normalization of the spatial correlations across telescopes to measure
174
+ visibilities. Spatial intensity correlations are obtained by calculating the correlation across telescopes for all pairs of
175
+ detectors in the same polarization mode corresponding to a total of 8 measurements of g(2)(r, τ). During one night, a
176
+ time delay monitoring system was used on the electronic cables connecting the detectors from the M´eO telescope to
177
+
178
+ Coupling Assembly (CA)
179
+ MéO
180
+ T1M
181
+ IP
182
+ D
183
+ NF
184
+ △α ~ 1nm PBS
185
+ L2
186
+ GRIN-MMF
187
+ TDC
188
+ GC5
189
+ the TDC. The drift throughout the whole night was significantly less than the characteristic jitter of the detectors of
190
+ ∼ 500 ps.
191
+ 3. OBSERVATIONS
192
+ The observations of γ-Cas were performed between the nights of January 17th, 2022 to January 21st, 2022 in the short
193
+ baseline configuration, and then from January 24, 2022 to January 27th, 2022 in the longer baseline configuration. At
194
+ the beginning of each night images were recorded in both telescopes of the visual binary system γ-Ari. The measured
195
+ position angle of the binary for both telescopes, and thus of the polarization axes, were found to be always within 5
196
+ degrees, corresponding to a loss of visibility of less than 1%.
197
+ 3.1. Temporal Intensity Correlations
198
+ The coherence time obtained from zero baseline intensity correlations were compared to expected values from the
199
+ spectral throughput. These temporal intensity correlation functions were computed for each polarization state and
200
+ for each telescope by summing all individually acquired correlations acquired over the entire observation. Each of
201
+ the resulting correlation functions were then shifted by the instrumental delay and then co-added together.
202
+ The
203
+ resulting correlation function is displayed on the left in Figure 3. The peak is fit by a Gaussian with free parameters
204
+ for the amplitude and width. The coherence time, given by the integral of the peak, is extracted via the fit values.
205
+ Before fitting, there is a choice of the time-lag range to fit over and the number of time-lags to bin. Here, we fit
206
+ and show the data over a range of ± 20 ns binned into 50 ps bins. Under these parameters, we find an amplitude
207
+ of (1.43±0.05)×10−3 and a full-width at half-maximum of 885±40 ps corresponding to a measured coherence time
208
+ of 1.35 ± 0.05 ps.
209
+ Systematics of the fitting process were studied by fitting the data varying the fit range from
210
+ ±10 ns to ±40 ns and additionally the binning size from 10 ps to 80 ps. Within these parameters we find a maximum
211
+ difference of 0.015 ps in the extracted coherence time, notably less than the measurement error, In the previously quoted
212
+ coherence time, the correlations from different polarization states and telescopes were co-added and subsequently fit.
213
+ This procedure requires that shape of the bunching peak in each correlation, given by the temporal response of the
214
+ detectors, are similar. To test systematics, each correlation function for both polarization states and telescopes were
215
+ fit by a Gaussian to extract the coherence time. Each individual fit was within 1 σ of the quoted coherence time, and
216
+ furthermore the weighted mean of fits (1.35±0.05 ps) is in perfect agreement with a single fit of co-added correlations
217
+ indicating that within our measurement precision there are no significant systematics that preclude us from combining
218
+ individual zero-baseline correlations from separate detector pairs.
219
+ The coherence time measured from the zero-baseline correlations can then be compared to expectation from the
220
+ recorded spectrum. The spectral transmission of the Hα filter was measured in the laboratory with a high resolution
221
+ spectrograph (Matthews et al. 2022). Spectra of γ-Cas with resolution R=25000 were recorded contemporaneously with
222
+ Figure 3. The left plot shows the measured zero-baseline correlation in the blue points with a Gaussian fit shown by the dashed
223
+ black line. The right image displays the measured spectrum of γ-Cas, along with the theoretical (black) and measured (blue)
224
+ spectral transmission of the filter.
225
+
226
+ 2.0
227
+ 1.5
228
+ )-1(×103)
229
+ 1.0
230
+ (2)
231
+ 0.5
232
+ 6
233
+ 0.0
234
+ -0.5
235
+ -20
236
+ -15
237
+ -10
238
+ -5
239
+ 0
240
+ 5
241
+ 10
242
+ 15
243
+ 20
244
+ Time-lag (ns)100
245
+ NominalTransmission
246
+ MeasuredTransmission
247
+ Transmission (a.u.)
248
+ GammaCasSpectra
249
+ 80
250
+ 60
251
+ Normalized
252
+ 40
253
+ 20
254
+ 0
255
+ 655.5
256
+ 656.0
257
+ 656.5
258
+ 657.0
259
+ 657.5
260
+ 658.0
261
+ Wavelength (nm)6
262
+ Table 1. Spatial intensity cor-
263
+ relation results.
264
+ Baseline Range
265
+ Peak Area
266
+ m
267
+ ps
268
+ 0.0
269
+ 1.35±0.05
270
+ 3.8 < r ≤ 13.0
271
+ 1.40±0.17
272
+ 13.0 < r ≤ 18.0
273
+ 0.83±0.14
274
+ 18.0 < r ≤ 21.3
275
+ 0.31±0.08
276
+ 32.0 < r ≤ 37.8
277
+ 0.07±0.04
278
+ our observations using a Whoppshel echelle spectrograph provided through collaboration with the 2SPOT1 association
279
+ of amateur astronomers. This is especially important as the width of the temporally variable emission line is narrower
280
+ than the filter bandpass thus affecting the coherence time. The right side of Figure 3 shows the filter transmission,
281
+ and the emission line spectra. Through Equation 4 we extract the expected coherence time to be 1.41 ps which is
282
+ 1.2 σ larger than the value from zero-baseline correlations when taking only the measurement uncertainty and thus in
283
+ fair agreement. In contrast, the coherence time that would be expected for a flat stellar spectrum would be 1.16 ps.
284
+ This is considerably less than the measured value by 3.8 σ illustrating the importance of including the emission line
285
+ profile in calculations of the coherence time. The general agreement of the coherence time measured between intensity
286
+ interferometry and spectral measurements indicate that there are no systematic effects arising from the presence of
287
+ unidentified narrow spectral lines due to a lack of spectral resolution.
288
+ 3.2. Spatial Intensity Correlations
289
+ The spatial intensity correlations correspond to the correlations between all detector pairs on separate telescopes
290
+ that are observing in the same polarization mode corresponding to a total of 8 cross-correlations across telescopes. All
291
+ computed correlations are shifted in time by instrumental and geometrical delays, and then co-added together. The
292
+ full data set corresponds to a wide projected baseline and position angle range and so the data was divided into smaller
293
+ baseline ranges. For each sub-division, we compute the averaged correlation function and then fit a Gaussian function
294
+ to the resulting bunching peak. The measured areas of the g(2) peak for each subdivision are presented in Table 1.
295
+ Squared visibilities are extracted by computing the ratio of the integral of the Gaussian peak of the cross-correlation
296
+ to the computed value from the measured spectrum.
297
+ 4. ANALYSIS OF RESULTS
298
+ The reduced II data resulted in 4 measurements of the squared visibility, each averaged over a range of baselines
299
+ required to significantly resolve a bunching peak. In turn, the limited sampling does not allow any reasonable in-
300
+ dependent visibility modeling. Nevertheless, it is interesting to compare the measured values to past results. Past
301
+ interferometric observations generally characterize the angular brightness distribution of γ-Cas with a parameterized
302
+ geometrical model. A common assumption is a two-component system consisting of a photosphere and disk, with
303
+ some flux ratio between them. The photosphere is typically approximated as a uniform disk. This is an oversimplified
304
+ model of Be stars as it does not take into strong temperature gradients and equatorial flattening from the near critical
305
+ rotation (Domiciano de Souza et al. 2002). However, to resolve these effects requires an angular resolution at the
306
+ characteristic diameter of the photosphere (∼ 0.5 mas for γ-Cas (Stee et al. 1998)), whereas the effective resolution
307
+ for our observations (1.22λ/D) at the largest baseline is ∼ 8.3 mas. Furthermore, these observations were conducted
308
+ within the Hα line in which the disk emission is much stronger, such that photospheric contributions are significantly
309
+ minimized. For the disk emission, several geometric models were tested, including elongated uniform disks, Gaussian
310
+ disks, and uniform rings. Tycner et al. (2006); Stee et al. (2012) showed that a Gaussian disk profile best described
311
+ the extended emission relative to the other assumptions.
312
+ 1 www.2spot.org
313
+
314
+ 7
315
+ Table 2. Reported Gaussian disk fit values in prior γ-Cas observations. θGD is the
316
+ full-width at half-maximum, φ is the position angle, and r is the axial ratio.
317
+ Observatory
318
+ Ref.
319
+ θGD
320
+ φ
321
+ r
322
+ (mas)
323
+ (◦)
324
+ MkIII
325
+ Quirrenbach A. et al. (1997)
326
+ 3.47±0.02
327
+ 19±2
328
+ 0.70±0.02
329
+ NPOI
330
+ Tycner et al. (2006)
331
+ 3.59±0.04
332
+ 31.2±1.2
333
+ 0.58±0.03
334
+ CHARA
335
+ Stee et al. (2012)
336
+ 4.4±0.4
337
+ 19±5
338
+ 0.74
339
+ Figure 4. The left image shows the uv-plane coverage, over-plotted on expected squared visibilities formed from a Gaussian
340
+ disk model of γ-Cas using reported parameters from Stee et al. (2012). Each of the colors represent the range of sampled points
341
+ averaged together in order to measure squared visibilities, as correspondingly plotted on the right. Additionally, we plot the
342
+ expected squared visibilities for each of the models in Table 2 at our sampled uv-plane points.
343
+ This two component model of a uniform disk + elongated Gaussian disk was applied to γ-Cas data in three prior
344
+ reported observations using the MkIII interferometer (Quirrenbach A. et al. 1997), NPOI (Tycner et al. 2006), and
345
+ CHARA (Stee et al. 2012). The reported parameters for these observations are summarized and presented in Table 2.
346
+ Figure 4 shows our squared visibilities, along with expected values obtained from a Gaussian disk model from the
347
+ previous observations. The comparison of our results with the models produced using reported values from literature
348
+ tends to align with the values given by Tycner et al. (2006) and Quirrenbach A. et al. (1997) over Stee et al. (2012)
349
+ who suggest a smaller extent of the Hα region. Within our measurement precision this is not strongly conclusive
350
+ and can also be a result of instrumental differences. Already, Stee et al. (2012) noted the larger angular extent could
351
+ be explained in that they used high resolution spectro-interferometry, in contrast to the other observations including
352
+ our own, that utilize narrowband filters. The reasoning is that the filters detect more of the less resolved continuum
353
+ resulting in an effectively smaller angular extent.
354
+ 5. DISCUSSION AND OUTLOOK
355
+ We reported here on II measurements of the extended Hα emitting region of γ-Cas. The observed angular extent
356
+ of the emission was found to be consistent with past direct interferometry measurements. Following our previous
357
+ observations of Rivet et al. (2020) and de Almeida et al. (2022) this extends the work of II measurements in emission
358
+ lines to another system and complements recent on-sky results of other intensity interferometry facilities (Acciari
359
+ et al. 2020; Abeysekara et al. 2020; Horch et al. 2022).
360
+ Future improvements to the system will aim to improve
361
+ the sensitivity.
362
+ The most significant gain comes from simultaneously performing II correlations in many spectral
363
+ channels that can be co-added to improve the signal to noise ratio by a factor of the square root of the number of
364
+ channels (Trippe et al. 2014). One could also imagine recording many independent spectral channels across the Hα
365
+ line in order to perform intensity spectro-interferometry to test the discrepancy seen in past observations between
366
+
367
+ Model Visibilities and (u,v)Sampling
368
+ 1.0
369
+ 40
370
+ 0.8
371
+ 20
372
+ (m)
373
+ 0.6
374
+ 0
375
+ >
376
+ 0.4
377
+ 20
378
+ -40
379
+ 0.2
380
+ -40
381
+ -20
382
+ 0
383
+ 20
384
+ 40
385
+ u (m)MkillI
386
+ NPOI
387
+ 1.0
388
+ CHARA
389
+ 0.8
390
+ 0.6 -
391
+ 0.4 -
392
+ 0.2
393
+ 0.0
394
+ 0
395
+ 5
396
+ 10
397
+ 15
398
+ 20
399
+ 25
400
+ 30
401
+ 35
402
+ Baseline (m)8
403
+ those using filtered bandpasses, and those in dispersed light. Furthermore, higher sensitivity observations, paired with
404
+ polarimetric capabilities would allow for better constraints, if not a direct measure of, radiative processes displaying
405
+ polarized emission in the disk, as was attempted by Rousselet-Perraut et al. (1997).
406
+ These observations were performed using two facilities: the T1M and M´eO that had not been used for interfero-
407
+ metric observations prior to this report. The portability of the T1M provides the capability to optimize the baseline
408
+ configuration for a given target, or similarly perform multiple configurations for a given target as done here. This
409
+ technical accomplishment also illustrates the potential for performing up to 4-telescope II measurements on the Calern
410
+ Plateau enabling 6 simultaneous baselines by including the 2 additional C2PU telescopes.
411
+ We acknowledge the financial support of the R´egion PACA (project I2C), the French National Research Agency
412
+ (ANR, project I2C, ANR-20-CE31-0003), OCA, Doeblin federation, UCA science councils grants, and the LABEX
413
+ Cluster of Excellence FIRST-TF (ANR-10-LABX-48-01), within the program Investissements d’Avenir operated by the
414
+ ANR. The authors would like to thank Jacques Belin and Damien Pesce for their installment of reference markers, and
415
+ to the members of the M`eO team including Hervey Mariey, Mourad Aimar, Herv´e Viot, Gr´egoire Martinot-Lagarde,
416
+ Julien Scariot, Nicolas Maurice, Duy-H`a Phung, and Nils Raymond for their assistance during the observations.
417
+ REFERENCES
418
+ Abeysekara, A. U., Benbow, W., Brill, A., et al. 2020,
419
+ Nature Astronomy, 4, 1164.
420
+ doi:10.1038/s41550-020-1143-y
421
+ Acciari, V. A., Bernardos, M. I., Colombo, E., et al. 2020,
422
+ MNRAS, 491, 1540. doi:10.1093/mnras/stz3171
423
+ de Almeida, E. S. G., Hugbart, M., Domiciano de Souza, A.,
424
+ et al. 2022, MNRAS, 515, 1. doi:10.1093/mnras/stac1617
425
+ Bertrand, B., Defraigne, P., Sheremet, A., et al. 2021, 2021
426
+ Joint Conference of the European Frequency and Time
427
+ Forum and IEEE International Frequency Control
428
+ Symposium (EFTF/IFCS)
429
+ Bourgoin, A., Bouquillon, S., Hees, A., et al. 2021, PhRvD,
430
+ 103, 064055. doi:10.1103/PhysRevD.103.064055
431
+ Domiciano de Souza, A., Vakili, F., Jankov, S., et al. 2002,
432
+ A&A, 393, 345. doi:10.1051/0004-6361:20021015
433
+ Dussaux, A., Passerat de Silans, T., Guerin, W., et al. 2016,
434
+ PhRvA, 93, 043826. doi:10.1103/PhysRevA.93.043826
435
+ Ferreira, D., Bachelard, R., Guerin, W., et al. 2020, AJP,
436
+ 88, 10, 831. doi:10.1119/10.0001630
437
+ Gies, D. R., Bagnuolo, W. G., Baines, E. K., et al. 2007,
438
+ ApJ, 654, 527. doi:10.1086/509144
439
+ Giggenbach, D., Fuchs, C., Schmidt, C., et al. 2022, ApOpt,
440
+ 61, 1938. doi:10.1364/AO.446771
441
+ Guerin, W., Dussaux, A., Fouch´e, M., et al. 2017, MNRAS,
442
+ 472, 4126. doi:10.1093/mnras/stx2143
443
+ Guerin, W., Rivet, J.-P., Fouch´e, M., et al. 2018, MNRAS,
444
+ 480, 245. doi:10.1093/mnras/sty1792
445
+ Horch, E. P., Weiss, S. A., Klaucke, P. M., et al. 2022, AJ,
446
+ 163, 92. doi:10.3847/1538-3881/ac43bb
447
+ Khintchine, A. 1934, MatAn, 109, 604.
448
+ Mandel, L. & Wolf, E. 1995, Optical Coherence and
449
+ Quantum Optics, by Leonard Mandel and Emil Wolf, pp.
450
+ 1192. ISBN 0521417112. Cambridge, UK: Cambridge
451
+ University Press, September 1995., 1192
452
+ Matthews, N., Rivet, J.-P., Hugbart, M., et al. 2022 Proc.
453
+ of SPIE 2022, Conf. 12183, Paper 12183-15
454
+ Mourard, D., Bosc, I., Labeyrie, A., et al. 1989, Nature,
455
+ 342, 520. doi:10.1038/342520a0
456
+ Quirrenbach, A., Hummel, C. A., Buscher, D. F., et al.
457
+ 1993, ApJL, 416, L25. doi:10.1086/187062
458
+ Rivet, J.-P., Siciak, A., de Almeida, E. S. G., et al. 2020,
459
+ MNRAS, 494, 218. doi:10.1093/mnras/staa588
460
+ Rousselet-Perraut, K., Vakili, F., Mourard, D., et al. 1997,
461
+ A&AS, 123, 173. doi:10.1051/aas:1997310
462
+ Secchi, A. 1867, Sugli spettri prismatici delle stelle fisse :
463
+ memoria del A[ngelo] Secchi, by Secchi, Angelo, 1867..
464
+ doi:10.3931/e-rara-527
465
+ Siegert, A. J. F., 1943. Report: Radiation Laboratory,
466
+ Massachusetts Institute of Technology,
467
+ Smith, M. A., Lopes de Oliveira, R., Motch, C., et al. 2012,
468
+ A&A, 540, A53. doi:10.1051/0004-6361/201118342
469
+ Stee, Ph., de Araujo, F. X., Vakili, F., et al. 1995, A&A,
470
+ 300, 219
471
+ Stee, Ph., Vakili, F., Bonneau, D., et al. 1998, A&A, 332,
472
+ 268
473
+ Stee, Ph. 2003, A&A, 403, 1023
474
+ Stee, Ph., Delaa, O., Monnier, J. D., et al. 2012, A&A, 545,
475
+ A59. doi:10.1051/0004-6361/201219234
476
+ Tan, P. K. & Kurtsiefer, C. 2017, MNRAS, 469, 1617.
477
+ doi:10.1093/mnras/stx968
478
+ Thom, C., Granes, P., & Vakili, F. 1986, A&A, 165, L13
479
+
480
+ 9
481
+ Trippe, S., Kim, J.-Y., Lee, B., et al. 2014, JKPS, 47, 235.
482
+ doi:10.5303/JKAS.2014.47.6.235
483
+ Tycner, C., Gilbreath, G. C., Zavala, R. T., et al. 2006, AJ,
484
+ 131, 2710. doi:10.1086/502679
485
+ Wiener, N. 1930, AcMa, 55, 117
486
+
ANE4T4oBgHgl3EQfEgyT/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
ANFQT4oBgHgl3EQfMDYd/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7fa772103c6f7edf7801c25f293ce370b7db206df2b189df3e946942a400ba16
3
+ size 3538989
AtAyT4oBgHgl3EQfq_mZ/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e29b075934e632ecfd9245a62357b77c54f334c545c70cdbfe8af8c4b208867b
3
+ size 105814
C9A0T4oBgHgl3EQfAf_H/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cad831f14c1a6347e58837cd29c48f1e065b30cd2e9dfafb4cf334b84a4e2b7c
3
+ size 4390957
C9AzT4oBgHgl3EQfTvzN/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:56a0450b4e4fba2adfe5685401198b30a56f67e810f9ee984348dfe06801fd20
3
+ size 10158125
CtE4T4oBgHgl3EQfeg0W/content/tmp_files/2301.05099v1.pdf.txt ADDED
@@ -0,0 +1,1221 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Improving Inference Performance of Machine
2
+ Learning with the Divide-and-Conquer Principle
3
+ Alex Kogan
4
+ Oracle Labs
5
+ alex.kogan@oracle.com
6
+ Abstract
7
+ Many popular machine learning models scale poorly when
8
+ deployed on CPUs. In this paper we explore the reasons
9
+ why and propose a simple, yet effective approach based on
10
+ the well-known Divide-and-Conquer Principle to tackle this
11
+ problem of great practical importance. Given an inference
12
+ job, instead of using all available computing resources (i.e.,
13
+ CPU cores) for running it, the idea is to break the job into
14
+ independent parts that can be executed in parallel, each with
15
+ the number of cores according to its expected computational
16
+ cost. We implement this idea in the popular OnnxRuntime
17
+ framework and evaluate its effectiveness with several use
18
+ cases, including the well-known models for optical character
19
+ recognition (PaddleOCR) and natural language processing
20
+ (BERT).
21
+ 1
22
+ Introduction
23
+ We live in the era of unprecedented attention to machine
24
+ learning (ML) from researchers and practitioners alike. New
25
+ ML models across a variety of domains (or modalities, such
26
+ as video, images and text) are proposed nearly daily, the
27
+ models grow bigger and more sophisticated, and their com-
28
+ ponents are continuously revised to achieve better accuracy
29
+ scores on various tasks. While lots of attention is given to
30
+ training efficiency and prediction accuracy, seemingly less
31
+ effort is focused on making sure those models perform well
32
+ when deployed in practice, i.e., during inference [11]. As we
33
+ demonstrate in this paper, some models scale poorly (and at
34
+ times, even worse!) when the number of available cores in a
35
+ CPU-based deployment is increased.
36
+ Why does not the inference on CPUs scale? There are a
37
+ variety of reasons, and we devote the entire section of this
38
+ paper to look into some of them. Briefly, they range from
39
+ the micro-level, such as the use of non-scalable operators
40
+ inside ML architectures, to macro-level, such as employing
41
+ ML architectures that process input iteratively.
42
+ To mitigate those scalability challenges, one might con-
43
+ sider redesigning their ML architecture or reimplementing its
44
+ non-scalable operations with a more efficient version. Such
45
+ approaches, however, require either substantial ML domain
46
+ specific expertise, exceptional engineering skills and famil-
47
+ iarity with ML frameworks used for inference, significant
48
+ investments (e.g., to retrain a new model, with a potential
49
+ risk to the accuracy metrics), or all of the above.
50
+ In this paper, we take a different approach and propose to
51
+ leverage the poor scalability of ML models by applying the
52
+ Divide-and-Conquer Principle, a well-known algorithm de-
53
+ sign technique in Computer Science [8]. Specifically, instead
54
+ of allocating all available computing resources (CPU cores)
55
+ to the entire problem, we propose to divide the problem into
56
+ smaller chunks1, let the framework decide how the comput-
57
+ ing resources should be allocated among those chunks and
58
+ then run their respective computations in parallel. We argue
59
+ that in many use cases, such a division is natural and requires
60
+ only trivial changes in the user code. We also describe a sim-
61
+ ple mechanism that allocates computing resources based on
62
+ the expected computational intensity (or weight) of each
63
+ chunk.
64
+ Consider, for instance, a model for solving a natural lan-
65
+ guage processing (NLP) task such as tweet classification. Our
66
+ approach allows efficient batching of inference requests of
67
+ various sizes, eliminating the need for padding (a common,
68
+ but wasteful solution to deal with batches of requests of
69
+ variable size) and letting the framework allocate comput-
70
+ ing resources proportionally to the length of each sequence.
71
+ We implement the aforementioned allocation mechanism in
72
+ OnnxRuntime [24], a popular framework for training and
73
+ inferencing ML models, and extend its inference API to al-
74
+ low user code to invoke parallel inference on multiple inputs.
75
+ We demonstrate the effectiveness of our approach with sev-
76
+ eral use cases, including highly popular models for image
77
+ processing (PaddleOCR [14]) and NLP tasks (BERT [10]).
78
+ The remainder of this paper is organized as following.
79
+ In Section 2 we elaborate on various reasons for why the
80
+ inference (on CPUs) commonly does not scale well. Next,
81
+ we describe in Section 3 the concept and implementation
82
+ details of the Divide-and-Conquer Principle as it applies to
83
+ inference. Following that, we present in Section 4 several
84
+ use cases of ML models where this principle can be applied,
85
+ along with the performance evaluation of its benefits. We
86
+ discuss related work in Section 5 and conclude the paper in
87
+ Section 6.
88
+ 1We note that unlike the classical Divide-and-Conquer Principle [8], we
89
+ divide the problem only once, although it might be possible in some cases to
90
+ divide it recursively into increasingly smaller chunks that can be executed
91
+ by one thread each.
92
+ 1
93
+ arXiv:2301.05099v1 [cs.LG] 12 Jan 2023
94
+
95
+ 2
96
+ Why is Inference Slow?
97
+ There are numerous reasons for this lack of scalability. In
98
+ this section we survey some of them.
99
+ 2.1
100
+ Not “enough” work
101
+ One reason is simply because the amount of computation
102
+ required by a model during inference is not “enough” for
103
+ efficient parallelization. As noted by Aminabadi et al. [3],
104
+ kernel implementations of various ML operations are often
105
+ geared towards training, which tends to consist of sizable
106
+ batches of large inputs (e.g., sentences of 512 tokens). During
107
+ inference, however, the batches tend to be much smaller, and
108
+ often include just one input (e.g., for real-time / interactive
109
+ inference). Besides, the inputs themselves can be small, e.g.,
110
+ a tweet or chatbot interaction consisting of just a few words.
111
+ Consider, for instance, highly popular Transformer-based [28]
112
+ models for NLP tasks, such as BERT [10] or GPT-3 [5], which
113
+ rely mostly (but not solely) on matrix multiplication prim-
114
+ itives. Those primitives are known to scale well for large
115
+ matrices [11, 22, 30]. However, when the actual input to
116
+ the model during inference is short, matrix multiplications
117
+ involve smaller and therefore, less amendable to efficient
118
+ parallelization, matrices [11, 23, 30].
119
+ 2.2
120
+ Non-Scalable Operators
121
+ Another reason for poor scalability of some ML models is
122
+ the use of non-scalable (and often, sequential) operators in
123
+ their architecture. Typically, the overhead of those operators
124
+ would be negligible compared to other, more scalable parts
125
+ of the model. Yet, as the number of cores increases and fol-
126
+ lowing directly from the Amdahl’s Law [2], their negative
127
+ impact of non-scalable operators on the overall inference per-
128
+ formance would grow. Considering again the Transformer-
129
+ based [28] models mentioned above, Dice and Kogan have
130
+ observed that while matrix multiplication scales well, at least
131
+ for long inputs, other operations such as layer normaliza-
132
+ tion and softmax do not, contributing to the overall poor
133
+ scalability of those models [11]. In this paper, we consider
134
+ a vision-based model, which employs sequentially imple-
135
+ mented functions for internal format conversions, which
136
+ similarly cause the entire model not to scale.
137
+ We note that some of those cases could be considered a
138
+ performance bug in the underlying ML framework, which
139
+ could be fixed by reimplementing the respective operators
140
+ with more efficient (and parallel) alternatives. This, however,
141
+ requires lots of engineering effort, which includes perfor-
142
+ mance analysis and deep understanding of corresponding
143
+ framework implementation details. Besides, some of the ML
144
+ operators, such as layer normalization [4], require careful
145
+ coordination among computing threads (e.g., to compute
146
+ variance and standard deviation of all the hidden units in a
147
+ layer and then use those statistics to normalize the values
148
+ of the units) and therefore do not lend themselves naturally
149
+ for efficient parallelization.
150
+ 2.3
151
+ Framework Overhead
152
+ Somewhat related to the prior point, an ML framework might
153
+ add small but measurable overhead in invoking model op-
154
+ erations. Most popular ML frameworks, such as PyTorch,
155
+ Tensorflow or OnnxRuntime, support multiple backends for
156
+ executing ML operations, targeting different hardware archi-
157
+ tectures (CPU, GPU, TPU), utilizing different BLAS libraries
158
+ (MKL, OpenBLAS, oneDNN, etc.), different threading infras-
159
+ tructure (Intel TBB, pthreads, custom implementation, etc.),
160
+ etc. Dispatching appropriate kernel (implementation) for
161
+ every operator is efficient, but is sequential and requires
162
+ non-trivial amount of work, especially when the model is
163
+ executed interactively [11] (the default execution mode in
164
+ PyTorch). This overhead becomes substantial as the actual
165
+ execution time of the kernels reduces with the increased
166
+ number of cores.
167
+ In addition to the above, various kernels might require
168
+ specific memory layout for its input parameters (tensors),
169
+ and the framework would add appropriate dummy operators
170
+ for input/output conversion or data preparation [30]. As we
171
+ demonstrate later in this paper, these operators might add
172
+ substantial overhead as well.
173
+ 2.4
174
+ Model Architecture
175
+ Quite often the high-level architecture of an ML model itself
176
+ plays a substantial role in causing inference not to scale. For
177
+ instance, some ML models, especially ones built for video
178
+ and image processing (e.g., [14, 21, 29]), are composed as a
179
+ multi-phase pipeline. The first phase of the pipeline would
180
+ typically identify the points of interest in the input (e.g., text
181
+ boxes in an image or a moving object in a video), while sub-
182
+ sequent phases would process those points (iteratively or as
183
+ a batch) to solve the predefined problem (e.g., identify text
184
+ in the boxes or classify the moving object in the video). The
185
+ inference latency of such models might grow linearly with
186
+ the number of objects identified in the first phase. Further-
187
+ more, if even one phase of the pipeline does not scale well,
188
+ the scalability of the entire pipeline is impaired.
189
+ 2.5
190
+ Padding
191
+ Batching multiple inputs and processing them at once is a
192
+ well-known way of improving inference throughput [1, 3, 9,
193
+ 15, 32]. In fact, multiple serving system for machine learning
194
+ models (such as TensorFlow Serving [16] or TorchServe [7])
195
+ include tunable parameters that configure how long an in-
196
+ ference server can wait in order to batch as many input
197
+ requests as possible. However, when inputs in a batch do not
198
+ have exactly the same shape, they need to be padded to be
199
+ processed efficiently, since underlying kernels typically an-
200
+ ticipate batches of homogeneous inputs. The padding leads
201
+ 2
202
+
203
+ to reduced computational efficiency, since it is treated by ker-
204
+ nels as the rest of the input, even though the corresponding
205
+ output produced by the model is dismissed.
206
+ 3
207
+ Divide-and-Conquer Principle Applied
208
+ to Inference
209
+ In this section, we describe the application of the Divide-
210
+ and-Conquer Principle [8] to the inference of ML models at
211
+ the conceptual level and as a concrete realization by imple-
212
+ menting it in the OnnxRuntime framework. We note that
213
+ applying this principle does not directly address the reasons
214
+ for poor scalability detailed in the previous section. In fact,
215
+ the advantage of our approach is that one does not have to
216
+ identify and/or fix any scalability bottlenecks in their models
217
+ to rip the benefits of its underlying idea.
218
+ 3.1
219
+ Concept
220
+ The basic idea is pretty straightforward — consider a compu-
221
+ tation job 𝐽, which can be broken into𝑘 independent parts, 𝑗1,
222
+ 𝑗2, ..., 𝑗𝑘, which can be executed in parallel. Assume we have
223
+ an oracle assigning relative weight 𝑤𝑖 ∈ (0, 1] correspond-
224
+ ing to, e.g., the number of required floating point operations
225
+ (FLOPs) or single-thread latency of the computation job part
226
+ 𝑗𝑖. Finally, assume we have 𝐶 computing cores available. We
227
+ strive to allocate to each part the number of cores relative
228
+ to its weight, namely, we assign 𝑐𝑖 = 𝑚𝑎𝑥{1, ⌊𝑤𝑖 ∗𝐶⌋} cores
229
+ for the part 𝑗𝑖. This effectively means allocating 𝑐𝑖 worker
230
+ threads for 𝑗𝑖 since we later create one worker thread per core
231
+ (as common in ML frameworks, including in OnnxRuntime).
232
+ Note that �𝑘
233
+ 𝑖=1 𝑐𝑖 might be larger than C. This is obvious
234
+ when the number of job parts, 𝑘, is larger than C, but it is
235
+ possible even when 𝑘 ≤ 𝐶. This does not create a problem
236
+ other than implying that some job parts will be run after
237
+ other job parts have finished (rather than running them all
238
+ in parallel). At the same time, due to the rounding-down
239
+ (floor) function intended to reduce the above possibility of
240
+ oversubscription, some unallocated cores might remain. To
241
+ avoid this waste of available resources, we sort all the job
242
+ parts by their remaining unallocated weight, i.e., by 𝑤𝑖 ∗𝐶 −
243
+ ⌊𝑤𝑖 ∗ 𝐶⌋, and assign one core to each part in the descending
244
+ order, up until all cores are allocated. The C++-like pseudo-
245
+ code for the entire algorithm is given in Listing 1.
246
+ Naturally, the idea described above raises the question of
247
+ how to assign relative weight to a job part 𝑗𝑖. In all our cases
248
+ considered in Section 4, the weight is simply set proportion-
249
+ ally to the size of input tensors. Specifically, let 𝑠𝑖 be the size
250
+ of the input tensor for job part 𝑗𝑖. We set 𝑤𝑖 to
251
+ 𝑠𝑖
252
+ �𝑘
253
+ 𝑖=1 𝑠𝑖 , essen-
254
+ tially assuming that the amount of computation (expressed
255
+ as the number of required FLOPs) grows roughly linearly
256
+ with the input tensors’ size. In general, however, assigning
257
+ weight can be done with the help of a profiling phase and a
258
+ lightweight classification mechanism, which associates job
259
+ parts of the same (or similar) shape (as the one encountered
260
+ 1 vector<int> allocate(vector<Tensor> inputs, int numCores) {
261
+ 2
262
+ vector<int> threadAllocation;
263
+ 3
264
+ vector<tuple<int, float>> threadUnallocatedWeight;
265
+ 4
266
+ int numInputs = inputs.size();
267
+ 5
268
+ int allocatedCores = 0;
269
+ 6
270
+ int index = 0;
271
+ 7
272
+ int totalSize = 0;
273
+ 8
274
+ for (auto j_i : inputs) totalSize += j_i.size()
275
+ 9
276
+ for (auto j_i : inputs) {
277
+ 10
278
+ int numThreadsToUse = 1;
279
+ 11
280
+ if (numInputs <= numCores) {
281
+ 12
282
+ int size = j_i.size();
283
+ 13
284
+ float w_i = ((float)size) / totalSize;
285
+ 14
286
+ int numThreadsToUse = floor(w_i * numCores);
287
+ 15
288
+ // this may happen due to flooring
289
+ 16
290
+ if (numThreadsToUse < 1) numThreadsToUse = 1;
291
+ 17
292
+ unallocatedWeight.add(
293
+ 18
294
+ make_tuple(index, w_i * numCores - numThreadsToUse));
295
+ 19
296
+ }
297
+ 20
298
+ threadAllocation.add(numThreadsToUse);
299
+ 21
300
+ allocatedCores += numThreadsToUse;
301
+ 22
302
+ index++;
303
+ 23
304
+ }
305
+ 24
306
+ if (allocatedCores < numCores) {
307
+ 25
308
+ // sort the vector in decreasing order by
309
+ 26
310
+ // comparing the second field in each tuple
311
+ 27
312
+ sort(unallocatedWeight, bySecondField);
313
+ 28
314
+ int nextToAdjust = 0;
315
+ 29
316
+ while (allocatedCores < numCores) {
317
+ 30
318
+ // fetch the first field in the `nextToAdjust` tuple
319
+ 31
320
+ index =
321
+ 32
322
+ unallocatedWeight[nextToAdjust % numInputs].get(0);
323
+ 33
324
+ threadAllocation[index]++;
325
+ 34
326
+ allocatedCores++;
327
+ 35
328
+ nextToAdjust++;
329
+ 36
330
+ }
331
+ 37
332
+ }
333
+ 38
334
+ return threadAllocation;
335
+ 39 }
336
+ Listing 1. Thread allocation algorithm
337
+ during the profiling phase) to the relative weight obtained
338
+ during profiling.
339
+ 3.2
340
+ Implementation Details
341
+ We extend the API of the InferenceSession class of On-
342
+ nxRuntime with a new prun method. This method is modeled
343
+ 3
344
+
345
+ 1 class TextRecognizer(object):
346
+ 2
347
+ def __init__(self, args):
348
+ 3
349
+ ...
350
+ 4
351
+ self.predictor = ort.InferenceSession(args.file_path)
352
+ 5
353
+ self.postprocess_op = build_post_process(args)
354
+ 6
355
+ ...
356
+ 7
357
+ def __call__(self, img_list):
358
+ 8
359
+ img_num = len(img_list)
360
+ 9
361
+ for beg_img_no in range(0, img_num, batch_num):
362
+ 10
363
+ end_img_no = min(img_num, beg_img_no + batch_num)
364
+ 11
365
+ inputs = prepare(img_list, beg_img_no, end_img_no)
366
+ 12
367
+ outputs = self.predictor.run(inputs)
368
+ 13
369
+ preds = outputs[0]
370
+ 14
371
+ rec_result = self.postprocess_op(preds)
372
+ 15
373
+ all_results.add(rec_result)
374
+ 16
375
+ return all_results
376
+ Listing 2. Original (shortened and edited for clarity)
377
+ TextRecognizer class implementation from PaddleOCR
378
+ 1 class TextRecognizer(object):
379
+ 2
380
+ def __init__(self, args):
381
+ 3
382
+ ...
383
+ 4
384
+ self.predictor = ort.InferenceSession(args.file_path)
385
+ 5
386
+ self.postprocess_op = build_post_process(args)
387
+ 6
388
+ ...
389
+ 7
390
+ def __call__(self, img_list):
391
+ 8
392
+ img_num = len(img_list)
393
+ 9
394
+ for beg_img_no in range(0, img_num, batch_num):
395
+ 10
396
+ end_img_no = min(img_num, beg_img_no + batch_num)
397
+ 11
398
+ inputs = prepare(img_list, beg_img_no, end_img_no)
399
+ 12
400
+ all_inputs.append(inputs)
401
+ 13
402
+ all_outputs = self.predictor.prun(all_inputs)
403
+ 14
404
+ for outputs in all_outputs:
405
+ 15
406
+ preds = outputs[0]
407
+ 16
408
+ rec_result = self.postprocess_op(preds)
409
+ 17
410
+ all_results.add(rec_result)
411
+ 18
412
+ return all_results
413
+ Listing 3. Modified TextRecognizer class implementation
414
+ (uses prun). Added or modified lines are in red
415
+ after the existing run method used as the main entry point
416
+ when running inference. The main difference is that prun
417
+ accepts a list of inputs (instead of just one) and returns a list
418
+ of outputs.
419
+ Internally, the implementation of prun iterates over the
420
+ list of inputs, calculates their size (after validating those are
421
+ tensors) and corresponding relative weight, and applies the
422
+ allocation algorithm described in Listing 1 to associate the
423
+ number of worker threads with each input (job part). Follow-
424
+ ing that, the implementation creates one worker thread for
425
+ each input, and runs them in parallel. Each worker thread, in
426
+ turn, creates a thread pool of the size calculated by the alloca-
427
+ tion algorithm (the thread pool includes the worker thread it-
428
+ self), and invokes the run method of the InferenceSession
429
+ object with that thread pool. The entire patch of the On-
430
+ nxRuntime codebase to implement the prun functionality
431
+ and other minor internal changes (such as having the run
432
+ method to accept a thread pool as an optional argument in-
433
+ stead of always using the default pool) consisted of around
434
+ 200 lines of code.
435
+ On the user side, the code also has to change to make
436
+ use of the new prun API. Those changes, however, are quite
437
+ straightforward. Instead of invoking run for every job, a user
438
+ needs to create a list of job parts and call prun. In addition, the
439
+ user needs to rearrange the post-processing code to iterate
440
+ over the results of prun, and apply any post-processing to
441
+ each returned output (object). As an example of what the
442
+ user code changes entail, we show the original Python code
443
+ (edited for brevity and clarity) of the TextRecognizer class in
444
+ PaddleOCR (Listing 2) alongside the modified version that
445
+ makes use of the new prun API (Listing 3).
446
+ 4
447
+ Use Cases
448
+ Before we detail the use cases where the Divide-and-Conquer
449
+ Principle is beneficial and report on our performance find-
450
+ ings, we give a brief summary of our evaluation setup and
451
+ methodology. We run all our experiments on a 16-core AMD-
452
+ based VM in Oracle Cloud (aka OCI VM.Standard.E3.Flex).
453
+ (We also ran some experiments on a newer E4 shape, but
454
+ have not noticed substantial differences). To reduce perfor-
455
+ mance variability, especially as we create separate thread
456
+ pools for the variants that use prun, we use thread binding
457
+ (pinning), for all the evaluated variants. Every experiment
458
+ was repeated 5 times, and we report the mean. We note that
459
+ the standard deviation of all reported results, except for one
460
+ specific case discussed below, was extremely low (typically,
461
+ less than 1% of the mean). For our experiments, we use the
462
+ latest release versions (as of the date of writing this paper)
463
+ of the corresponding software, specifically OnnxRuntime
464
+ v1.11.1 and PaddleOCR v2.5.
465
+ 4.1
466
+ Sequential Pipeline
467
+ Our first example of where applying the Divide-and-Conquer
468
+ Principle is extremely useful is PaddleOCR [14]. PaddleOCR
469
+ is a lightweight OCR system, which consists of three parts:
470
+ Text Detection, Text Classification (called Detection Boxes
471
+ Rectify in [14]) and Text Recognition. Each of those parts
472
+ corresponds to a separate ML model.
473
+ 4
474
+
475
+ Figure 1. PaddleOCR 3-phase pipeline (edited version of Figure 2 from [14]).
476
+ The OCR pipeline accepts an image file and passes it first
477
+ through the text detection phase whose objective is to locate
478
+ text areas in the image. The output of this phase is a list of
479
+ potential text boxes’ coordinates. Next, the list is iterated
480
+ over, and each item in that list (i.e., a text box) is sent to
481
+ the text classification model, which decides whether the
482
+ box needs to be transformed into a horizontal rectangle box
483
+ before the actual text recognition takes place. Based on the
484
+ classifier’s decision, each box is altered respectively. Finally,
485
+ the list is iterated over again, and each item is sent to the text
486
+ recognition model for inference, which recognizes the text
487
+ in the given box and produces the actual character sequence
488
+ based on the supplied character dictionary. This process is
489
+ depicted in Figure 1, which is a redacted version of Figure 2
490
+ from [14].
491
+ In our experiments with PaddleOCR, we observe that the
492
+ system does not scale well with the increase in the number
493
+ of available cores. We demonstrate that in Figure 2 depicting
494
+ inference latency as a function of available cores (which
495
+ directly translates into the number of worker threads used
496
+ by the runtime). For all experiments in this section, including
497
+ the one in Figure 2, we use a subset of images from the
498
+ OpenImages dataset [17], selected according to a criterium
499
+ described below.
500
+ In Figure 2, we break the total latency into time spans cor-
501
+ responding to the three phases of the OCR pipeline discussed
502
+ above. As one can notice, the average inference latency goes
503
+ down from 554 ms for 1 thread to 364 ms for 4 cores and then
504
+ back up to 435 ms for 16 cores. Interestingly, the Text Clas-
505
+ sification phase shows negative scalability, where it takes
506
+ 27 ms to process an image, on average, with 1 thread, but it
507
+ takes 38 ms to do the same with 16 threads — a slowdown
508
+ of 1.4x. This shows an example of a system where, beyond a
509
+ certain point, adding more threads not only does not help,
510
+ but actually harms performance. Discussing concrete rea-
511
+ sons for the lack of scalability of these specific models is
512
+ not in the scope of this paper. For a curious reader, however,
513
+ we note that a built-in OnnxRuntime profiling tool shows
514
+ inflated execution times for the output reordering operators
515
+ (which are inserted by the framework, along with the input
516
+ reordering operator, to convert the memory layouts of input
517
+ arguments for various kernels).
518
+ We apply the Divide-and-Conquer Principle to the last
519
+ two phases of the OCR pipeline, namely the Text Classifica-
520
+ tion and Recognition. To that end, instead of invoking the
521
+ corresponding models for each text box produced by Text
522
+ Detection, we send all the boxes to the runtime (by invoking
523
+ the prun API) and effectively let the runtime decide how
524
+ many cores / worker threads to allocate each box based on
525
+ its relative size. The required changes to implement this
526
+ functionality in the Text Recognition phase are depicted in
527
+ Listing 3; the changes to the Text Classification phase are
528
+ similar.
529
+ For our performance evaluation, we compare the prun
530
+ implementation as discussed in Section 3 (and depicted in
531
+ Listing 1), which we denote as prun-def on the charts, to
532
+ a few simple variants. The first variant, denoted as prun-1,
533
+ simply allocates one worker thread to each input in the
534
+ list given to prun. The second variant, denoted as prun-eq,
535
+ allocates an equal number of cores for each input (but at
536
+ least one), i.e., sets 𝑐𝑖 = 𝑚𝑎𝑥{1, ⌊𝑘/𝐶⌋}. Our motivation is
537
+ to show that trivial solutions might also be useful in certain
538
+ scenarios (as discussed below), yet they tend to underperform
539
+ compared to prun-def.
540
+ We note that the benefit of prun in this use case is possible
541
+ only when there are at least two text boxes identified in the
542
+ Text Detection phase. Otherwise, the other two phases would
543
+ not be used (if no text boxes detected) or the prun-def vari-
544
+ ant will use the same (maximum) number of cores as the base
545
+ (unmodified) version (if only one text box is detected). As a
546
+ result, the subset of images used for performance evaluation
547
+ in this section includes images with at least two identified
548
+ text boxes. The pie chart in Figure 3 shows the distribution
549
+ of the actual number of boxes detected in the first phase of
550
+ the OCR pipeline for the entire dataset. The total number of
551
+ images in the dataset was 500 – this number was chosen to
552
+ keep the evaluation times reasonably short. (We note that we
553
+ also ran evaluations on a larger dataset that includes images
554
+ with less than two text boxes and confirmed that the use of
555
+ prun does not create any overhead in those cases.)
556
+ 5
557
+
558
+ 营养护发器
559
+ ODM OEM
560
+ ODMOEM
561
+ ODMOEM
562
+ ODMOEM
563
+ ODMOEM
564
+ Image
565
+ Text Detection
566
+ Detection Boxes Rectify
567
+ Text Recognition
568
+ (db_mv3_slim,1.4M)
569
+ (dir_cls_mv3_slim, 0.5M)
570
+ (crnn_mv3_slim, 1.6M)
571
+ OutputFigure 2. Inference latency of PaddleOCR with a varying
572
+ number of threads, broken down by the three phases of the
573
+ pipeline.
574
+ In light of the discussion above, we break down the com-
575
+ parison of the latency results by the number of detected
576
+ boxes, as depicted in Figure 4. The latency numbers in this
577
+ figure were collected with 16 cores; we discuss the over-
578
+ all scalability trends later on. We also break down the per-
579
+ formance in two of the phases where we have used prun,
580
+ namely Text Classification (Figure 4 (a)) and Recognition
581
+ (Figure 4 (b)).
582
+ Considering the results in Figure 4, one can notice that,
583
+ as expected, the benefit of prun increases with the number
584
+ of detected text boxes. For instance, when considering the
585
+ total end-to-end latency (Figure 4 (c)), with only two boxes
586
+ prun-def outperforms base by 1.28x. However, with 9 and
587
+ 10+ boxes, prun-def outperforms base by 2.33x and 1.81x,
588
+ respectively.
589
+ It is interesting to compare the performance of prun-def
590
+ with other pun-based variants. As one can notice in Fig-
591
+ ure 4 (a), the prun-1 variant produces the lowest latency
592
+ when the number of detected boxes is small. In fact, the base
593
+ variant also performs better than prun-def in this case. We
594
+ attribute this to two factors. First, this specific phase of the
595
+ pipeline shows negative scalability, which can be also seen in
596
+ Figure 2. Therefore, best performance is achieved when fewer
597
+ threads per box is used in this phase, which is what prun-1
598
+ effectively achieves. Second, prun-def (and prun-eq) cre-
599
+ ate and destroy more threads than prun-1 in those cases as
600
+ they create thread pools containing more threads for each
601
+ prun invocation. This adds small, but non-negligible over-
602
+ head given that the the execution time of this phase is short.
603
+ In the future work, we intend to experiment with reusing
604
+ thread pools between prun invocations. As the number of
605
+ detected boxes increases, however, all prun variants allocate
606
+ less threads (or even just 1) per each box, and they allocate
607
+ a similar number of threads for their pools, thus closing the
608
+ gap with the prun-1 variant.
609
+ When the Text Recognition phase is concerned (cf. Fig-
610
+ ure 4 (b)), however, it is apparent from Figure 2 that one
611
+ Figure 3. Distribution of the number of detected text boxes
612
+ in the input dataset.
613
+ can improve its latency by using more than one thread. We
614
+ note that, quantitively, this phase is also far more dominant
615
+ than the Text Classification one. Here, prun-def manages
616
+ to achieve best or close to best result across all counts of
617
+ detected boxes, which translates to overall highly competi-
618
+ tive end-to-end inference performance (cf. Figure 4 (c)). In
619
+ general, the results in Figure 4 call for a dynamic mechanism,
620
+ which would choose the best thread allocation strategy based
621
+ on the given workload and available resources. Devising and
622
+ experimenting with such a strategy is left for future work.
623
+ Finally, we shed more light on how the scalability im-
624
+ proves with the use of prun in Figure 5, where we vary the
625
+ number of cores (and therefore, the total number of worker
626
+ threads) available for OnnxRuntime. Once again, we include
627
+ the latency of each of the two last phases of PaddleOCR
628
+ (denoted as Rec for Text Recognition and Cls for Text Clas-
629
+ sification) along with the end-to-end (Total) latency. We
630
+ include only the results of the base and prun-def variants
631
+ (denoted simply as prun in Figure 5), for clarity.
632
+ Overall, one can notice similar trends to the ones discussed
633
+ above. In the base version, the Text Recognition phase does
634
+ scale up to 4 threads, but then its performance suffers as the
635
+ number of threads increases. The prun variant avoids this
636
+ performance degradation, and in fact, continues to scale up
637
+ to 16 threads. Indeed, when considering the Text Recognition
638
+ phase only, the prun variant outperforms base by more than
639
+ 2.4x at 16 threads. However, since both variants have an
640
+ identical Text Detection phase, which according to Figure 2
641
+ subsumes a substantial part of the total latency, the end-to-
642
+ end speedup of prun is only 1.5x at 16 threads.
643
+ 4.2
644
+ Batching of Heterogeneous Inputs
645
+ Our next example concerns with the Transformer architec-
646
+ ture [28], which revolutionized the domain of NLP when it
647
+ was introduced in 2017 and has been applied to other do-
648
+ mains since then (e.g., [12, 18]). This architecture consists
649
+ of a stack of layers, each composed of a self-attention block
650
+ followed by a fully connected network [28]. Past work has
651
+ 6
652
+
653
+ 700
654
+ Detection
655
+ Recognition
656
+ 600
657
+ Classification
658
+ Other
659
+ 500
660
+ Latency (ms)
661
+ 400
662
+ 300
663
+ 200
664
+ 100
665
+ 0
666
+ 1
667
+ 2
668
+ 8
669
+ 12
670
+ 4
671
+ 16
672
+ # threads2 (46.4%)
673
+ 3 (18.6%)
674
+ 4 (10.2%)
675
+ 5
676
+ (6.6%)
677
+ 6 (4.2%)
678
+ 7 (2.2%)
679
+ 8 (2.0%)
680
+ 9 (1.2%)
681
+ 10+ (8.6%)(a) Text Classification
682
+ (b) Text Recognition
683
+ (c) End-to-End Inference
684
+ Figure 4. The impact of using prun in PaddleOCR.
685
+ Figure 5. Total (end-to-end) inference latency of PaddleOCR
686
+ with a varying number of threads. Also shown the latency of
687
+ Text Classification (Cls) and Text Recognition (Rec) phases
688
+ shown that the majority of computation cycles in Transform-
689
+ ers is spent on (scalable) matrix multiplication operations,
690
+ yet up to one third of the cycles is spent elsewhere (i.e., less
691
+ scalable operations) [11].
692
+ It is well-known that one way to improve the inference
693
+ performance (specifically, throughput) of Transformers is
694
+ through input batching [3, 15, 30]. This strategy works well,
695
+ however, when the inputs have the same length. Otherwise,
696
+ one has either give up on batching, or pad inputs to the same
697
+ length. The latter results in wasted computation cycles, since
698
+ special padding tokens are treated exactly as input tokens by
699
+ the architecture and dismissed at the end of the computation.
700
+ This situation presents an ideal case for applying the
701
+ Divide-and-Conquer Principle. Instead of padding the in-
702
+ puts of various lengths up to the longest input in the batch,
703
+ we can run inference on those inputs (as they are, without
704
+ padding) using the prun API, and let the runtime decide
705
+ how many cores should be used to process each of the in-
706
+ puts. We modify the Transformer benchmark built into the
707
+ OnnxRuntime [25] to implement this strategy.
708
+ To evaluate the effectiveness of the approach described
709
+ above, we set up an experiment where we generate 𝑋 in-
710
+ puts of a length chosen uniformly and randomly out of the
711
+ range [16, 512]. We then compare the pad-batch version in
712
+ which all 𝑋 inputs are padded to the longest length in the
713
+ given batch with the prun version in which the inference
714
+ is invoked with prun on all inputs in the batch. We show
715
+ results with the highly popular BERT model [10] (specifi-
716
+ cally, “bert-based-uncased”). We have also experimented
717
+ with other Transformer-based models (such as “bert-large-
718
+ uncased” or “roberta-base”) measuring similar qualitative
719
+ results.
720
+ We note that this experiment includes inherent amount
721
+ of randomness — a batch of small sentences is as likely to
722
+ be chosen as a batch of long sentences. In an attempt to
723
+ reduce the anticpated high varaince of the results, we opted
724
+ to repeat the experiment 1000 times, and so for each 𝑋, each
725
+ data point is an average of 1000 results. Figure 6 presents the
726
+ throughput results with batches of various sizes (i.e., 𝑋 varies
727
+ from 2 to 8), with error bars depicting the standard deviation
728
+ of the reported mean. Even though prun outperforms the
729
+ pad-batch variant across all batch sizes, the variance in the
730
+ measured results remains exceptionally high.
731
+ As a result, we setup two additional experiments in a
732
+ more controlled way likely to produce more stable results. In
733
+ the first, we simply preset the lengths of various sequences
734
+ in each batch. For instance, a batch denoted as “16-64-256”
735
+ includes three sentences, one is 16, another is 64 and yet
736
+ another is 256 tokens long. We show the results of this exper-
737
+ iment in Figure 7. Here, the prun version easily outperforms
738
+ the pad-batch variant, which has to pad all sequences to the
739
+ longest sequence in a batch. As one might expect, the benefit
740
+ from using prun increases with the number of sentences in
741
+ a batch, as this variant eliminates all the redundant work
742
+ associated with padding.
743
+ In the second experiment, we use a batch of 1 long sen-
744
+ tence (256 tokens long) and 𝑋 short sequences of 16 tokens
745
+ each, where we vary 𝑋 between 0 and 15. We show the
746
+ throughput results of this experiment in Figure 7, along with
747
+ a curve depicting the number of threads allocated by prun
748
+ for the long sequence in the batch.
749
+ There are several interesting observations that can be
750
+ made here. First, when 𝑋=0, i.e., the batch contains only one
751
+ long sentence, both variants employ all available cores to pro-
752
+ cess that batch, producing similar result. This shows that the
753
+ 7
754
+
755
+ 140
756
+ base
757
+ 120
758
+ prun-1
759
+ prun-def
760
+ 100
761
+ Latency (ms)
762
+ prun-eg
763
+ 80
764
+ 60
765
+ 40
766
+ 20
767
+ 0
768
+ 2
769
+ 3
770
+ 4
771
+ 5
772
+ 6
773
+ 7
774
+ 8
775
+ 9
776
+ 10+
777
+ # detected boxes900
778
+ base
779
+ 800
780
+ prun-1
781
+ 700
782
+ prun-def
783
+ (ms)
784
+ 600
785
+ prun-eg
786
+ 500
787
+ atency
788
+ 400
789
+ Lhhhhhhh
790
+ 300
791
+ 200
792
+ 100
793
+ 0
794
+ 2
795
+ 3
796
+ 4
797
+ 5
798
+ 6
799
+ 8
800
+ 9
801
+ 10+
802
+ # detected boxes1200
803
+ base
804
+ 1000
805
+ prun-1
806
+ prun-def
807
+ (ms)
808
+ 800
809
+ prun-eg
810
+ Latency (
811
+ 600
812
+ 400
813
+ bhhhhhh
814
+ 200
815
+ 0
816
+ 2
817
+ 3
818
+ 4
819
+ 5
820
+ 6
821
+ 7
822
+ 8
823
+ 9
824
+ 10+
825
+ # detected boxes600
826
+ base (Total)
827
+ base (Rec)
828
+ base (Cls)
829
+ 500
830
+ prun (Total)
831
+ prun (Rec)
832
+ prun (Cls)
833
+ Latency (ms)
834
+ 400
835
+ 300
836
+ 200
837
+ 100
838
+ 0
839
+ 1
840
+ 2
841
+ 4
842
+ 8
843
+ 12
844
+ 16
845
+ # threadsFigure 6. Throughput of inferencing BERT on batches of
846
+ sequences of sizes chosen randomly from the range [16, 512]
847
+ Figure 7. Throughput of inferencing BERT on batches of
848
+ sequences of various preset sizes
849
+ overhead of using prun when the input has only one chunk is
850
+ negligible. Second, the throughput of the pad-batch version
851
+ grows, but modestly with the increase in the number of short
852
+ sequences. This is because, as stated above, a larger batch of
853
+ (padded) sequences helps to achieve better throughput with
854
+ Transformers. At the same time, the throughput growth with
855
+ prun is much more dramatic up to 3 short sequences in a
856
+ batch and then it declines, but stays well above that achieved
857
+ with pad-batch. Both phenomena can be explained with the
858
+ fact that inferencing a sequence of 256 tokens takes about the
859
+ same time with 16 threads as it takes with 13. Thus, adding
860
+ a few short sequences into the batch, each allocated with
861
+ just 1 thread (as they have small relative weight), has negli-
862
+ gible impact on the latency, but improves throughput. With
863
+ more short sequences in a batch, less threads are allocated
864
+ for the long sequence (as can be seen in Figure 7) and its
865
+ inference latency grows. This causes the overall throughput
866
+ to decrease.
867
+ 4.3
868
+ Batching of Homogeneous Inputs
869
+ Our last example follows directly from the discussion in
870
+ Section 2 on the lack of scalability in ML models. As al-
871
+ ready mentioned, while Transformers models heavily use
872
+ Figure 8. Throughput of inferencing BERT on a batch con-
873
+ taining one long sentence of 256 tokens and 𝑋 short se-
874
+ quence with 16 tokens each, where 𝑋 varies 0 to 15. In
875
+ addition, we show how many threads are dedicated to the
876
+ inference of the one long sentence in the batch in the prun
877
+ variant
878
+ scalable matrix multiplication operations, they also employ
879
+ less scalable operations. The impact of the latter grows with
880
+ the increase in the number of cores. Therefore, one may
881
+ benefit form the Divide-and-Conquer Principle applied to
882
+ Transformers even when the batch includes inputs of the same
883
+ length.
884
+ As a concrete example, consider a batch of two inputs.
885
+ Instead of using all available cores to process the batch, we
886
+ will use half the cores for each input. Intuitively, the less
887
+ scalable operators create less relative overhead when less
888
+ cores are used and the input sequence is shorter (i.e., contains
889
+ half the tokens compared to the entire batch).
890
+ Figure 9 demonstrates this effect with batches of inputs of
891
+ equal lengths. In addition to the pad-batch variant (which
892
+ we simply call batch here, as no padding is required) and
893
+ prun, we include a no-batch variant, which runs inference
894
+ on each sequence in a given batch one at a time. Note that
895
+ we include the latter to simply demonstrate the benefits of
896
+ batching in general, confirming previous findings [3, 15, 30].
897
+ Each set of bars in Figure 9 corresponds to a batch of 4
898
+ sentences with the given length (from 64 tokens to 512).
899
+ Overall, the prun version yields a more modest (yet non-
900
+ trivial) speedup over batch compared to the case of non-
901
+ homogeneous inputs in Section 4.2. This is expected, since
902
+ in this case the room for improvement (over batch) does not
903
+ include wasted computation related to padding.
904
+ 5
905
+ Related Work
906
+ As mentioned in the Introduction, the major focus of the
907
+ ML community has been on improving the accuracy and
908
+ training performance of proposed models, while efficient
909
+ inferencing and serving of those models receives relatively
910
+ less attention. Yet, there have been some notable exceptions
911
+ of work focused specifically on inference performance, and
912
+ 8
913
+
914
+ 60
915
+ 16
916
+ pad-batch
917
+ #
918
+ 14
919
+ threads f
920
+ Throughput (queries/s)
921
+ 50
922
+ prun
923
+ prun
924
+ 12
925
+ 40
926
+ 10
927
+ for
928
+ 30
929
+ 8
930
+ long
931
+ 6
932
+ 20
933
+ sequence
934
+ 4
935
+ 10
936
+ 2
937
+ e
938
+ 0
939
+ 0
940
+ 3
941
+ 5
942
+ 0
943
+ 2
944
+ 9
945
+ 12
946
+ 15
947
+ # of short sequences in a batch35
948
+ pad-batch A
949
+ 30
950
+ Throughput (queries/s)
951
+ prun
952
+ 25
953
+ 20
954
+ 15.
955
+ 10
956
+ 5
957
+ 0
958
+ 2
959
+ 4
960
+ 6
961
+ 8
962
+ # sequences in a batch50
963
+ pad-batch
964
+ 45
965
+ prun
966
+ 40
967
+ 35
968
+ 30
969
+ 25
970
+ 20
971
+ 15
972
+ 10
973
+ 5
974
+ 0
975
+ 16-256
976
+ 16-32-64-128-256
977
+ 16-64-256
978
+ sequence lengths in a batchFigure 9. Throughput of inferencing BERT with batches of
979
+ 4 sequences of equal size
980
+ we survey the most relevant results hereafter. As an aside, we
981
+ note that many of the results below come from less formal
982
+ blog posts published by various companies, highlighting the
983
+ great practical importance of efficient inference.
984
+ Wang et al. [30] explore various factors that influence in-
985
+ ference performance in TensorFlow, including the choice of
986
+ a specific math library, a thread pool library, availability of
987
+ SIMD (single instruction multiple data) support, etc. They
988
+ identify data preparation as one of the causes for poor scala-
989
+ bility of small matrix multiplication operations, something
990
+ we more generally attribute to framework overhead in Sec-
991
+ tion 2. They come up with a set of guidelines one can use
992
+ to tune TensorFlow settings to achieve better performance
993
+ compared to the one achieved with settings recommended
994
+ by TensorFlow authors or Intel.
995
+ With the tremendous rise in popularity of Transformers,
996
+ several papers and blog posts focus on its inference perfor-
997
+ mance. Dice and Kogan investigate inference performance of
998
+ Transformers on CPUs [11]. Their analysis shows that most
999
+ inference computation cycles are spent in matrix multipli-
1000
+ cation operations. Hence, they propose an adaptive matrix
1001
+ multiplication optimization aimed at reducing the latency
1002
+ of those operations and subsequently improving the overall
1003
+ inference performance. Intel engineers describe an effort
1004
+ to optimize inference of BERT in Apache MXNet using the
1005
+ GluonNLP toolkit, where one of the ideas is to quantize
1006
+ the model for better performance with lower precision [31].
1007
+ Similar quantization ideas (along with distillation, another
1008
+ common method of reducing the size of a model [27]) were
1009
+ employed by Roblox to speedup their deployment of BERT
1010
+ on CPUs [19]. The same blog post also mentions that elimi-
1011
+ nating padding of input sentences has led to better perfor-
1012
+ mance (though the authors did that for batches of 1 input
1013
+ only). A Microsoft team [26] describes their effort on accel-
1014
+ erating BERT with OnnxRuntime through operation fusion
1015
+ that helps to reduce the amount of overhead (e.g., memory
1016
+ copying) in invoking each kernel individually.
1017
+ A few recent papers and projects have looked into the de-
1018
+ ficiency of padding of heterogenous inputs. Fang et al. [15]
1019
+ propose a sequence-length-aware batch scheduler, which
1020
+ aims to batch requests of a similar size, thus reducing the
1021
+ cost of zero padding of all requests into one batch. It re-
1022
+ quires a profiling phase during which the inference cost of
1023
+ various batches is collected. Du et al. [13] propose to care-
1024
+ fully redesign the GPU kernels employed by Transformers to
1025
+ eliminate most redundant computation associated with zero
1026
+ padding. The Effective Transformer project by ByteDance [6]
1027
+ aims to dynamically remove and restore padding during dif-
1028
+ ferent calculation stages. All those efforts target specifically
1029
+ the inferencing Transformers on GPUs, and it is not clear
1030
+ how efficient they would be on CPUs and/or with other
1031
+ architectures.
1032
+ Beyond Transformers, Liu at et. [20] describe NeoCPU, an
1033
+ approach for optimizing CNN inference on CPUs. NeoCPU
1034
+ proposes a configurable design of an efficient convolution
1035
+ operation that can be tuned efficiently to popular CPUs.
1036
+ This design is coupled with a scheme for obtaining the best
1037
+ memory layout for data in different operations of a CNN
1038
+ model, in order to minimize the overhead of transforming
1039
+ the data between various individual operations.
1040
+ 6
1041
+ Discussion
1042
+ In this paper, we have discussed various reasons for the lack
1043
+ of scalability of inferencing ML models. While the reasons
1044
+ vary from micro to macro-levels, the common motive is that
1045
+ existing ML frameworks are geared towards high perfor-
1046
+ mance training. This is expressed by the fact that kernels for
1047
+ common operations are typically optimized for large batches
1048
+ with long inputs, ignoring relatively small overheads in var-
1049
+ ious parts of those frameworks that are immaterial to the
1050
+ overall training performance. However, during inference the
1051
+ batches tend to be much smaller and contain shorter inputs,
1052
+ thus making those overheads more prominent. A somewhat
1053
+ similar observation has been made by Aminabadi et al. [3].
1054
+ We leverage this poor scalability and describe a simple,
1055
+ yet powerful approach, in which the given input is broken
1056
+ into chunks and each chunk is processed in parallel, instead
1057
+ of using all available resources for the entire input. As we
1058
+ demonstrate with a few well-known models, this approach
1059
+ improves inference scalability and ultimately can lead to
1060
+ over 2x latency and throughput improvements.
1061
+ This work offers several directions for future research.
1062
+ First, we want to explore more dynamic thread allocation
1063
+ strategies, e.g., ones that can better adjust to the cases where
1064
+ the weight of a work chunk does not correlate linearly with
1065
+ its size and/or where the underlying model performs best
1066
+ while running with a single thread. Second, we want to find
1067
+ ways to automate splitting the input into chunks that can
1068
+ be processed in parallel, lowering the cost (in terms of user
1069
+ code changes) of using prun even further. Finally, we want
1070
+ 9
1071
+
1072
+ 90
1073
+
1074
+ no-batch
1075
+ 80
1076
+ batch
1077
+ (queries/s)
1078
+ 70
1079
+ prun
1080
+ 60
1081
+ 50
1082
+ Throughput (
1083
+ 40
1084
+ 30
1085
+ 20
1086
+ 10
1087
+ 0
1088
+ 64
1089
+ 128
1090
+ 256
1091
+ 512
1092
+ sequence length in a batchto explore other use cases where the use of prun would be
1093
+ beneficial, including other ML models that feature a pipeline-
1094
+ based architecture (e.g., [21, 29]).
1095
+ Acknowledgments
1096
+ The author would like to thank Dave Dice for valuable com-
1097
+ ments on an early draft of this paper.
1098
+ References
1099
+ [1] Ahsan Ali, Riccardo Pinciroli, Feng Yan, and Evgenia Smirni. Batch:
1100
+ Machine learning inference serving on serverless platforms with adap-
1101
+ tive batching. In Proceedings of the International Conference for High
1102
+ Performance Computing, Networking, Storage and Analysis (SC), 2020.
1103
+ [2] Gene M. Amdahl. Validity of the single processor approach to achiev-
1104
+ ing large scale computing capabilities. In Proceedings of the Spring
1105
+ Joint Computer Conference (AFIPS), page 483–485, 1967.
1106
+ [3] Reza Yazdani Aminabadi, Samyam Rajbhandari, Minjia Zhang, Am-
1107
+ mar Ahmad Awan, Cheng Li, Du Li, Elton Zheng, Jeff Rasley, Shaden
1108
+ Smith, Olatunji Ruwase, and Yuxiong He. DeepSpeed inference: En-
1109
+ abling efficient inference of transformer models at unprecedented
1110
+ scale. CoRR, abs/2207.00032, 2022.
1111
+ [4] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer nor-
1112
+ malization. CoRR, abs/1607.06450, 2016.
1113
+ [5] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared
1114
+ Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam,
1115
+ Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss,
1116
+ Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
1117
+ Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse,
1118
+ Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
1119
+ Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
1120
+ Sutskever, and Dario Amodei. Language models are few-shot learners.
1121
+ In Advances in Neural Information Processing Systems (NeurIPS), 2020.
1122
+ [6] ByteDance. Effective Transformer. https://github.com/bytedance/
1123
+ effective_transformer. Accessed: 07-29-22.
1124
+ [7] PyTorch Serve Contributors. TorchServe. https://pytorch.org/serve.
1125
+ Accessed: 07-28-22.
1126
+ [8] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
1127
+ Stein. Introduction to Algorithms, 3rd Edition. MIT Press, 2009.
1128
+ [9] Daniel Crankshaw, Xin Wang, Giulio Zhou, Michael J. Franklin,
1129
+ Joseph E. Gonzalez, and Ion Stoica. Clipper: A low-latency online
1130
+ prediction serving system. In USENIX Symposium on Networked Sys-
1131
+ tems Design and Implementation (NSDI), pages 613–627, 2017.
1132
+ [10] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
1133
+ BERT: pre-training of deep bidirectional transformers for language
1134
+ understanding. In Proc. of NAACL-HLT, pages 4171–4186, 2019.
1135
+ [11] Dave Dice and Alex Kogan. Optimizing inference performance of
1136
+ Transformers on CPUs. In Workshop on Machine Learning and Systems
1137
+ (EuroMLSys), 2021.
1138
+ [12] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weis-
1139
+ senborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani,
1140
+ Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
1141
+ and Neil Houlsby. An image is worth 16x16 words: Transformers for
1142
+ image recognition at scale. ICLR, 2021.
1143
+ [13] Jiangsu Du, Jiazhi Jiang, Yang You, Dan Huang, and Yutong Lu. Han-
1144
+ dling heavy-tailed input of transformer inference on gpus. In Proc. of
1145
+ ACM International Conference on Supercomputing (ICS), 2022.
1146
+ [14] Yuning Du, Chenxia Li, Ruoyu Guo, Xiaoting Yin, Weiwei Liu, Jun
1147
+ Zhou, Yifan Bai, Zilin Yu, Yehua Yang, Qingqing Dang, and Haoshuang
1148
+ Wang. PP-OCR: A practical ultra lightweight OCR system. CoRR,
1149
+ abs/2009.09941, 2020.
1150
+ [15] Jiarui Fang, Yang Yu, Chengduo Zhao, and Jie Zhou. TurboTransform-
1151
+ ers: an efficient GPU serving system for transformer models. In Proc.
1152
+ of ACM SIGPLAN PPoPP, pages 389–402, 2021.
1153
+ [16] Google. Tensorflow Serving. https://www.tensorflow.org/tfx/guide/
1154
+ serving. Accessed: 07-28-22.
1155
+ [17] Ivan Krasin, Tom Duerig, Neil Alldrin, Vittorio Ferrari, Sami Abu-
1156
+ El-Haija, Alina Kuznetsova, Hassan Rom, Jasper Uijlings, Stefan
1157
+ Popov, Shahab Kamali, Matteo Malloci, Jordi Pont-Tuset, Andreas
1158
+ Veit, Serge Belongie, Victor Gomes, Abhinav Gupta, Chen Sun,
1159
+ Gal Chechik, David Cai, Zheyun Feng, Dhyanesh Narayanan, and
1160
+ Kevin Murphy. OpenImages: A public dataset for large-scale multi-
1161
+ label and multi-class image classification.
1162
+ Dataset available from
1163
+ https://storage.googleapis.com/openimages/web/index.html, 2017.
1164
+ [18] Hang Le, Juan Miguel Pino, Changhan Wang, Jiatao Gu, Didier Schwab,
1165
+ and Laurent Besacier. Dual-decoder transformer for joint automatic
1166
+ speech recognition and multilingual speech translation. In Proceedings
1167
+ of the International Conference on Computational Linguistics (COLING),
1168
+ pages 3520–3533, 2020.
1169
+ [19] Quoc N. Le and Kip Kaehler. How We Scaled Bert To Serve 1+ Billion
1170
+ Daily Requests on CPUs. https://blog.roblox.com/2020/05/scaled-bert-
1171
+ serve-1-billion-daily-requests-cpus. Published: 05-27-20, Accessed:
1172
+ 08-02-22.
1173
+ [20] Yizhi Liu, Yao Wang, Ruofei Yu, Mu Li, Vin Sharma, and Yida Wang.
1174
+ Optimizing CNN model inference on cpus. In Proc. of USENIX Annual
1175
+ Technical Conference (ATC), pages 1025–1040, 2019.
1176
+ [21] Matteo Maggioni, Yibin Huang, Cheng Li, Shuai Xiao, Zhongqian
1177
+ Fu, and Fenglong Song. Efficient multi-stage video denoising with
1178
+ recurrent spatio-temporal fusion. In IEEE Conference on Computer
1179
+ Vision and Pattern Recognition, CVPR, pages 3466–3475, 2021.
1180
+ [22] Bryan Marker, Field G. Van Zee, Kazushige Goto, Gregorio Quintana-
1181
+ Ortí, and Robert A. van de Geijn. Toward scalable matrix multiply
1182
+ on multithreaded architectures. In Proceedings of the International
1183
+ Conference on Parallel Processing (EuroPar), page 748–757, 2007.
1184
+ [23] Ian Masliah, Ahmad Abdelfattah, A. Haidar, S. Tomov, Marc Baboulin,
1185
+ J. Falcou, and J. Dongarra. High-performance matrix-matrix multi-
1186
+ plications of very small matrices. In Proceedings of the International
1187
+ Conference on Parallel Processing (EuroPar), page 659–671, 2016.
1188
+ [24] Microsoft. OnnxRuntime. https://onnxruntime.ai. Accessed: 08-02-22.
1189
+ [25] Microsoft.
1190
+ Transformer Model Optimization Tool Overview.
1191
+ https://github.com/microsoft/onnxruntime/tree/master/
1192
+ onnxruntime/python/tools/transformers. Accessed: 08-02-22.
1193
+ [26] Emma Ning, Nathan Yan, Jeffrey Zhu, and Jason Li. Microsoft open
1194
+ sources breakthrough optimizations for transformer inference on gpu
1195
+ and cpu. https://cloudblogs.microsoft.com/opensource/2020/01/21/
1196
+ microsoft-onnx-open-source-optimizations-transformer-inference-
1197
+ gpu-cpu/. Published: 01-20-20, Accessed: 01-06-21.
1198
+ [27] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf.
1199
+ Distilbert, a distilled version of BERT: smaller, faster, cheaper and
1200
+ lighter. CoRR, abs/1910.01108, 2019.
1201
+ [28] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
1202
+ Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention
1203
+ is all you need. In Proc. of NeurIPS, pages 5998–6008, 2017.
1204
+ [29] Li Wang and Dennis Sng. Deep learning algorithms with applications
1205
+ to video analytics for a smart city: a survey. CoRR, abs/1512.03131,
1206
+ 2015.
1207
+ [30] Yu Emma Wang, Carole-Jean Wu, Xiaodong Wang, Kim Hazelwood,
1208
+ and David Brooks. Exploiting parallelism opportunities with deep
1209
+ learning frameworks. ACM Trans. Archit. Code Optim., 18(1), 2021.
1210
+ [31] Shufan Wu, Tao Lv, Pengxin Yuan, Patric Zhao, Jason Ye, and
1211
+ Haibin Lin.
1212
+ Optimization for BERT Inference Performance on
1213
+ CPU.
1214
+ https://medium.com/apache-mxnet/optimization-for-bert-
1215
+ inference-performance-on-cpu-3bb2413d376c. Published: 09-12-19,
1216
+ Accessed: 08-02-22.
1217
+ [32] Zhe Zhou, Xuechao Wei, Jiejing Zhang, and Guangyu Sun. PetS: A
1218
+ Unified Framework for Parameter-Efficient Transformers Serving. In
1219
+ USENIX Annual Technical Conference (ATC), 2022.
1220
+ 10
1221
+
CtE4T4oBgHgl3EQfeg0W/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
FdAzT4oBgHgl3EQfUfww/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
GtE4T4oBgHgl3EQfHgy3/content/tmp_files/2301.04904v1.pdf.txt ADDED
@@ -0,0 +1,900 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Lesion-aware Dynamic Kernel for Polyp
2
+ Segmentation
3
+ Ruifei Zhang1, Peiwen Lai1, Xiang Wan2,4, De-Jun Fan3, Feng Gao3,
4
+ Xiao-Jian Wu3, and Guanbin Li1,2⋆
5
+ 1 School of Computer Science and Engineering, Sun Yat-sen University,
6
+ Guangzhou, China
7
+ liguanbin@mail.sysu.edu.cn
8
+ 2 Shenzhen Research Institute of Big Data, Shenzhen, China
9
+ 3 The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
10
+ 4 Pazhou Lab, Guangzhou, China
11
+ Abstract. Automatic and accurate polyp segmentation plays an essen-
12
+ tial role in early colorectal cancer diagnosis. However, it has always been
13
+ a challenging task due to 1) the diverse shape, size, brightness and other
14
+ appearance characteristics of polyps, 2) the tiny contrast between con-
15
+ cealed polyps and their surrounding regions. To address these problems,
16
+ we propose a lesion-aware dynamic network (LDNet) for polyp segmen-
17
+ tation, which is a traditional u-shape encoder-decoder structure incor-
18
+ porated with a dynamic kernel generation and updating scheme. Specif-
19
+ ically, the designed segmentation head is conditioned on the global con-
20
+ text features of the input image and iteratively updated by the extracted
21
+ lesion features according to polyp segmentation predictions. This simple
22
+ but effective scheme endows our model with powerful segmentation per-
23
+ formance and generalization capability. Besides, we utilize the extracted
24
+ lesion representation to enhance the feature contrast between the polyp
25
+ and background regions by a tailored lesion-aware cross-attention mod-
26
+ ule (LCA), and design an efficient self-attention module (ESA) to cap-
27
+ ture long-range context relations, further improving the segmentation
28
+ accuracy. Extensive experiments on four public polyp benchmarks and
29
+ our collected large-scale polyp dataset demonstrate the superior perfor-
30
+ mance of our method compared with other state-of-the-art approaches.
31
+ The source code is available at https://github.com/ReaFly/LDNet.
32
+ 1
33
+ Introduction
34
+ Colorectal Cancer (CRC) is one of the most common cancer diseases around
35
+ the world [17]. However, actually, most CRC starts from a benign polyp and
36
+ gets progressively worse over several years. Thus, early polyp detection and re-
37
+ moval make essential roles to reduce the incidence of CRC. In clinical practice,
38
+ colonoscopy is a common examination tool for early polyp screening. An accurate
39
+ and automatic polyp segmentation algorithm based on colonoscopy images can
40
+ ⋆ Corresponding author is Guanbin Li.
41
+ arXiv:2301.04904v1 [eess.IV] 12 Jan 2023
42
+
43
+ 2
44
+ R. Zhang et al.
45
+ greatly support clinicians and alleviate the reliance on expensive labor, which is
46
+ of great clinical significance.
47
+ However, accurate polyp segmentation still remains challenge due to the di-
48
+ verse but concealed characteristics of polyps. Early traditional approaches [12,19]
49
+ utilize hand-craft features to detect polyps, failing to cope with complex scenario
50
+ and suffering from high misdiagnosis rate. With the advance of deep learning
51
+ technology, plenty of CNN-based methods are developed and applied for polyp
52
+ segmentation. Fully convolution network [11] is first proposed for semantic seg-
53
+ mentation, and then its variants [3,1] also make a great breakthrough in the
54
+ polyp segmentation task. UNet [16] adopts an encoder-decoder structure and
55
+ introduces skip-connections to bridge each stage between encoder and decoder,
56
+ supplying multi-level information to obtain a high-resolution segmentation map
57
+ through successive up-sampling operations. UNet++ [27] introduces more dense
58
+ and nested connections, aiming to alleviate the semantic difference of features
59
+ maps between encoder and decoder. Recently, to better overcome the above men-
60
+ tioned challenges, some networks specially designed for polyp segmentation task
61
+ have been proposed. For example, PraNet [6] adopts a reverse attention mech-
62
+ anism to mine finer boundary cues based on the initial segmentation map. AC-
63
+ SNet [23] adaptively selects and integrates both global contexts and local infor-
64
+ mation, achieving more robust polyp segmentation performance. CCBANet [13]
65
+ proposes the cascading context and the attention balance modules to aggregate
66
+ better feature representation. SANet [21] designs the color exchange operation to
67
+ alleviate the color diversity of polyps, and proposes a shallow attention module to
68
+ select more useful shallow features, obtaining comparable segmentation results.
69
+ However, existing methods mainly focus on enhancing the network’s lesion repre-
70
+ sentation from the view of feature selection [13,23,6] or data augmentation [21],
71
+ and no attempts have been made to consider the structural design of the net-
72
+ work from the perspective of improving the flexibility and adaptability of model
73
+ feature learning, which limits their generalization.
74
+ To this end, we design a Lesion-aware Dynamic Network (LDNet) for the
75
+ polyp segmentation task. Inspired by [9,24], we believe that a dynamic kernel
76
+ can adaptively adjust parameters according to the input image, and thus achiev-
77
+ ing stronger feature exploration capabilities in exchange for better segmentation
78
+ performance. Specifically, our unique kernel (also known as segmentation head)
79
+ is dynamically generated basing on the global features of the input image, and
80
+ generates one polyp segmentation prediction in each decoder stage. Accordingly,
81
+ these segmentation results serve as clues to extract refined polyp features, which
82
+ in turn update our kernel parameters with better lesion perception. For some
83
+ complex polyp regions, the dynamic kernel generation and update mechanism
84
+ we designed can step-wisely learn and mine discriminative regional features and
85
+ gradually improve the segmentation results, enhancing the generalization of the
86
+ model. Besides, we design two attention modules, i.e., Efficient Self-Attention
87
+ (ESA) and Lesion-aware Cross-Attention (LCA). The former is used to capture
88
+ global feature relations, while the latter is designed to enhance feature contrast
89
+ between lesions and other background regions, further improving the segmenta-
90
+
91
+ Lesion-aware Dynamic Kernel for Polyp Segmentation
92
+ 3
93
+ Fig. 1. (a) Overview of our LDNet. (b) Illustration of kernel generation and update.
94
+ tion performance. In summary, the contributions of this paper mainly include
95
+ three folds: (1) We design a lesion-aware dynamic network for polyp segmenta-
96
+ tion. The introduction of a dynamic kernel generation and update mechanism
97
+ endows the model with generalizability to discriminate polyp regions with di-
98
+ verse shapes, sizes, and appearances. (2) Our tailored ESA and LCA modules
99
+ enhance the polyp feature representation, which helps to mine concealed polyps
100
+ with low visual contrast. (3) Extensive experiments on four public polyp bench-
101
+ marks and our collected large-scale polyp dataset demonstrate the effectiveness
102
+ of our proposed method.
103
+ 2
104
+ Methodology
105
+ The overview of our LDNet is shown in Fig. 1, which is a general encoder-decoder
106
+ structure, incorporated with our designed dynamic kernel scheme and attention
107
+ modules. The Res2Net [8] is utilized as our encoder, consisting of five blocks.
108
+ The generated feature map of each block is denoted as {Ei}5
109
+ i=1. Accordingly,
110
+ five-layer decoder blocks are adopted and their respective generated features are
111
+ defined as {Di}5
112
+ i=1. 1 × 1 convolution is utilized to unify the dimension of Di to
113
+ 64, denoted as ¯Di, which are adaptive to subsequent kernel update operations. In
114
+ contrast to previous methods [23,7,21,6] with a static segmentation head, which
115
+ is agnostic to the input images and remains fixed during the inference stage,
116
+ we design a dynamic kernel as our segmentation head. The dynamic kernel is
117
+ essentially a convolution operator used to produce segmentation result, but its
118
+ parameters are initially generated by the global feature E5 of the input, and
119
+ iteratively updated in the multi-stage decoder process based on the current de-
120
+ coder features ¯Di and its previous segmentation result Pi+1, which is employed
121
+ to make a new prediction Pi. For the convenience of expression, we denote the
122
+ sequential updated kernels as {Ki}5
123
+ i=1. Each segmentation prediction is super-
124
+ vised by the corresponding down-sampled Ground Truth, and the prediction P1
125
+
126
+ Flow of feature
127
+ Flow of map
128
+ Flow of kernel
129
+ (U Upsample O Element-wise multiplication (
130
+ +) Element-wise addition G Gate
131
+ Encoder-Decoder
132
+ Kernel Generation (KG)
133
+ E4
134
+ E5
135
+ pooling
136
+ E2
137
+ E3
138
+ convlx1
139
+ E1
140
+
141
+ E5
142
+ Image
143
+ ESA
144
+ ESA
145
+ ESA
146
+ ESA
147
+ ESA
148
+ Cs × Hs × Ws
149
+ Kernel (Ks)
150
+ IPs
151
+ Adaptive
152
+ LP2
153
+ LP3
154
+ LP4
155
+ 64×K×K
156
+ Pooling
157
+ D1 +
158
+ LCA
159
+ D2
160
+ LCA
161
+ D3 ← LCA
162
+ D4
163
+ LCA
164
+ Ds
165
+ (× )
166
+ Kernel Update (KU)
167
+ convlx1
168
+ convlxl
169
+ convlxl
170
+ convlxl
171
+ convlxl
172
+ Pi+1
173
+ D3
174
+ D4
175
+ Ds
176
+ D;
177
+ D1
178
+ KU
179
+ KU <
180
+ K3
181
+ KU <
182
+ KU <
183
+ (K5)
184
+ K2
185
+ KG
186
+ G
187
+ I?
188
+ ·P5
189
+ P O
190
+ P2.
191
+ P.
192
+ G
193
+ +
194
+ GT
195
+ Ki
196
+ Dynamic Kernel Generation and Update
197
+ (a)
198
+ (b)4
199
+ R. Zhang et al.
200
+ of the last decoder stage is the final result of our model. We detail the dynamic
201
+ kernel scheme and attention modules in the following sections.
202
+ 2.1
203
+ Lesion-aware Dynamic Kernel
204
+ Kernel Generation Dynamic kernels can be generated in a variety of ways
205
+ and have been successfully applied in many fields [24,9,22,14]. In this paper, We
206
+ adopt a simple but effective method to generate our initial kernel. As shown in
207
+ Fig.1, given the global context feature E5, we first utilize an adaptive average
208
+ pooling operation to aggregate features into a size of K × K, and then perform
209
+ one 1 × 1 convolution to produce the initial segmentation kernel with a reduced
210
+ dimension of 64. To be consistent with the sequence of decoder, we denote our
211
+ initial kernel as K5 ∈ R1×64×K×K. K5 is acted on the unified decoder features
212
+ ¯D5 to generate the initial polyp prediction P5.
213
+ Kernel Update Inspired by [24], we design an iterative update scheme based
214
+ on the encoder-decoder architecture to improve our dynamic kernel. Given the
215
+ i-th unified decoder features ¯Di ∈ R64×Hi×Wi and previous polyp segmentation
216
+ result Pi+1 ∈ R1×Hi+1×Wi+1, we first extract lesion features as:
217
+ Fi =
218
+ Hi
219
+ � Wi
220
+
221
+ up2(Pi+1) ◦ ¯Di,
222
+ (1)
223
+ where up2 denotes up-sampling the prediction map by a factor of 2 to keep a
224
+ same size with feature map. ‘◦’ represents the element-wise multiplication with
225
+ broadcasting mechanism.
226
+ The essential operation of the kernel update is to integrate the lesion repre-
227
+ sentations extracted by the current decoder features into previous kernel param-
228
+ eters. In this way, the kernel can not only perceive the lesion characteristics to be
229
+ segmented in advance, but gradually incorporate multi-scale lesion information,
230
+ thus enhancing its discrimination ability for polyps. Since the previous polyp
231
+ prediction may be inaccurate, as in [24], we further utilize a gate mechanism
232
+ to filter the noise in lesion features and achieve an adaptive kernel update. The
233
+ formulation is:
234
+ Ki = GF
235
+ i ◦ φ1(Fi) + GK
236
+ i ◦ φ2(Ki+1),
237
+ (2)
238
+ where φ1 and φ2 denote linear transformations. GF
239
+ i
240
+ and GK
241
+ i
242
+ are two gates,
243
+ which are obtained by the element-wise multiplication between the variants of
244
+ Fi and Ki+1 followed by different linear transformation and Sigmoid function
245
+ (σ), respectively:
246
+ Gi = φ3(Fi) ◦ φ4(Ki+1)
247
+ (3)
248
+ GK
249
+ i = σ(φ5(Gi)), GF
250
+ i = σ(φ6(Gi))
251
+ (4)
252
+ The updated kernel Ki is acted on the specific decoder feature to make a new
253
+ prediction Pi. Both of them are sent to the (i−1)-th decoder stage to iteratively
254
+ perform the above update scheme.
255
+
256
+ Lesion-aware Dynamic Kernel for Polyp Segmentation
257
+ 5
258
+ Fig. 2. (a) Illustration of ESA. (b) Illustration of LCA. FF denotes the feed-forward
259
+ layer. We omit the residual addition between the input and output of FF for simplicity.
260
+ 2.2
261
+ Attention Modules
262
+ Efficient Self-Attention Self-attention mechanism is first proposed in Trans-
263
+ former [20], and recently has played a significant role in many tasks [5,4] due
264
+ to its strong long-range modeling capability, however is criticized for prohibitive
265
+ computation and memory cost. To overcome these challenges, we borrow the
266
+ idea from [26,28] and design our ESA module. As shown in Fig. 2, we follow
267
+ the component of Transformer but replace the original self-attention with our
268
+ ESA layer, followed by a feed-forward layer and a reshaping operation. We also
269
+ perform a multi-head parallel scheme to further improve the performance. Specif-
270
+ ically, given one encoder feature map Ei ∈ RCi×Hi×Wi, details of our ESA layer
271
+ are formulated as follows:
272
+ ESA(Ei) = φo(concat(head0, ..., headn)),
273
+ (5)
274
+ headj = Attention(φj
275
+ q(Q), φj
276
+ k(K), φj
277
+ v(V)),
278
+ (6)
279
+ where φo, φj
280
+ q, φj
281
+ k, φj
282
+ v denote the linear projections, and n is the number of
283
+ heads. Q ∈ RNi×Ci(Ni = Hi × Wi) is reshaped from the Ei. K, V ∈ RS×Ci
284
+ are obtained by the pyramid pooling operation [26], which includes 1 × 1, 3 × 3,
285
+ 5 × 5 adaptive average pooling to down-sample the feature map, followed by
286
+ reshaping and concatenating operations. Thanks to such a sampling process, we
287
+ utilize fewer representative global features to perform the standard attention [20],
288
+ not only introducing global relations to original features, but significantly saving
289
+ the computation overhead (S = 1 × 1 + 3 × 3 + 5 × 5 ≪ Ni). Attention(·) is
290
+ formulated as:
291
+ Attention(q, k, v) = softmax(qkT
292
+ √dk
293
+ )v,
294
+ (7)
295
+ where dk is the dimension of each head, equal to Ci
296
+ n .
297
+
298
+ 6
299
+ R. Zhang et al.
300
+ Lesion-aware Cross-Attention Besides our lesion-aware dynamic kernel, the
301
+ predicted polyp result is also utilized to enhance the features. Specifically, given
302
+ the decoder feature Di ∈ RCi×Hi×Wi and the prediction Pi ∈ R1×Hi×Wi, the ex-
303
+ tracted lesion representations by Equ. 1 (w/o up2) serve as the K and V ∈ R1×Ci
304
+ to perform the cross-attention, which is similar to the above mentioned self-
305
+ attention. Through such an operation, the more similar the region to the lesion,
306
+ the further enhancement of lesion characteristics, which significantly improves
307
+ the feature contrast and benefits to detect concealed polyps.
308
+ 3
309
+ Experiments
310
+ 3.1
311
+ Datasets
312
+ Public Polyp Benchmarks We evaluate our proposed LDNet on four public
313
+ polyp datasets, including Kvasir-SEG [10], CVC-ClinicDB [2], CVC-ColonDB [19]
314
+ and ETIS [18]. Following the same setting in [21,6], we randomly select 80% im-
315
+ ages respectively from Kvasir-SEG and CVC-ClinicDB and fuse them together
316
+ as our training set, 10% as validation set. The remaining data of Kvasir-SEG
317
+ and CVC-ClinicDB, and other two unseen datasets are used for testing.
318
+ Our Collected Large-Scale Polyp Dataset We also evaluate LDNet on our
319
+ collected polyp dataset, which has 5175 images in total. This dataset is randomly
320
+ split into 60% for training, 20% for validation, and the remaining for testing.
321
+ 3.2
322
+ Implementation Details and Evaluation Metrics
323
+ Our method is implemented based on PyTorch framework [15] and runs on an
324
+ NVIDIA GeForce RTX 2080 Ti GPU. We simply set K = 1 in the kernel gener-
325
+ ation and n = 8 in the multi-head attention mechanism. The SGD optimizer is
326
+ utilized to train the model, with batch size of 8, momentum of 0.9 and weight
327
+ decay of 10−5. The initial learning rate is set to 0.001, and adjusted by a poly
328
+ learning rate policy, which is lr = lrinit × (1 −
329
+ epoch
330
+ nEpoch)power, where power = 0.9,
331
+ nEpoch = 80. All images are uniformly resized to 256 × 256. To avoid overfit-
332
+ ting, data augmentations including random horizontal and vertical flips, rota-
333
+ tion, random cropping are used in the training stage. A combination of Binary
334
+ Cross-Entropy loss and Dice loss is used to supervise the training process.
335
+ As in [23,7], eight common metrics are adopted to evaluate polyp segmen-
336
+ tation performance, including Recall, Specificity, Precision, Dice Score, IoU for
337
+ Polyp (IoUp), IoU for Background (IoUb), Mean IoU (mIoU) and Accuracy.
338
+ 3.3
339
+ Experiments on the Public Polyp Benchmarks
340
+ We compare our LDNet with several state-of-the-art methods, including UNet [16],
341
+ ResUNet [25], UNet++[27], ACSNet [23], PraNet [6], SANet [21], CCBANet [13],
342
+ on the public polyp benchmarks. As shown in Table 1, our LDNet achieves su-
343
+ perior performance over other methods across four datasets on most metrics.
344
+
345
+ Lesion-aware Dynamic Kernel for Polyp Segmentation
346
+ 7
347
+ Table 1. Comparison with other state-of-the-art methods on four benchmark datasets.
348
+ The best three results are highlighted in red, green and blue, respectively.
349
+ Methods
350
+ Rec
351
+ Spec
352
+ Prec
353
+ Dice
354
+ IoUp
355
+ IoUb
356
+ mIoU
357
+ Acc
358
+ Kvasir
359
+ UNet [16]
360
+ 87.04
361
+ 97.25
362
+ 84.28
363
+ 82.60
364
+ 73.39
365
+ 93.89
366
+ 83.64
367
+ 95.05
368
+ ResUNet [25]
369
+ 84.70
370
+ 97.17
371
+ 83.00
372
+ 80.50
373
+ 70.60
374
+ 93.19
375
+ 81.89
376
+ 94.43
377
+ UNet++ [27]
378
+ 89.23
379
+ 97.20
380
+ 85.57
381
+ 84.77
382
+ 76.42
383
+ 94.23
384
+ 85.32
385
+ 95.44
386
+ ACSNet [23]
387
+ 91.35
388
+ 98.39
389
+ 91.46
390
+ 89.54
391
+ 83.72
392
+ 96.42
393
+ 90.07
394
+ 97.16
395
+ PraNet [6]
396
+ 93.90
397
+ 97.33
398
+ 89.87
399
+ 90.32
400
+ 84.55
401
+ 95.98
402
+ 90.26
403
+ 96.75
404
+ CCBANet [13]
405
+ 90.71
406
+ 98.04
407
+ 91.02
408
+ 89.04
409
+ 82.82
410
+ 96.21
411
+ 89.52
412
+ 97.02
413
+ SANet [21]
414
+ 92.06
415
+ 98.20
416
+ 91.14
417
+ 89.92
418
+ 83.97
419
+ 96.54
420
+ 90.26
421
+ 97.18
422
+ Ours
423
+ 92.72
424
+ 98.05
425
+ 92.04
426
+ 90.70
427
+ 85.30
428
+ 96.71
429
+ 91.01
430
+ 97.35
431
+ CVC-
432
+ ClinicDB
433
+ UNet [16]
434
+ 88.61
435
+ 98.70
436
+ 85.10
437
+ 85.12
438
+ 77.78
439
+ 97.70
440
+ 87.74
441
+ 97.95
442
+ ResUNet [25]
443
+ 90.89
444
+ 99.25
445
+ 90.22
446
+ 89.98
447
+ 82.77
448
+ 98.18
449
+ 90.47
450
+ 98.37
451
+ UNet++ [27]
452
+ 87.78
453
+ 99.21
454
+ 90.02
455
+ 87.99
456
+ 80.69
457
+ 97.92
458
+ 89.30
459
+ 98.12
460
+ ACSNet [23]
461
+ 93.46
462
+ 99.54
463
+ 94.63
464
+ 93.80
465
+ 88.57
466
+ 98.95
467
+ 93.76
468
+ 99.08
469
+ PraNet [6]
470
+ 95.22
471
+ 99.34
472
+ 92.25
473
+ 93.49
474
+ 88.08
475
+ 98.92
476
+ 93.50
477
+ 99.05
478
+ CCBANet [13]
479
+ 94.89
480
+ 99.22
481
+ 91.39
482
+ 92.83
483
+ 86.96
484
+ 98.79
485
+ 92.87
486
+ 98.93
487
+ SANet [21]
488
+ 94.74
489
+ 99.41
490
+ 92.88
491
+ 93.61
492
+ 88.26
493
+ 98.94
494
+ 93.60
495
+ 99.07
496
+ Ours
497
+ 94.49
498
+ 99.51
499
+ 94.53
500
+ 94.31
501
+ 89.48
502
+ 98.95
503
+ 94.21
504
+ 99.08
505
+ CVC-
506
+ ColonDB
507
+ UNet [16]
508
+ 63.05
509
+ 98.00
510
+ 68.01
511
+ 56.40
512
+ 47.32
513
+ 94.51
514
+ 70.92
515
+ 94.84
516
+ ResUNet [25]
517
+ 59.91
518
+ 98.06
519
+ 65.29
520
+ 54.87
521
+ 44.31
522
+ 93.77
523
+ 69.04
524
+ 94.06
525
+ UNet++ [27]
526
+ 63.49
527
+ 98.59
528
+ 77.79
529
+ 60.77
530
+ 52.64
531
+ 95.19
532
+ 73.92
533
+ 95.48
534
+ ACSNet [23]
535
+ 77.38
536
+ 99.26
537
+ 81.72
538
+ 75.51
539
+ 67.38
540
+ 96.16
541
+ 81.77
542
+ 96.32
543
+ PraNet [6]
544
+ 81.85
545
+ 98.54
546
+ 78.43
547
+ 76.24
548
+ 68.29
549
+ 96.06
550
+ 82.17
551
+ 96.26
552
+ CCBANet [13]
553
+ 82.34
554
+ 98.39
555
+ 77.79
556
+ 75.36
557
+ 66.57
558
+ 95.89
559
+ 81.23
560
+ 96.14
561
+ SANet [21]
562
+ 75.21
563
+ 99.09
564
+ 81.43
565
+ 73.50
566
+ 65.47
567
+ 96.19
568
+ 80.83
569
+ 96.40
570
+ Ours
571
+ 83.46
572
+ 98.49
573
+ 81.15
574
+ 78.43
575
+ 70.58
576
+ 96.21
577
+ 83.39
578
+ 96.48
579
+ ETIS
580
+ UNet [16]
581
+ 47.33
582
+ 96.36
583
+ 48.05
584
+ 34.81
585
+ 28.38
586
+ 94.72
587
+ 61.55
588
+ 94.90
589
+ ResUNet [25]
590
+ 49.12
591
+ 97.21
592
+ 56.85
593
+ 38.65
594
+ 30.54
595
+ 95.27
596
+ 62.90
597
+ 95.43
598
+ UNet++ [27]
599
+ 55.52
600
+ 95.40
601
+ 59.14
602
+ 40.91
603
+ 33.86
604
+ 93.87
605
+ 63.87
606
+ 94.07
607
+ ACSNet [23]
608
+ 78.31
609
+ 98.44
610
+ 68.81
611
+ 69.44
612
+ 60.96
613
+ 97.78
614
+ 79.37
615
+ 97.89
616
+ PraNet [6]
617
+ 81.20
618
+ 98.73
619
+ 72.23
620
+ 72.38
621
+ 64.07
622
+ 98.29
623
+ 81.18
624
+ 98.38
625
+ CCBANet [13]
626
+ 78.70
627
+ 97.19
628
+ 61.12
629
+ 62.63
630
+ 53.81
631
+ 96.52
632
+ 75.17
633
+ 96.66
634
+ SANet [21]
635
+ 77.08
636
+ 99.04
637
+ 72.73
638
+ 72.26
639
+ 63.33
640
+ 98.47
641
+ 80.90
642
+ 98.54
643
+ Ours
644
+ 82.83
645
+ 98.44
646
+ 72.07
647
+ 74.37
648
+ 66.50
649
+ 98.01
650
+ 82.26
651
+ 98.10
652
+ Table 2. Comparison with other state-of-the-art methods and ablation study on our
653
+ collected dataset.
654
+ Methods
655
+ Rec
656
+ Spec
657
+ Prec
658
+ Dice
659
+ IoUp
660
+ IoUb
661
+ mIoU
662
+ Acc
663
+ UNet [16]
664
+ 87.89
665
+ 97.27
666
+ 87.23
667
+ 85.00
668
+ 77.48
669
+ 93.95
670
+ 85.71
671
+ 95.64
672
+ UNet++ [27]
673
+ 89.88
674
+ 97.43
675
+ 88.18
676
+ 86.92
677
+ 79.88
678
+ 94.56
679
+ 87.26
680
+ 96.21
681
+ ACSNet [23]
682
+ 92.43
683
+ 97.79
684
+ 90.94
685
+ 90.54
686
+ 84.64
687
+ 95.75
688
+ 90.19
689
+ 97.11
690
+ PraNet [6]
691
+ 92.86
692
+ 97.87
693
+ 90.52
694
+ 90.64
695
+ 84.60
696
+ 95.91
697
+ 90.25
698
+ 97.28
699
+ CCBANet [13]
700
+ 91.91
701
+ 97.79
702
+ 91.32
703
+ 90.39
704
+ 84.36
705
+ 95.73
706
+ 90.04
707
+ 97.10
708
+ SANet [21]
709
+ 92.18
710
+ 98.22
711
+ 91.67
712
+ 90.75
713
+ 84.98
714
+ 96.02
715
+ 90.50
716
+ 97.27
717
+ Ours
718
+ 93.22
719
+ 98.15
720
+ 92.16
721
+ 91.66
722
+ 86.28
723
+ 96.39
724
+ 91.34
725
+ 97.55
726
+ Baseline
727
+ 92.02
728
+ 97.03
729
+ 87.75
730
+ 88.30
731
+ 81.26
732
+ 94.95
733
+ 88.11
734
+ 96.54
735
+ Baseline+DK
736
+ 92.22
737
+ 97.58
738
+ 90.41
739
+ 89.88
740
+ 83.86
741
+ 95.53
742
+ 89.70
743
+ 96.92
744
+ Baseline+DK+ESAs
745
+ 91.76
746
+ 98.25
747
+ 92.14
748
+ 90.74
749
+ 84.91
750
+ 95.85
751
+ 90.38
752
+ 97.14
753
+
754
+ 8
755
+ R. Zhang et al.
756
+ Fig. 3. Visual comparison of polyp segmentation results.
757
+ In particular, on the two seen datasets, i.e., Kvasir and CVC-ClinicDB, the
758
+ proposed LDNet obtains the best Dice and mIoU scores, outperforming other
759
+ methods. On the other two unseen datasets, the LDNet also shows strong gener-
760
+ alization ability and achieves 78.43% and 74.37% Dice scores, 2.19% and 1.99%
761
+ improvements over the second best approaches, further demonstrating the effec-
762
+ tiveness of our approach. Some visualization examples are shown in Fig. 3.
763
+ 3.4
764
+ Experiments on the Collected Large-Scale Polyp Dataset
765
+ On our collected large-scale polyp dataset, we compare the LDNet with UNet [16],
766
+ UNet++[27], ACSNet [23], PraNet [6], SANet [21] and CCBANet [13]. As shown
767
+ in Table 2, our method again achieves the best performance, with a Dice of
768
+ 91.66% and a mIoU of 91.34%, respectively.
769
+ 3.5
770
+ Ablation Study
771
+ We conduct a series of ablation studies on our collected polyp dataset to verify
772
+ the effectiveness of our designed dynamic kernel scheme and attention modules.
773
+ Specifically, we utilize the traditional u-shape structure with a static segmenta-
774
+ tion head as our baseline, and gradually replace the static head with our designed
775
+ dynamic kernels, then further add ESA and LCA modules, denoting as Baseline,
776
+ Baseline+DK, Baseline+DK+ESAs and Ours respectively. As shown in Table 2,
777
+ the introduction of the dynamic kernel significantly enhances the performance
778
+ of the baseline, with a 1.58% improvement of Dice score. With the addition of
779
+ our ESA and LCA modules, the scores of Dice and mIoU are further boosted
780
+ by 0.86% and 0.68%, 0.92% and 0.96%, respectively.
781
+ 4
782
+ Conclusion
783
+ In this paper, we propose the lesion-aware dynamic kernel (LDNet) for polyp
784
+ segmentation, which is generated conditioned on the global information and up-
785
+
786
+ Lesion-aware Dynamic Kernel for Polyp Segmentation
787
+ 9
788
+ dated by the multi-level lesion features. We believe that such a dynamic kernel
789
+ can endow our model with more flexibility to attend diverse polyps regions.
790
+ Besides, we also improve the feature representation and enhance the context
791
+ contrast by two tailored attention modules, i.e., ESA and LCA, which is benefi-
792
+ cial for detecting concealed polyps. Extensive experiments and ablation studies
793
+ demonstrate the effectiveness of our proposed method.
794
+ Acknowledgements This work is supported in part by the Chinese Key-Area
795
+ Research and Development Program of Guangdong Province (2020B0101350001),
796
+ in part by the Guangdong Basic and Applied Basic Research Foundation (2020B
797
+ 1515020048), in part by the National Natural Science Foundation of China
798
+ (61976250), in part by the Guangzhou Science and technology project (20210202
799
+ 0633), and is also supported by the Guangdong Provincial Key Laboratory of
800
+ Big Data Computing, The Chinese University of Hong Kong, Shenzhen.
801
+ References
802
+ 1. Akbari, M., et al.: Polyp segmentation in colonoscopy images using fully convolu-
803
+ tional network. In: 2018 40th Annual International Conference of the IEEE Engi-
804
+ neering in Medicine and Biology Society. pp. 69–72 (2018)
805
+ 2. Bernal, J., Sánchez, F.J., Fernández-Esparrach, G., Gil, D., Rodríguez, C., Vilar-
806
+ iño, F.: Wm-dova maps for accurate polyp highlighting in colonoscopy: Validation
807
+ vs. saliency maps from physicians. Computerized Medical Imaging and Graphics
808
+ 43, 99–111 (2015)
809
+ 3. Brandao, P., et al.: Fully convolutional neural networks for polyp segmentation in
810
+ colonoscopy. In: Medical Imaging 2017: Computer-Aided Diagnosis. vol. 10134, p.
811
+ 101340F. International Society for Optics and Photonics (2017)
812
+ 4. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-
813
+ to-end object detection with transformers. In: Vedaldi, A., et al. (eds.) ECCV 2020.
814
+ LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/
815
+ 978-3-030-58452-8_13
816
+ 5. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
817
+ T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al.: An image is
818
+ worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
819
+ arXiv:2010.11929 (2020)
820
+ 6. Fan, D.P., Ji, G.P., Zhou, T., Chen, G., Fu, H., Shen, J., Shao, L.: Pranet: Parallel
821
+ reverse attention network for polyp segmentation. In: Martel, A.L., et al. (eds.)
822
+ MICCAI 2020. LNCS, vol. 12266, pp. 263–273. Springer, Cham (2020). https://
823
+ doi.org/10.1007/978-3-030-59725-2_26
824
+ 7. Fang, Y., Chen, C., Yuan, Y., Tong, K.y.: Selective feature aggregation network
825
+ with area-boundary constraints for polyp segmentation. In: Shen, D., et al. (eds.)
826
+ MICCAI 2019. LNCS, vol. 11764, pp. 302–310. Springer, Cham (2019). https://
827
+ doi.org/10.1007/978-3-030-32239-7_34
828
+ 8. Gao, S.H., Cheng, M.M., Zhao, K., Zhang, X.Y., Yang, M.H., Torr, P.: Res2net: A
829
+ new multi-scale backbone architecture. IEEE transactions on pattern analysis and
830
+ machine intelligence 43(2), 652–662 (2019)
831
+
832
+ 10
833
+ R. Zhang et al.
834
+ 9. He, J., Deng, Z., Qiao, Y.: Dynamic multi-scale filters for semantic segmentation.
835
+ In: Proceedings of the IEEE/CVF International Conference on Computer Vision.
836
+ pp. 3562–3572 (2019)
837
+ 10. Jha, D., et al.: Kvasir-seg: A segmented polyp dataset. In: Ro, Y.M., et al. (eds.)
838
+ MMM 2020. LNCS, vol. 11962, pp. 451–462. Springer, Cham (2020). https://doi.
839
+ org/10.1007/978-3-030-37734-2_37
840
+ 11. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic
841
+ segmentation. In: Proceedings of the IEEE Conference on Computer Vision and
842
+ Pattern Recognition. pp. 3431–3440 (2015)
843
+ 12. Mamonov, A.V., Figueiredo, I.N., Figueiredo, P.N., Tsai, Y.H.R.: Automated polyp
844
+ detection in colon capsule endoscopy. IEEE transactions on medical imaging 33(7),
845
+ 1488–1502 (2014)
846
+ 13. Nguyen, T.C., Nguyen, T.P., Diep, G.H., Tran-Dinh, A.H., Nguyen, T.V., Tran,
847
+ M.T.: Ccbanet: Cascading context and balancing attention for polyp segmentation.
848
+ In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 633–643.
849
+ Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_60
850
+ 14. Pang, Y., Zhang, L., Zhao, X., Lu, H.: Hierarchical dynamic filtering network
851
+ for rgb-d salient object detection. In: Vedaldi, A., et al. (eds.) ECCV 2020.
852
+ LNCS, vol. 12370, pp. 235–252. Springer, Cham (2020). https://doi.org/10.1007/
853
+ 978-3-030-58595-2_15
854
+ 15. Paszke, A., et al.: Pytorch: An imperative style, high-performance deep learning
855
+ library. In: Advances in Neural Information Processing Systems. pp. 8026–8037
856
+ (2019)
857
+ 16. Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomed-
858
+ ical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F.
859
+ (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).
860
+ https://doi.org/10.1007/978-3-319-24574-4_28
861
+ 17. Siegel, R.L., Miller, K.D., Fuchs, H.E., Jemal, A.: Cancer statistics, 2022. CA: A
862
+ Cancer Journal for Clinicians 72(1), 7–33 (2022)
863
+ 18. Silva, J., Histace, A., Romain, O., Dray, X., Granado, B.: Toward embedded detec-
864
+ tion of polyps in wce images for early diagnosis of colorectal cancer. International
865
+ journal of computer assisted radiology and surgery 9(2), 283–293 (2014)
866
+ 19. Tajbakhsh, N., Gurudu, S.R., Liang, J.: Automated polyp detection in colonoscopy
867
+ videos using shape and context information. IEEE transactions on medical imaging
868
+ 35(2), 630–644 (2015)
869
+ 20. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
870
+ Ł., Polosukhin, I.: Attention is all you need. Advances in neural information pro-
871
+ cessing systems 30 (2017)
872
+ 21. Wei, J., Hu, Y., Zhang, R., Li, Z., Zhou, S.K., Cui, S.: Shallow attention net-
873
+ work for polyp segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021.
874
+ LNCS, vol. 12901, pp. 699–708. Springer, Cham (2021). https://doi.org/10.1007/
875
+ 978-3-030-87193-2_66
876
+ 22. Zhang, J., Xie, Y., Xia, Y., Shen, C.: Dodnet: Learning to segment multi-organ and
877
+ tumors from multiple partially labeled datasets. In: Proceedings of the IEEE/CVF
878
+ Conference on Computer Vision and Pattern Recognition. pp. 1195–1204 (2021)
879
+ 23. Zhang, R., Li, G., Li, Z., Cui, S., Qian, D., Yu, Y.: Adaptive context selection for
880
+ polyp segmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12266,
881
+ pp. 253–262. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59725-2_
882
+ 25
883
+ 24. Zhang, W., Pang, J., Chen, K., Loy, C.C.: K-net: Towards unified image segmen-
884
+ tation. Advances in Neural Information Processing Systems 34 (2021)
885
+
886
+ Lesion-aware Dynamic Kernel for Polyp Segmentation
887
+ 11
888
+ 25. Zhang, Z., Liu, Q., Wang, Y.: Road extraction by deep residual u-net. IEEE Geo-
889
+ science and Remote Sensing Letters 15(5), 749–753 (2018)
890
+ 26. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In:
891
+ Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
892
+ pp. 2881–2890 (2017)
893
+ 27. Zhou, Z., Siddiquee, M.M.R., Tajbakhsh, N., Liang, J.: Unet++: A nested u-
894
+ net architecture for medical image segmentation. In: Stoyanov, D., et al. (eds.)
895
+ DLMIA/ML-CDS 2018. LNCS, vol. 11045, pp. 3–11. Springer, Cham (2018).
896
+ https://doi.org/10.1007/978-3-030-00889-5_1
897
+ 28. Zhu, Z., Xu, M., Bai, S., Huang, T., Bai, X.: Asymmetric non-local neural net-
898
+ works for semantic segmentation. In: Proceedings of the IEEE/CVF International
899
+ Conference on Computer Vision. pp. 593–602 (2019)
900
+
GtE4T4oBgHgl3EQfHgy3/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
HNE1T4oBgHgl3EQf_Qa5/content/2301.03579v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:22212443cb6c7afd16197543b8fe194324bbc48fe55e128a1bdfb00a7ded99d4
3
+ size 2804797
HtE2T4oBgHgl3EQfTwfs/content/2301.03807v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:928fd5aaa1bc1a7d1b75fb84e9b3ce0f95742a6bd0137316fbfd6411e74bef5c
3
+ size 303543
HtE2T4oBgHgl3EQfTwfs/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a5f899958eb19bb5b5356a9043294874db3d1a32aa1ff5cf52b255fbe1f3bc92
3
+ size 131950
I9E4T4oBgHgl3EQfhQ2p/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:17cacf50ea9c13d39839f89a284d606f5a07115de59337d575380fa54b365807
3
+ size 7471149
I9E4T4oBgHgl3EQfhQ2p/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2fc3bae8375068e94ee72ea3884b8dfe52625b77dd319d2d92e63d30455413dd
3
+ size 249276
INFJT4oBgHgl3EQfFiwP/content/2301.11443v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:178de2d772ab5e399f4160793466e8d500c179fd44915e08d00b82e81dbf3b9b
3
+ size 2598144
INFJT4oBgHgl3EQfFiwP/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:28d8cb4ed4a68126cc9d35332fe67693eeb6cf3259b8afaeba7eeb40fdf22c7f
3
+ size 353788
K9E2T4oBgHgl3EQfVQcE/content/tmp_files/2301.03820v1.pdf.txt ADDED
@@ -0,0 +1,1776 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1
2
+ Investigation of the characteristics of the electromagnetic
3
+ induction transparent-like spectrum with counter-
4
+ propagating waves coupling mechanism for waveguide
5
+ and micro-ring coupled system
6
+ Chaoying Zhaoa,b*
7
+ aHangzhou Dianzi University, College of Science, Zhejiang, China bShanxi University, State Key
8
+ Laboratory of Quantum Optics and Quantum Optics Devices, Taiyuan, China
9
+ E-mail: zchy49@163.com
10
+ Abstract
11
+ In this paper, a new counter-propagation waves coupling mechanism is proposed which is
12
+ expected to realize an electromagnetically induced transparency (EIT)-like effect. Comparing the
13
+ traveling waves coupling
14
+ mechanism (see J. Mod. Opt. 2015,62:313-320 [9]) with the
15
+ counter-propagating waves coupling mechanism, we find out that the transparency window
16
+ breadths of transmission spectra are greatly enhanced and the corresponding phase shift spectra
17
+ possess a flat profile or a square profile. Our numerical simulated results are in good agreement
18
+ with the theoretical analysis. The EIT-like effect can significantly reduce the group velocity near
19
+ the edge of the square profile transparent window. We believe that the counter-propagating waves
20
+ coupling mechanism is particularly beneficial for the realization of active manipulation of slow
21
+ light devices (such as delay lines) required in the conventional EIT scheme. In the vicinity of the
22
+ transparency peak, we can obtain a large group delay, may gain more significant potential
23
+ applications in slow-light transmission and optical storage.
24
+ Keywords: electromagnetically induced transparency-like (EIT-like), counter-propagating waves
25
+ coupling, micro-ring, group delay
26
+ 1. Introduction
27
+ The Electromagnetic induced transparency (EIT) effect occurs when the atomic medium
28
+ accompany a strong dispersion, which can significantly reduce the group velocity of light.
29
+ * Author to whom any correspondence should be addressed.
30
+
31
+ 2
32
+ EIT is widely used in slow light[1,2], optical delay lines[3], optical storage[4] and low-loss optical
33
+ devices[5]so on. However, the experimental realization of EIT effect in atomic system usually
34
+ requires some complicated conditions, such as temperature, high intensity laser, etc. Therefore, the
35
+ application of EIT effect in practice has been greatly limited. The all-optical analog to EIT based on
36
+ wave-guide and micro-ring coupled system has attracted much more attention in recent years. The
37
+ EIT-like phenomena have been theoretically analyzed in wave-guide coupled micro-ring[6], and
38
+ wave-guide
39
+ coupled
40
+ two
41
+ micro-ring[7].
42
+ Meng
43
+ et.al
44
+ have
45
+ studied
46
+ the
47
+ transmission
48
+ spectra
49
+ of N
50
+ N
51
+
52
+ weak linearly array[8]. We have investigated the wave-guide coupled double-micro-ring
53
+ systems by using the traveling wave coupling mechanism[9]. In 2008, Zhang et. al. first proposed the
54
+ concept of PIT (plasmon-induced transparency) in metamaterials[10], Metamaterials are a class of
55
+ artificial electromagnetic media, aiming to provide some controllable electromagnetic properties, such
56
+ as room temperature conditions and large operating bandwidth. They pointed out that the EIT-like
57
+ effect can be simulated by adding a special resonance structure (dark state resonance unit). EIT-like
58
+ effect can be explained by the near-field coupling principle between bright and dark resonant units. In
59
+ 2021, Zhao et.al have studied dual-band electromagnetically induced transparency (EIT)-like effect in
60
+ terahertz spectrum. The EIT-like effect can significantly reduce the group speed near the transparent
61
+ window. The EIT-like effect can significantly reduce the group speed near the transparent window, may
62
+ gain more sigificant potential applications in slow-light transmission and optical storage [11]. In this
63
+ paper, we want to investigate the transmission spectra and phase shift by using the counter-propagating
64
+ waves coupling mechanism. We find out that the transparency window breadths of transmission
65
+ spectra are greatly enhanced when the traveling wave coupling is substituted by counter-propagating
66
+ waves coupling, and the phase shift spectra possess a flat or square profile, which result in group
67
+ velocity slowdown very large at the edge of the square profile. This paper is organized as follows. In
68
+ Section 2, the transmission of 2
69
+ 2
70
+
71
+ coupled system for the traveling wave coupling and the
72
+ counter-propagating waves coupling is studied in Section 3. The transmission and phase characteristic
73
+ of 2
74
+ 2
75
+
76
+ and3 3
77
+
78
+ coupled systems containing single micro-ring, doule micro-ring (which is denoted by
79
+ ‘Sm’ in the following) are calculated and analyzed in Section 4, and in Section 5, the conclusions are
80
+ given.
81
+ 2.The transmission of traveling wave coupling and counter-propagating waves
82
+
83
+ 3
84
+ coupling for 2
85
+ 2
86
+
87
+ system
88
+ For 2
89
+ 2
90
+
91
+ system, Fig.1(a) depicts the schematic structure of the micro-ring resonator, which consists
92
+ of straight wave-guide a2b2, ring a1b1. The optical field from a excitation wave-guide passing
93
+ through the evanescent tail couples into ring. After propagating a round trip, the wave couples back
94
+ to the excitation wave-guide and interferes with transmitted light. At resonance, the wave appears
95
+ destructive interference. The propagation path of light presents ‘clockwise direction’ in ring (see
96
+ Fig.1(a)). As shown in Figure 1(a), the counter-clockwise mode
97
+ 1
98
+ 1
99
+ j
100
+ a
101
+ e b
102
+
103
+
104
+
105
+ in the micro-ring
106
+ 1 1
107
+ a b ,
108
+ is induced by the traveling wave
109
+ (
110
+ )
111
+ 0
112
+ j
113
+ t kz
114
+ e
115
+
116
+
117
+
118
+
119
+
120
+
121
+ in the waveguide
122
+ 2
123
+ 2
124
+ a b from the left to the right,
125
+ where  is the absorption coefficient,
126
+ L c
127
+
128
+
129
+
130
+ is the round trip phase shift, L represents the
131
+ circumference of the micro-ring
132
+ 1 1
133
+ a b , c is the phase velocity of micro-ring mode,  is the optical
134
+ wave oscillation frequency.
135
+ While the light circuits clockwise and counterclockwise direction in ring simultaneously (see
136
+ Fig.1(b)). We can analyze the gap parameter makes an influence on the EIT-like spectrum.For Figure
137
+ 1.(b), the clockwise mode
138
+ 1
139
+ 1 2
140
+ j
141
+ a
142
+ e
143
+ b
144
+
145
+
146
+
147
+
148
+ in the micro-ring
149
+ 1 1
150
+ a b , which is induced by the traveling
151
+ wave
152
+ (
153
+ )
154
+ 0
155
+ j
156
+ t kz
157
+ e
158
+
159
+
160
+
161
+
162
+
163
+
164
+ in the waveguide
165
+ 2
166
+ 2
167
+ a b from the left to the right. The counter-clockwise
168
+ mode
169
+ 1
170
+ 1 2
171
+ j
172
+ a
173
+ e b
174
+
175
+
176
+
177
+ in
178
+ the
179
+ micro-ring
180
+ 1 1
181
+ a b
182
+ ,
183
+ which
184
+ is
185
+ induced
186
+ by
187
+ the
188
+ traveling
189
+ wave
190
+ (
191
+ )
192
+ 0
193
+ j
194
+ t kz
195
+ e
196
+
197
+
198
+
199
+
200
+
201
+
202
+ in the waveguide
203
+ 2
204
+ 2
205
+ a b from the right to the left.
206
+ (a)
207
+ (b)
208
+ Figure 1 Schematic diagram of 2
209
+ 2
210
+
211
+ system, (a) traveling wave coupling, (b) counter-propagating wave
212
+ coupling.
213
+ Assuming that the light wave is input from the straight waveguide input, when the resonance
214
+ condition is satisfied, the phase before the light is coupled from the straight waveguide to the
215
+
216
+ a1
217
+ b1
218
+ a2
219
+ b2b1
220
+ ai
221
+ a2
222
+ b24
223
+ microring is
224
+ 1
225
+
226
+  
227
+ . According to the optical waveguide coupling theory, the changes in the
228
+ phase before and after a light wave is coupled from one waveguide to another. Then, when the
229
+ light wave is coupled from the straight waveguide to the micro-ring waveguide, its phase
230
+ becomes
231
+ 2
232
+ 2
233
+
234
+
235
+  
236
+
237
+ . According to the resonance relationship, when the light wave meets the
238
+ resonance condition, the light circles in the microring and interferes with each other to generate
239
+ resonance enhancement. The change 2m of the phase before and after the light wave circulates
240
+ in the microring, where the phase is
241
+ 3
242
+ 2
243
+ 2m
244
+
245
+
246
+
247
+  
248
+
249
+
250
+ . Similarly, the light wave is again
251
+ coupled from the microring to the straight waveguide, and its phase changes again
252
+ 2
253
+
254
+ ,
255
+ becoming
256
+ 4
257
+ 2m
258
+
259
+
260
+
261
+  
262
+
263
+
264
+ . Comparing the phase changes at the input and output, we find an
265
+  odd multiple of the difference between
266
+ 1
267
+
268
+ and
269
+ 4
270
+  , so that the two beams interfere and cancel.
271
+ When the intensity of the light field is the same, the intensity of the light field after interference
272
+ elimination is zero, so the output end of the straight waveguide is zero.
273
+ 3. The influence of counter-propagation optical waves with phase difference
274
+ Figure 2 show the Schematic diagram to produce the counter-propagating waves.
275
+ Figure 2 Schematic diagram producing the counter-propagating waves.
276
+ As shown in Figure 2, one traveling wave is split into two equal portions of counter-clockwise
277
+ wave and clockwise wave at the point P. Therefore, the superposed induced counter-clockwise
278
+ wave and clockwise wave of the micro-ring assuming (
279
+ ) 2
280
+ cos[ ]
281
+ j
282
+ j
283
+ e
284
+ e
285
+
286
+
287
+
288
+
289
+
290
+
291
+ .Taking account
292
+ the absorption coefficient  around the micro-ring, we have the relation
293
+ 1
294
+ 1
295
+ cos[ ]
296
+ a
297
+ b
298
+
299
+
300
+
301
+ for
302
+ counter-propagating waves, the mode
303
+ 1
304
+ 1
305
+ 1
306
+ (
307
+ )
308
+ 2
309
+ cos[ ]
310
+ j
311
+ j
312
+ a
313
+ e
314
+ e
315
+ b
316
+ b
317
+
318
+
319
+
320
+
321
+
322
+
323
+
324
+
325
+
326
+ in the micro-ring is
327
+
328
+ P
329
+ a1
330
+ b1
331
+ a2
332
+ 3
333
+ b25
334
+ induced by the counter-propagating waves
335
+ (
336
+ )
337
+ (
338
+ )
339
+ 0 (
340
+ ) 2
341
+ j
342
+ t kz
343
+ j
344
+ t kz
345
+ e
346
+ e
347
+
348
+
349
+
350
+
351
+
352
+
353
+
354
+
355
+
356
+
357
+ in the waveguide
358
+ 2
359
+ 2
360
+ a b .
361
+ For the traveling wave propagating in waveguide[4], the relation
362
+ 1
363
+ 1
364
+ j
365
+ a
366
+ e b
367
+
368
+
369
+
370
+ is also valid. In
371
+ general, the coupling system contains one waveguide and multi-micro-rings [7,9].
372
+ In the derivation of traveling waves coupling and counter-propagation waves coupling formula
373
+ cos[ ]
374
+ j
375
+ e
376
+
377
+
378
+
379
+
380
+ , we have assumed that the path from p to E (see Figure 2) along the clockwise
381
+ and the counter-clockwise waves have the same length. In general, this lengths may be different,
382
+ the initial phases at point E being
383
+ 1 ,
384
+ 2
385
+  for the clockwise and the counter-clockwise waves,
386
+ respectively. The superposed induced waves being
387
+ 1
388
+ 2
389
+ 1
390
+ 2
391
+ 1
392
+ 2
393
+ 1
394
+ 2
395
+ 1
396
+ 2
397
+ (
398
+ )
399
+ (
400
+ )
401
+ (
402
+ )
403
+ (
404
+ )
405
+ 1
406
+ 2
407
+ 2
408
+ 2
409
+ 2
410
+ 2
411
+ 1
412
+ 1
413
+ (
414
+ )
415
+ (
416
+ )
417
+ cos[
418
+ ]
419
+ 2
420
+ 2
421
+ 2
422
+ j
423
+ j
424
+ j
425
+ j
426
+ j
427
+ j
428
+ e
429
+ e
430
+ e
431
+ e
432
+ e
433
+ e
434
+
435
+
436
+
437
+
438
+
439
+
440
+
441
+
442
+
443
+
444
+  
445
+  
446
+
447
+
448
+
449
+
450
+
451
+
452
+
453
+
454
+
455
+
456
+
457
+
458
+
459
+
460
+
461
+
462
+
463
+
464
+
465
+ ,(1)
466
+ Therefore, the traveling waves coupling and counter-propagating waves coupling may be
467
+ represented by
468
+ 2
469
+ 1
470
+ cos[
471
+ ]
472
+ j
473
+ e
474
+
475
+
476
+
477
+
478
+
479
+ ,
480
+ 1
481
+ 1
482
+ 2
483
+ (
484
+ ) 2
485
+
486
+
487
+
488
+
489
+
490
+ ,
491
+ 2
492
+ 1
493
+ 2
494
+ (
495
+ ) 2
496
+
497
+
498
+
499
+
500
+
501
+ , respectively. In the case
502
+ of
503
+ 1
504
+
505
+
506
+ ,
507
+ 2
508
+ 2
509
+ 1
510
+ cos[
511
+ ]
512
+ j
513
+ j
514
+ e
515
+ e
516
+
517
+
518
+
519
+
520
+
521
+
522
+
523
+
524
+ possesses the form similar to that of the traveling waves
525
+ coupling.
526
+ 4.The numerical calculations and analysis of the transmission and phase shift
527
+ spectra for2
528
+ 2
529
+
530
+ system and3
531
+ 3
532
+  system
533
+ In this section, we calculate the transmission and phase shift spectra reduction near resonance
534
+ concern with the traveling waves coupling and the counter-propagating waves coupling.
535
+ In the following, we begin with the traveling wave coupling of 2
536
+ 2
537
+
538
+ system. The transmission
539
+ and the phase shift spectra [5]
540
+ 2
541
+ 2 2
542
+ 1
543
+ i
544
+ trl
545
+ i
546
+ t
547
+ e
548
+ T
549
+ t e
550
+
551
+
552
+
553
+
554
+
555
+
556
+
557
+
558
+ ,
559
+ 2 2
560
+ [
561
+ ]
562
+ 1
563
+ i
564
+ trl
565
+ i
566
+ t
567
+ e
568
+ Arg
569
+ t e
570
+
571
+
572
+
573
+
574
+
575
+
576
+
577
+
578
+
579
+ ,
580
+ (2)
581
+ Figure 3 shows the transmission and the phase shift spectra for
582
+ 2 2
583
+ trl
584
+ T  ,
585
+ 2 2
586
+ trl
587
+
588
+
589
+ , respectively.
590
+
591
+ 6
592
+ -0.004
593
+ -0.002
594
+ 0
595
+ 0.002
596
+ 0.004
597
+
598
+ 1
599
+ 1.5
600
+ 2
601
+ 2.5
602
+ 3
603
+ 3.5
604
+ T22
605
+ l
606
+ r
607
+ t
608
+ 
609
+ -0.004
610
+ -0.002
611
+ 0
612
+ 0.002
613
+ 0.004
614
+
615
+ -3
616
+ -2
617
+ -1
618
+ 0
619
+ 1
620
+ 2
621
+ 3
622
+ 22
623
+ l
624
+ r
625
+ t
626
+ 
627
+ Figure 3
628
+ The transmission and phase shift spectrawith the parameters
629
+ 0.9998
630
+ t 
631
+ ,
632
+ 1.00006
633
+  
634
+ versus in unit of radian.
635
+ And the corresponding
636
+ 2 2
637
+ cou
638
+ T  ,
639
+ 2 2
640
+ cou
641
+
642
+
643
+ for counter-propagating wave coupling being
644
+ 2
645
+ 2 2
646
+ cos[ ]
647
+ 1
648
+ cos[ ]
649
+ cou
650
+ t
651
+ T
652
+ t
653
+
654
+
655
+
656
+
657
+
658
+
659
+
660
+
661
+ ,
662
+ 2 2
663
+ cos[ ]
664
+ [
665
+ ]
666
+ 1
667
+ cos[ ]
668
+ cou
669
+ t
670
+ Arg
671
+ t
672
+
673
+
674
+
675
+
676
+
677
+
678
+
679
+
680
+
681
+ ,
682
+ (3)
683
+ Figure 4 shows the transmission and the phase shift spectra for
684
+ 2 2
685
+ cou
686
+ T  ,
687
+ 2 2
688
+ cou
689
+
690
+
691
+ , respectively.
692
+ -0.1
693
+ -0.05
694
+ 0
695
+ 0.05
696
+ 0.1
697
+
698
+ 0
699
+ 0.5
700
+ 1
701
+ 1.5
702
+ 2
703
+ 2.5
704
+ 3
705
+ 3.5
706
+ T22
707
+ u
708
+ o
709
+ c
710
+ 
711
+ -0.1
712
+ -0.05
713
+ 0
714
+ 0.05
715
+ 0.1
716
+
717
+ 0
718
+ 0.5
719
+ 1
720
+ 1.5
721
+ 2
722
+ 2.5
723
+ 3
724
+ 22
725
+ l
726
+ u
727
+ o
728
+ c
729
+ 
730
+ Figure 4
731
+ The transmission and phase shift spectra with the parameters
732
+ 0.9998
733
+ t 
734
+ ,
735
+ 1.00006
736
+  
737
+ versus in unit of radian.
738
+ Similarly, the transmission and phase shift spectra for the waveguide and two micro-rings coupled
739
+ system [7]
740
+ 2
741
+ 2
742
+ 2
743
+ 2
744
+ 1
745
+ 1
746
+ 2
747
+ 1
748
+ 2
749
+ 2
750
+ 2
751
+ 1
752
+ 1
753
+ ( )
754
+ ( ,
755
+ )
756
+ 1
757
+ ( )
758
+ i
759
+ i
760
+ r
761
+ a
762
+ e
763
+ r a
764
+ e
765
+
766
+
767
+  
768
+
769
+  
770
+  
771
+
772
+
773
+
774
+ ,
775
+ 1
776
+ 1
777
+ 1
778
+ 1
779
+ 1
780
+ 1
781
+ 1
782
+ 1
783
+ ( )
784
+ 1
785
+ i
786
+ i
787
+ r
788
+ a e
789
+ r a e
790
+
791
+
792
+  
793
+
794
+
795
+
796
+ ,
797
+ (4)
798
+ Setting
799
+ 1
800
+ 2
801
+
802
+
803
+
804
+
805
+
806
+ , we have
807
+ 2
808
+ 2 ( , )
809
+ trl
810
+ sm
811
+ T
812
+
813
+  
814
+
815
+ ,
816
+ 2
817
+ [
818
+ ( , )]
819
+ trl
820
+ sm
821
+ Arg 
822
+  
823
+
824
+
825
+ ,
826
+ (5)
827
+ Figure 5 gives out the transmission and the phase shift spectra for
828
+ 2 2
829
+ trl
830
+ T  ,
831
+ 2 2
832
+ trl
833
+
834
+
835
+ , respectively.
836
+
837
+ 7
838
+ -1.5
839
+ -1
840
+ -0.5
841
+ 0
842
+ 0.5
843
+ 1
844
+ 1.5
845
+
846
+ 0.2
847
+ 0.4
848
+ 0.6
849
+ 0.8
850
+ T m
851
+ s
852
+ l
853
+ r
854
+ t
855
+ 
856
+ -1.5
857
+ -1
858
+ -0.5
859
+ 0
860
+ 0.5
861
+ 1
862
+ 1.5
863
+
864
+ -1
865
+ -0.5
866
+ 0
867
+ 0.5
868
+ 1
869
+  m
870
+ s
871
+ l
872
+ r
873
+ t
874
+ 
875
+ Figure
876
+ 5
877
+ The transmission and the phase shift spectra for
878
+ trl
879
+ sm
880
+ T
881
+ ,
882
+ trl
883
+ sm
884
+
885
+ with parameters
886
+ 1
887
+ 0.999
888
+ r 
889
+ , 2
890
+ 1
891
+ 2
892
+ r
893
+ a
894
+ a
895
+
896
+
897
+ ,
898
+ 1
899
+ 0.9999
900
+ a 
901
+ ,
902
+ 2
903
+ 0.88
904
+ a 
905
+ versus
906
+ in unit of radian.
907
+ The corresponding formula for counter-propagating waves are
908
+ 2
909
+ 2 1
910
+ 1
911
+ 2
912
+ 2
913
+ 1
914
+ 2
915
+ 2
916
+ 2 1
917
+ 1
918
+ 2
919
+ ( )cos[
920
+ ]
921
+ ( ,
922
+ )
923
+ 1
924
+ ( )cos[
925
+ ]
926
+ cou
927
+ cou
928
+ cou
929
+ r
930
+ a
931
+ r a
932
+
933
+
934
+
935
+
936
+  
937
+
938
+
939
+
940
+
941
+
942
+
943
+ ,
944
+ 1
945
+ 1
946
+ 1
947
+ 1
948
+ 1
949
+ 1
950
+ 1
951
+ 1
952
+ cos[ ]
953
+ ( )
954
+ 1
955
+ cos[ ]
956
+ cou
957
+ r
958
+ a
959
+ r a
960
+
961
+
962
+
963
+
964
+
965
+
966
+
967
+ ,
968
+ (6)
969
+ Setting
970
+ 1
971
+ 2
972
+
973
+
974
+
975
+
976
+
977
+ , we have
978
+ 2
979
+ 2 ( , )
980
+ cou
981
+ cou
982
+ sm
983
+ T
984
+
985
+  
986
+
987
+ ,
988
+ 2
989
+ [
990
+ ( , )]
991
+ cou
992
+ cou
993
+ sm
994
+ Arg 
995
+  
996
+
997
+
998
+ ,
999
+ (7)
1000
+ Figure 6 gives out the transmission spectra and the phase shift spectra for
1001
+ 2 2
1002
+ cou
1003
+ T  ,
1004
+ 2 2
1005
+ cou
1006
+
1007
+
1008
+ ,
1009
+ respectively.
1010
+ -3
1011
+ -2
1012
+ -1
1013
+ 0
1014
+ 1
1015
+ 2
1016
+ 3
1017
+
1018
+ 0.2
1019
+ 0.4
1020
+ 0.6
1021
+ 0.8
1022
+ 1
1023
+ T m
1024
+ s
1025
+ u
1026
+ o
1027
+ c
1028
+ 
1029
+ -3
1030
+ -2
1031
+ -1
1032
+ 0
1033
+ 1
1034
+ 2
1035
+ 3
1036
+
1037
+ -1
1038
+ -0.5
1039
+ 0
1040
+ 0.5
1041
+ 1
1042
+  m
1043
+ s
1044
+ u
1045
+ o
1046
+ c
1047
+ 
1048
+ Figure
1049
+ 6
1050
+ The transmission and phase shift spectra for
1051
+ cou
1052
+ sm
1053
+ T
1054
+ ,,
1055
+ cou
1056
+ sm
1057
+
1058
+ with the parameters
1059
+ 1
1060
+ 0.999
1061
+ r 
1062
+ , 2
1063
+ 1
1064
+ 2
1065
+ r
1066
+ a
1067
+ a
1068
+
1069
+
1070
+ ,
1071
+ 1
1072
+ 0.9999
1073
+ a 
1074
+ ,
1075
+ 2
1076
+ 0.88
1077
+ a 
1078
+ versus in unit of radian.
1079
+ Figure 7 shows the schematic diagram of 3 3
1080
+
1081
+ system, (a) the traveling wave coupling, (b) the
1082
+ counter-propagation waves coupling.
1083
+ (a)
1084
+ (b)
1085
+
1086
+ a1
1087
+ b1
1088
+ a2
1089
+ b2
1090
+ a3
1091
+ b3b1
1092
+ a2
1093
+ b2
1094
+ a3
1095
+ b38
1096
+ Figure 7. Schematic diagram of3 3
1097
+
1098
+ system, (a)the traveling wave coupling, (b)the counter-propagation waves
1099
+ coupling.
1100
+ The transmission and the phase shift spectra for3 3
1101
+
1102
+ system[12].
1103
+ 2
1104
+ 1
1105
+ 3
1106
+ 1
1107
+ 3
1108
+ 3 3
1109
+ 1
1110
+ 3
1111
+ 1
1112
+ 3
1113
+ 1
1114
+ trl
1115
+ t
1116
+ B
1117
+ B
1118
+ B B
1119
+ T
1120
+ B
1121
+ B
1122
+ B B
1123
+ t
1124
+
1125
+
1126
+
1127
+
1128
+
1129
+
1130
+
1131
+
1132
+
1133
+
1134
+
1135
+
1136
+ ,
1137
+ 1
1138
+ i
1139
+ B
1140
+ e 
1141
+
1142
+
1143
+ ,
1144
+ 3
1145
+ i
1146
+ B
1147
+ e
1148
+
1149
+
1150
+
1151
+
1152
+ ,
1153
+ 1
1154
+ 3
1155
+ 1
1156
+ 3
1157
+ 3 3
1158
+ 1
1159
+ 3
1160
+ 1
1161
+ 3
1162
+ [
1163
+ ]
1164
+ 1
1165
+ trl
1166
+ t
1167
+ B
1168
+ B
1169
+ B B
1170
+ Arg
1171
+ B
1172
+ B
1173
+ B B
1174
+ t
1175
+
1176
+
1177
+
1178
+
1179
+
1180
+
1181
+
1182
+
1183
+
1184
+
1185
+
1186
+
1187
+
1188
+ ,
1189
+ (8)
1190
+ Figure 8 gives out the transmission and the phase shift spectra for
1191
+ 3 3
1192
+ trl
1193
+ T  ,
1194
+ 3 3
1195
+ trl
1196
+
1197
+
1198
+ , respectively.
1199
+ -4
1200
+ -2
1201
+ 0
1202
+ 2
1203
+ 4
1204
+
1205
+ 0
1206
+ 0.2
1207
+ 0.4
1208
+ 0.6
1209
+ 0.8
1210
+ T33
1211
+ l
1212
+ r
1213
+ t
1214
+ 
1215
+ -4
1216
+ -2
1217
+ 0
1218
+ 2
1219
+ 4
1220
+
1221
+ 0
1222
+ 1
1223
+ 2
1224
+ 3
1225
+ 4
1226
+ 5
1227
+ 6
1228
+  m
1229
+ s
1230
+ l
1231
+ r
1232
+ t
1233
+ 
1234
+ Figure
1235
+ 8
1236
+ The
1237
+ transmission
1238
+ and
1239
+ phase
1240
+ shift
1241
+ spectra
1242
+ for
1243
+ 3 3
1244
+ 3 3
1245
+ ,
1246
+ trl
1247
+ trl
1248
+ T 
1249
+
1250
+
1251
+ with
1252
+ parameters
1253
+ 0.9998
1254
+ t 
1255
+ ,
1256
+ 0.99998
1257
+  
1258
+ ,
1259
+ 0
1260
+  
1261
+ ,
1262
+ 0
1263
+  
1264
+ versus in unit of
1265
+ 4
1266
+ 10 radian
1267
+ The transmission and the phase shift spectra for3 3
1268
+
1269
+ system[9].
1270
+ 2
1271
+ 1
1272
+ 3
1273
+ 1
1274
+ 3
1275
+ 3 3
1276
+ 1
1277
+ 3
1278
+ 1
1279
+ 3
1280
+ 1
1281
+ cou
1282
+ t
1283
+ B
1284
+ B
1285
+ B B
1286
+ T
1287
+ B
1288
+ B
1289
+ B B
1290
+ t
1291
+
1292
+
1293
+
1294
+
1295
+
1296
+
1297
+
1298
+
1299
+
1300
+
1301
+
1302
+
1303
+ ,
1304
+ 1
1305
+ cos[ ]
1306
+ B
1307
+
1308
+
1309
+
1310
+ ,
1311
+ 3
1312
+ cos[ ]
1313
+ B
1314
+
1315
+
1316
+
1317
+ ,
1318
+ 1
1319
+ 3
1320
+ 1
1321
+ 3
1322
+ 3 3
1323
+ 1
1324
+ 3
1325
+ 1
1326
+ 3
1327
+ [
1328
+ ]
1329
+ 1
1330
+ cou
1331
+ t
1332
+ B
1333
+ B
1334
+ B B
1335
+ Arg
1336
+ B
1337
+ B
1338
+ B B
1339
+ t
1340
+
1341
+
1342
+
1343
+
1344
+
1345
+
1346
+
1347
+
1348
+
1349
+
1350
+
1351
+
1352
+
1353
+ ,
1354
+ (9)
1355
+ Figure 9 gives out the transmission and the phase shift spectra for
1356
+ 3 3
1357
+ cou
1358
+ T  ,
1359
+ 3 3
1360
+ cou
1361
+
1362
+
1363
+ , respectively.
1364
+ -1000
1365
+ -500
1366
+ 0
1367
+ 500
1368
+ 1000
1369
+
1370
+ 0
1371
+ 0.2
1372
+ 0.4
1373
+ 0.6
1374
+ 0.8
1375
+ T33
1376
+ u
1377
+ o
1378
+ c
1379
+ 
1380
+ -1000
1381
+ -500
1382
+ 0
1383
+ 500
1384
+ 1000
1385
+
1386
+ 0
1387
+ 0.5
1388
+ 1
1389
+ 1.5
1390
+ 2
1391
+ 2.5
1392
+ 3
1393
+ 33
1394
+ u
1395
+ o
1396
+ c
1397
+ 
1398
+ Figure 9
1399
+ The transmission and phase shift spectra for
1400
+ 3 3
1401
+ 3 3
1402
+ ,
1403
+ cou
1404
+ cou
1405
+ T 
1406
+
1407
+
1408
+ with parameters,
1409
+ 0.9998
1410
+ t 
1411
+ ,
1412
+ 0.99998
1413
+  
1414
+ ,
1415
+ 0
1416
+  
1417
+ ,
1418
+ 0
1419
+  
1420
+ versus in unit of
1421
+ 4
1422
+ 10 radian.
1423
+ The numerical calculations shown in Figures.3-6, 8-9, refer to that of the traveling wave coupling,
1424
+ the breadths of the transmission spectra for counter-propagating waves coupling are enhanced by a
1425
+
1426
+ 9
1427
+ factor of 0.02 0.001
1428
+ 20
1429
+
1430
+ , 0.3 0.05
1431
+ 6
1432
+
1433
+ , 200 0.8
1434
+ 250
1435
+
1436
+ for the 2
1437
+ 2
1438
+
1439
+ , Sm, 3 3
1440
+
1441
+ system,
1442
+ respectively.
1443
+ 5.The analysis of the phase velocity spectra
1444
+ We have obtained the phase spectra
1445
+ ( )
1446
+
1447
+   
1448
+ , in the case of counter-propagating waves
1449
+ coupling, the phase shift spectra possess a flat (
1450
+ ( )
1451
+ cou
1452
+ sm
1453
+
1454
+
1455
+  
1456
+ ) or a square profile
1457
+ (
1458
+ 2 2
1459
+ 3 3
1460
+ ( )
1461
+ ,
1462
+ cou
1463
+ cou
1464
+
1465
+
1466
+
1467
+
1468
+  
1469
+
1470
+ ).
1471
+ The
1472
+ inverse
1473
+ of
1474
+ the
1475
+ phase
1476
+ velocity
1477
+ is
1478
+ given
1479
+ by
1480
+ 3 3
1481
+ 3 3
1482
+ cou
1483
+ cou
1484
+ g
1485
+ g
1486
+ c v
1487
+ n
1488
+ d
1489
+ d
1490
+ n
1491
+ c d
1492
+ Ld
1493
+ n
1494
+ c
1495
+ L
1496
+
1497
+
1498
+
1499
+
1500
+
1501
+
1502
+
1503
+
1504
+
1505
+
1506
+
1507
+
1508
+
1509
+ [12], where
1510
+ L c
1511
+
1512
+
1513
+
1514
+ , the group
1515
+ delay
1516
+ 3 3
1517
+ cou
1518
+ g
1519
+ d
1520
+ d
1521
+
1522
+
1523
+
1524
+
1525
+
1526
+ represents the time delay of narrow-band optical pulses in optical devices.
1527
+ The strong phase dispersion around the transparent window can cause a large group delay.
1528
+ -400
1529
+ -200
1530
+ 0
1531
+ 200
1532
+ 400
1533
+
1534
+ 0
1535
+ 0.1
1536
+ 0.2
1537
+ 0.3
1538
+ 0.4
1539
+ 0.5
1540
+ 0.6
1541
+ vc
1542
+ Figure 10. The phase velocity spectra for3 3
1543
+
1544
+ system versus in unit of
1545
+ 4
1546
+ 10 radian.
1547
+ As shown in Figure 10,
1548
+ gv approaches to zero (namely a large group delays
1549
+ g
1550
+  are obtained) at the
1551
+ edge of the square profile (namely in the vicinity of the transparency peak, see Figure 9).
1552
+ The performance characteristics of micro-ring resonator are compared in Table1.
1553
+ Table 1 Comparison of EIT-like characteristic parameters based on different resonator
1554
+ Micro-ring
1555
+ resonator
1556
+ microcavity
1557
+ structure
1558
+ Number of
1559
+ EIT
1560
+ coupling
1561
+ mechanism
1562
+ material
1563
+ group
1564
+ delays
1565
+ [9]
1566
+ two
1567
+ micro-ring
1568
+ single
1569
+ traveling
1570
+ waves
1571
+ silica
1572
+ ---
1573
+ [11]
1574
+ multiple
1575
+ U-shaped
1576
+ resonators
1577
+ multiple
1578
+ dark-light
1579
+ /light-light
1580
+ mode
1581
+ metamaterials
1582
+ high
1583
+ [13]
1584
+ chaotic
1585
+ single
1586
+ micro-ring
1587
+ single
1588
+ chaos-assisted
1589
+ dynamical
1590
+ tunneling
1591
+ silica
1592
+ ---
1593
+ [14]
1594
+ two
1595
+ microtoroid
1596
+ single
1597
+ traveling
1598
+ waves
1599
+ silica
1600
+ ---
1601
+ Our work
1602
+ single/two
1603
+ single
1604
+ counter-propa
1605
+ gating waves
1606
+ silica
1607
+ high
1608
+
1609
+ 10
1610
+ 6.Loss analysis
1611
+ According to the coupling mode theory, optical loss can directly affect the line type and
1612
+ characteristics of EIT spectrum of the system. For the dual-coupling microring resonator proposed
1613
+ in this paper, the transmission loss is mainly composed of scattering loss 1
1614
+ scat
1615
+ Q
1616
+ caused by the
1617
+ roughness of the waveguide side wall, bending loss 1
1618
+ bend
1619
+ Q
1620
+ of the microring waveguide and
1621
+ leakage loss 1
1622
+ leak
1623
+ Q
1624
+ caused by the light field entering the substrate. 1
1625
+ mat
1626
+ Q
1627
+ is the absorption loss
1628
+ of microring resonator. As the light waves travel in the waveguide, part of the light field is
1629
+ absorbed by the silicon material. In addition, the top layer of the optical waveguide device also has
1630
+ an oxide coating, which can absorb the light field in different environments. Finite element
1631
+ analysis (FEM) was used to conduct mode analysis on the waveguide cross section, and negative
1632
+ imaginary part ( k ) was added to the material refraction to obtain the absorption loss of the whole
1633
+ system [1]. 1
1634
+ leak
1635
+ Q
1636
+ is leakage loss, which is an important loss mechanism in SOI structure, and is
1637
+ generated by the middle spectral field of the waveguide into the silicon dioxide layer and silicon
1638
+ substrate. The leakage loss decreases with the increase of silica layer thickness. 1
1639
+ scat
1640
+ Q
1641
+ is the
1642
+ scattering loss, which occurs when the side wall of the waveguide is rough. Increasing the ratio of
1643
+ the width to the height of the waveguide, reducing the mode overlap at the side of the waveguide,
1644
+ and improving the fabrication technology of the waveguide can reduce the scattering loss of the
1645
+ system. In practical optical waveguide devices, the roughness of the side wall is larger than that of
1646
+ the surface. 1
1647
+ bend
1648
+ Q
1649
+ is the bending loss, is the radiation loss caused by the bending of the optical
1650
+ waveguide, and decreases with the increase of the radius of the microring. When the radius of the
1651
+ microring is about 30 m
1652
+
1653
+ [15], the bending loss is about 0.015
1654
+ 180
1655
+ dB
1656
+ [16]. 1
1657
+ back
1658
+ Q
1659
+ represents
1660
+ backscattering loss, which is one of the loss sources in waveguides based on SOI structure. Both
1661
+ the roughness of the waveguide side wall and the directional coupling can cause backscattering
1662
+ losses, which can be suppressed by various ways, such as improving the etching process to reduce
1663
+ the roughness of the waveguide surface, and lower Q values [17]. In this paper, except for the
1664
+ feedback arm region, the coupling distance of the microring resonator is 0.15 m
1665
+
1666
+ . At this time,
1667
+
1668
+ 11
1669
+ the resonance splitting has little influence on the transmission spectrum, so the backscattering can
1670
+ be ignored.
1671
+ Assuming that the transmission loss of microring resonator mainly includes absorption loss
1672
+ (1
1673
+ mat
1674
+ Q
1675
+ ), leakage loss (1
1676
+ leak
1677
+ Q
1678
+ ) and bending loss (1
1679
+ bend
1680
+ Q
1681
+ ). Therefore, the relationship between
1682
+ the value of
1683
+ tot
1684
+ Q
1685
+ the system and the loss coefficient a can be expressed as [18]:
1686
+ 2
1687
+ gn
1688
+ Q
1689
+ a
1690
+
1691
+
1692
+
1693
+ (10)
1694
+ exp(
1695
+ )
1696
+ 2
1697
+ ring
1698
+ L
1699
+ a
1700
+
1701
+
1702
+
1703
+ (11)
1704
+ Where,
1705
+ gn
1706
+ is the group refractive index, which can be obtained by the finite-difference
1707
+ time-domain method of full-vector calculation by MODE Solutions software. a is the round-trip
1708
+ loss coefficient of light wave in microring waveguide, represents the loss value per unit length
1709
+ of optical waveguide, and
1710
+ tot
1711
+ Q
1712
+ is inversely proportional to  . Taking all loss mechanisms into
1713
+ consideration, the transmission loss of the optical waveguide in this paper is about9dB cm [19].
1714
+ 7.Conclusions
1715
+ In conclusion, we have demonstrated the transmission spectra and the phase shift spectra of two
1716
+ micro-rings coupled system through numerical simulations and theoretical calculations and
1717
+ analyzed the causes of resonance peaks and transparent windows leads to the EIT-like effects. As
1718
+ we can see in this paper, we can generate a wide transparent windows, a large flat phase shift and
1719
+ a large group delay by increasing the number of micro-ring resonators. Therefore, it can be
1720
+ potential applied in multi-band filters and multi-band slow light devices (such as delay lines) in
1721
+ optical communication field.
1722
+ Acknowledgments
1723
+ This work was supported by the State Key Laboratory of Quantum Optics and Quantum Optics
1724
+ Devices, Shanxi University, Shanxi, China (KF202004,KF202205).
1725
+ ORCID iD
1726
+ Chaoying Zhao
1727
+ https://orcid.org/0000-0003-1116-0790
1728
+ References
1729
+
1730
+ 12
1731
+ [1]Longdell J J, Fraval E, Sellars M J and Manson N B 2005 Stopped light with storage times
1732
+ greater than one second using electromagnetically induced transparency in a solid Phys Rev Lett
1733
+ 95 063601
1734
+ [2]Jahromi M A F and Bananej A 2016 Tunable slow light in 1-D photonic crystal Optik 127
1735
+ 3889-91
1736
+ [3]Safavi-Naeini A H, Mayer Alegre T P, Chan J, Eichenfield M, Winger M, Lin Q, Hill J T,
1737
+ Chang D E and Painter O 2011 Electromagnetically induced transparency and slow light with
1738
+ optomechanics Nature 472 69-73
1739
+ [4]Liu C, Dutton Z, Behroozi C H and Hau L V 2001 Observation of coherent optical information
1740
+ storage in an atomic medium using halted light pulses Nature 409 490-3
1741
+ [5]Zhu L, Dong L, Guo J, Meng F-Y, He X J, Zhao C H and Wu Q 2017 A low-loss
1742
+ electromagnetically induced transparency (EIT) metamaterial based on coupling between electric
1743
+ and toroidal dipoles RSC Advances 7 55897-904
1744
+ [6]Yariv A 2000 Universal relations for coupling of optical power between microresonators and
1745
+ dielectric waveguides. Electron. Lett. 36 321-322
1746
+ [7]Smith D D, Chang H 2004 Coherence phenomena in coupled optical resonators J. Mod. Opt. 51
1747
+ 2503-2513
1748
+ [8]Meng Y C, Guo Q Z, Tan W H, Huang Z M 2004 Analytical solutions of coupled-mode
1749
+ equations for multiwaveguide systems, obtained by use of Chebyshev and generalized Chebyshev
1750
+ polynomials J. Opt. Soc. Am. A 21 1518-1528
1751
+ [9]Zhao C Y, Tan W H 2015 Transmission of asymmetric coupling double-ring resonator J. Mod.
1752
+ Opt. 62 313-320
1753
+ [10]Zhang S, Genov D A, Wang Y, Liu M and Zhang X 2008 Plasmon-induced transparency in
1754
+ metamaterials Phys Rev Lett 101 047401
1755
+ [11]Zhao C Y, Hu J H 2021 Investigation of the characteristics of the dual-band electromagnetic
1756
+ induction transparent-like terahertz spectrum in a grating-like structure J. Opt. 23 115103
1757
+ [12]Heebner J E, Boyd R W, Park Q H 2002 Slow light, induced dispersion, enhanced
1758
+ nonlinearity, and optical solitons in a resonator-array waveguide Phys. Rev. E 65 036619
1759
+ [13]Xiao Y F, Jiang X F, Yang Q F, Wang L, Shi K B, Li Y, Gong Q H 2013 Tunneling-induced
1760
+ transparency in a chaotic microcavity Laser Photon. Rev. 7 L51-L54
1761
+
1762
+ 13
1763
+ [14]Zheng C, Jiang X S, Hua S Y, Chang L, Li G Y, Fan H B, Xiao M 2012 Controllable optical
1764
+ analog to electromagnetically induced transparency in coupled high-Q microtoroid cavities Opt.
1765
+ Exp. 20 18319-18325
1766
+ [15] Gondarenko A, Levy J S, Lipson M 2009 High confinement micron-scale silicon nitride high
1767
+ Q ring resonator[J]. Opt. Exp. 17 11366-11370
1768
+ [16]Chen J, Xie J, Wu K, et al. 2017 Continuously tunable ultra-thin silicon waveguide optical
1769
+ delay line Optica 4 507-515.
1770
+ [17]Li A, Van Vaerenbergh T, De Heyn P, et al. 2016 Backscattering in silicon microring
1771
+ resonators: a quantitative analysis Laser & Photon. Rev. 10 420-431
1772
+ [18]Gaeta A L, Griffith A G, Cardenas J, et al. 2017 Low-loss silicon platform for broadband
1773
+ mid-infrared photonics Optica 4 707-712
1774
+ [19]Talebifard S, Schmidt S.Wei S, et al. 2017 Optimized sensitivity of Silicon-on-Insulator (SOI)
1775
+ strip waveguide resonator sensor Biomedical Optics Express, 2017, 8(2): 500-511.
1776
+
K9E2T4oBgHgl3EQfVQcE/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,345 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf,len=344
2
+ page_content='1 Investigation of the characteristics of the electromagnetic induction transparent-like spectrum with counter- propagating waves coupling mechanism for waveguide and micro-ring coupled system Chaoying Zhaoa,b* aHangzhou Dianzi University, College of Science, Zhejiang, China bShanxi University, State Key Laboratory of Quantum Optics and Quantum Optics Devices, Taiyuan, China E-mail: zchy49@163.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
3
+ page_content='com Abstract In this paper, a new counter-propagation waves coupling mechanism is proposed which is expected to realize an electromagnetically induced transparency (EIT)-like effect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
4
+ page_content=' Comparing the traveling waves coupling mechanism (see J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
5
+ page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
6
+ page_content=' Opt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
7
+ page_content=' 2015,62:313-320 [9]) with the counter-propagating waves coupling mechanism, we find out that the transparency window breadths of transmission spectra are greatly enhanced and the corresponding phase shift spectra possess a flat profile or a square profile.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
8
+ page_content=' Our numerical simulated results are in good agreement with the theoretical analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
9
+ page_content=' The EIT-like effect can significantly reduce the group velocity near the edge of the square profile transparent window.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
10
+ page_content=' We believe that the counter-propagating waves coupling mechanism is particularly beneficial for the realization of active manipulation of slow light devices (such as delay lines) required in the conventional EIT scheme.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
11
+ page_content=' In the vicinity of the transparency peak, we can obtain a large group delay, may gain more significant potential applications in slow-light transmission and optical storage.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
12
+ page_content=' Keywords: electromagnetically induced transparency-like (EIT-like), counter-propagating waves coupling, micro-ring, group delay 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
13
+ page_content=' Introduction The Electromagnetic induced transparency (EIT) effect occurs when the atomic medium accompany a strong dispersion, which can significantly reduce the group velocity of light.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
14
+ page_content=' Author to whom any correspondence should be addressed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
15
+ page_content=' 2 EIT is widely used in slow light[1,2], optical delay lines[3], optical storage[4] and low-loss optical devices[5]so on.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
16
+ page_content=' However, the experimental realization of EIT effect in atomic system usually requires some complicated conditions, such as temperature, high intensity laser, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
17
+ page_content=' Therefore, the application of EIT effect in practice has been greatly limited.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
18
+ page_content=' The all-optical analog to EIT based on wave-guide and micro-ring coupled system has attracted much more attention in recent years.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
19
+ page_content=' The EIT-like phenomena have been theoretically analyzed in wave-guide coupled micro-ring[6], and wave-guide coupled two micro-ring[7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
20
+ page_content=' Meng et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
21
+ page_content='al have studied the transmission spectra of N N \uf0b4 weak linearly array[8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
22
+ page_content=' We have investigated the wave-guide coupled double-micro-ring systems by using the traveling wave coupling mechanism[9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
23
+ page_content=' In 2008, Zhang et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
24
+ page_content=' al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
25
+ page_content=' first proposed the concept of PIT (plasmon-induced transparency) in metamaterials[10], Metamaterials are a class of artificial electromagnetic media, aiming to provide some controllable electromagnetic properties, such as room temperature conditions and large operating bandwidth.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
26
+ page_content=' They pointed out that the EIT-like effect can be simulated by adding a special resonance structure (dark state resonance unit).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
27
+ page_content=' EIT-like effect can be explained by the near-field coupling principle between bright and dark resonant units.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
28
+ page_content=' In 2021, Zhao et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
29
+ page_content='al have studied dual-band electromagnetically induced transparency (EIT)-like effect in terahertz spectrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
30
+ page_content=' The EIT-like effect can significantly reduce the group speed near the transparent window.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
31
+ page_content=' The EIT-like effect can significantly reduce the group speed near the transparent window, may gain more sigificant potential applications in slow-light transmission and optical storage [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
32
+ page_content=' In this paper, we want to investigate the transmission spectra and phase shift by using the counter-propagating waves coupling mechanism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
33
+ page_content=' We find out that the transparency window breadths of transmission spectra are greatly enhanced when the traveling wave coupling is substituted by counter-propagating waves coupling, and the phase shift spectra possess a flat or square profile, which result in group velocity slowdown very large at the edge of the square profile.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
34
+ page_content=' This paper is organized as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
35
+ page_content=' In Section 2, the transmission of 2 2 \uf0b4 coupled system for the traveling wave coupling and the counter-propagating waves coupling is studied in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
36
+ page_content=' The transmission and phase characteristic of 2 2 \uf0b4 and3 3 \uf0b4 coupled systems containing single micro-ring, doule micro-ring (which is denoted by ‘Sm’ in the following) are calculated and analyzed in Section 4, and in Section 5, the conclusions are given.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
37
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
38
+ page_content='The transmission of traveling wave coupling and counter-propagating waves 3 coupling for 2 2 \uf0b4 system For 2 2 \uf0b4 system, Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
39
+ page_content='1(a) depicts the schematic structure of the micro-ring resonator, which consists of straight wave-guide a2b2, ring a1b1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
40
+ page_content=' The optical field from a excitation wave-guide passing through the evanescent tail couples into ring.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
41
+ page_content=' After propagating a round trip, the wave couples back to the excitation wave-guide and interferes with transmitted light.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
42
+ page_content=' At resonance, the wave appears destructive interference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
43
+ page_content=' The propagation path of light presents ‘clockwise direction’ in ring (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
44
+ page_content='1(a)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
45
+ page_content=' As shown in Figure 1(a), the counter-clockwise mode 1 1 j a e b \uf071 \uf061 \uf03d in the micro-ring 1 1 a b , is induced by the traveling wave ( ) 0 j t kz e \uf077 \uf065 \uf065 \uf02d \uf02d \uf03d in the waveguide 2 2 a b from the left to the right, where \uf061 is the absorption coefficient, L c \uf071 \uf077 \uf03d is the round trip phase shift, L represents the circumference of the micro-ring 1 1 a b , c is the phase velocity of micro-ring mode, \uf077 is the optical wave oscillation frequency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
46
+ page_content=' While the light circuits clockwise and counterclockwise direction in ring simultaneously (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
47
+ page_content='1(b)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
48
+ page_content=' We can analyze the gap parameter makes an influence on the EIT-like spectrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
49
+ page_content='For Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
50
+ page_content=' (b), the clockwise mode 1 1 2 j a e b \uf071 \uf061 \uf02d \uf03d in the micro-ring 1 1 a b , which is induced by the traveling wave ( ) 0 j t kz e \uf077 \uf065 \uf065 \uf02d \uf02b \uf03d in the waveguide 2 2 a b from the left to the right.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
51
+ page_content=' The counter-clockwise mode 1 1 2 j a e b \uf071 \uf061 \uf03d in the micro-ring 1 1 a b , which is induced by the traveling wave ( ) 0 j t kz e \uf077 \uf065 \uf065 \uf02d \uf02d \uf03d in the waveguide 2 2 a b from the right to the left.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
52
+ page_content=' (a) (b) Figure 1 Schematic diagram of 2 2 \uf0b4 system, (a) traveling wave coupling, (b) counter-propagating wave coupling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
53
+ page_content=' Assuming that the light wave is input from the straight waveguide input, when the resonance condition is satisfied, the phase before the light is coupled from the straight waveguide to the a1 b1 a2 b2b1 ai a2 b24 microring is 1 \uf06a \uf046 \uf03d .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
54
+ page_content=' According to the optical waveguide coupling theory, the changes in the phase before and after a light wave is coupled from one waveguide to another.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
55
+ page_content=' Then, when the light wave is coupled from the straight waveguide to the micro-ring waveguide, its phase becomes 2 2 \uf06a \uf070 \uf046 \uf03d \uf02b .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
56
+ page_content=' According to the resonance relationship, when the light wave meets the resonance condition, the light circles in the microring and interferes with each other to generate resonance enhancement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
57
+ page_content=' The change 2m\uf070 of the phase before and after the light wave circulates in the microring, where the phase is 3 2 2m \uf06a \uf070 \uf070 \uf046 \uf03d \uf02b \uf02b .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
58
+ page_content=' Similarly, the light wave is again coupled from the microring to the straight waveguide, and its phase changes again 2 \uf070 , becoming 4 2m \uf06a \uf070 \uf070 \uf046 \uf03d \uf02b \uf02b .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
59
+ page_content=' Comparing the phase changes at the input and output, we find an \uf070 odd multiple of the difference between 1 \uf046 and 4 \uf046 , so that the two beams interfere and cancel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
60
+ page_content=' When the intensity of the light field is the same, the intensity of the light field after interference elimination is zero, so the output end of the straight waveguide is zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
61
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
62
+ page_content=' The influence of counter-propagation optical waves with phase difference Figure 2 show the Schematic diagram to produce the counter-propagating waves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
63
+ page_content=' Figure 2 Schematic diagram producing the counter-propagating waves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
64
+ page_content=' As shown in Figure 2, one traveling wave is split into two equal portions of counter-clockwise wave and clockwise wave at the point P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
65
+ page_content=' Therefore, the superposed induced counter-clockwise wave and clockwise wave of the micro-ring assuming ( ) 2 cos[ ] j j e e \uf071 \uf071 \uf071 \uf02d \uf02b \uf03d .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
66
+ page_content='Taking account the absorption coefficient \uf061 around the micro-ring, we have the relation 1 1 cos[ ] a b \uf061 \uf071 \uf03d for counter-propagating waves, the mode 1 1 1 ( ) 2 cos[ ] j j a e e b b \uf071 \uf071 \uf061 \uf061 \uf071 \uf02d \uf03d \uf02b \uf03d in the micro-ring is P a1 b1 a2 3 b25 induced by the counter-propagating waves ( ) ( ) 0 ( ) 2 j t kz j t kz e e \uf077 \uf077 \uf065 \uf065 \uf02d \uf02d \uf02d \uf02b \uf03d \uf02b in the waveguide 2 2 a b .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
67
+ page_content=' For the traveling wave propagating in waveguide[4], the relation 1 1 j a e b \uf071 \uf061 \uf03d is also valid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
68
+ page_content=' In general, the coupling system contains one waveguide and multi-micro-rings [7,9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
69
+ page_content=' In the derivation of traveling waves coupling and counter-propagation waves coupling formula cos[ ] j e \uf071 \uf071 \uf02d \uf0ae , we have assumed that the path from p to E (see Figure 2) along the clockwise and the counter-clockwise waves have the same length.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
70
+ page_content=' In general, this lengths may be different, the initial phases at point E being 1\uf071 , 2 \uf071 for the clockwise and the counter-clockwise waves, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
71
+ page_content=' The superposed induced waves being 1 2 1 2 1 2 1 2 1 2 ( ) ( ) ( ) ( ) 1 2 2 2 2 2 1 1 ( ) ( ) cos[ ] 2 2 2 j j j j j j e e e e e e \uf071 \uf071 \uf071 \uf071 \uf071 \uf071 \uf071 \uf071 \uf071 \uf071 \uf071 \uf071 \uf071 \uf071 \uf071 \uf071 \uf071 \uf02d \uf02d \uf02b \uf02b \uf02d \uf02d \uf02d \uf02d \uf02d \uf02b \uf02d \uf02b \uf03d \uf02b \uf03d \uf02d ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
72
+ page_content='(1) Therefore,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
73
+ page_content=' the traveling waves coupling and counter-propagating waves coupling may be represented by 2 1 cos[ ] j e \uf064 \uf071 \uf064 \uf02d \uf02d ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
74
+ page_content=' 1 1 2 ( ) 2 \uf064 \uf071 \uf071 \uf03d \uf02d ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
75
+ page_content=' 2 1 2 ( ) 2 \uf064 \uf071 \uf071 \uf03d \uf02b ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
76
+ page_content=' respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
77
+ page_content=' In the case of 1\uf064 \uf071 \uf03d , 2 2 1 cos[ ] j j e e \uf064 \uf064 \uf071 \uf064 \uf02d \uf02d \uf02d \uf03d possesses the form similar to that of the traveling waves coupling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
78
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
79
+ page_content='The numerical calculations and analysis of the transmission and phase shift spectra for2 2 \uf0b4 system and3 3 \uf0b4 system In this section, we calculate the transmission and phase shift spectra reduction near resonance concern with the traveling waves coupling and the counter-propagating waves coupling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
80
+ page_content=' In the following, we begin with the traveling wave coupling of 2 2 \uf0b4 system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
81
+ page_content=' The transmission and the phase shift spectra [5] 2 2 2 1 i trl i t e T t e \uf071 \uf071 \uf061 \uf061 \uf0b4 \uf02d \uf03d \uf02d , 2 2 [ ] 1 i trl i t e Arg t e \uf071 \uf071 \uf061 \uf061 \uf0b4 \uf02d \uf046 \uf03d \uf02d , (2) Figure 3 shows the transmission and the phase shift spectra for 2 2 trl T \uf0b4 , 2 2 trl \uf0b4 \uf046 , respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
82
+ page_content=' 6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
83
+ page_content='004 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
84
+ page_content='002 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
85
+ page_content='002 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
86
+ page_content='004 \uf071 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
87
+ page_content='5 2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
88
+ page_content='5 3 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
89
+ page_content='5 T2\uf02a2 l r t \uf048\uf071\uf04c 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
90
+ page_content='004 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
91
+ page_content='002 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
92
+ page_content='002 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
93
+ page_content='004 \uf071 3 2 1 0 1 2 3 \uf0462\uf02a2 l r t \uf048\uf071\uf04c Figure 3 The transmission and phase shift spectrawith the parameters 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
94
+ page_content='9998 t \uf03d , 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
95
+ page_content='00006 \uf061 \uf03d versus\uf071 in unit of radian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
96
+ page_content=' And the corresponding 2 2 cou T \uf0b4 , 2 2 cou \uf0b4 \uf046 for counter-propagating wave coupling being 2 2 2 cos[ ] 1 cos[ ] cou t T t \uf061 \uf071 \uf061 \uf071 \uf0b4 \uf02d \uf03d \uf02d , 2 2 cos[ ] [ ] 1 cos[ ] cou t Arg t \uf061 \uf071 \uf061 \uf071 \uf0b4 \uf02d \uf046 \uf03d \uf02d , (3) Figure 4 shows the transmission and the phase shift spectra for 2 2 cou T \uf0b4 , 2 2 cou \uf0b4 \uf046 , respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
97
+ page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
98
+ page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
99
+ page_content='05 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
100
+ page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
101
+ page_content='1 \uf071 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
102
+ page_content='5 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
103
+ page_content='5 2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
104
+ page_content='5 3 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
105
+ page_content='5 T2\uf02a2 u o c \uf048\uf071\uf04c 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
106
+ page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
107
+ page_content='05 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
108
+ page_content='05 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
109
+ page_content='1 \uf071 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
110
+ page_content='5 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
111
+ page_content='5 2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
112
+ page_content='5 3 \uf0462\uf02a2 l u o c \uf048\uf071\uf04c Figure 4 The transmission and phase shift spectra with the parameters 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
113
+ page_content='9998 t \uf03d , 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
114
+ page_content='00006 \uf061 \uf03d versus\uf071 in unit of radian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
115
+ page_content=' Similarly,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
116
+ page_content=' the transmission and phase shift spectra for the waveguide and two micro-rings coupled system [7] 2 2 2 2 1 1 2 1 2 2 2 1 1 ( ) ( ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
117
+ page_content=' ) 1 ( ) i i r a e r a e \uf066 \uf066 \uf074 \uf066 \uf074 \uf066 \uf066 \uf074 \uf066 \uf02d \uf03d \uf02d ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
118
+ page_content=' 1 1 1 1 1 1 1 1 ( ) 1 i i r a e r a e \uf066 \uf066 \uf074 \uf066 \uf02d \uf03d \uf02d ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
119
+ page_content=' (4) Setting 1 2 \uf066 \uf066 \uf066 \uf03d \uf03d ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
120
+ page_content=' we have 2 2 ( ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
121
+ page_content=' ) trl sm T \uf074 \uf066 \uf066 \uf03d ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
122
+ page_content=' 2 [ ( ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
123
+ page_content=' )] trl sm Arg \uf074 \uf066 \uf066 \uf046 \uf03d ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
124
+ page_content=' (5) Figure 5 gives out the transmission and the phase shift spectra for 2 2 trl T \uf0b4 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
125
+ page_content=' 2 2 trl \uf0b4 \uf046 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
126
+ page_content=' respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
127
+ page_content=' 7 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
128
+ page_content='5 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
129
+ page_content='5 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
130
+ page_content='5 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
131
+ page_content='5 \uf071 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
132
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
133
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
134
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
135
+ page_content='8 T m s l r t \uf048\uf071\uf04c 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
136
+ page_content='5 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
137
+ page_content='5 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
138
+ page_content='5 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
139
+ page_content='5 \uf071 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
140
+ page_content='5 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
141
+ page_content='5 1 \uf046 m s l r t \uf048\uf071\uf04c Figure 5 The transmission and the phase shift spectra for trl sm T , trl sm \uf046 with parameters 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
142
+ page_content='999 r \uf03d , 2 1 2 r a a \uf03d \uf0b4 , 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
143
+ page_content='9999 a \uf03d , 2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
144
+ page_content='88 a \uf03d versus\uf071 in unit of radian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
145
+ page_content=' The corresponding formula for counter-propagating waves are 2 2 1 1 2 2 1 2 2 2 1 1 2 ( )cos[ ] ( ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
146
+ page_content=' ) 1 ( )cos[ ] cou cou cou r a r a \uf074 \uf066 \uf066 \uf074 \uf066 \uf066 \uf074 \uf066 \uf066 \uf02d \uf03d \uf02d ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
147
+ page_content=' 1 1 1 1 1 1 1 1 cos[ ] ( ) 1 cos[ ] cou r a r a \uf066 \uf074 \uf066 \uf066 \uf02d \uf03d \uf02d ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
148
+ page_content=' (6) Setting 1 2 \uf066 \uf066 \uf066 \uf03d \uf03d ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
149
+ page_content=' we have 2 2 ( ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
150
+ page_content=' ) cou cou sm T \uf074 \uf066 \uf066 \uf03d ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
151
+ page_content=' 2 [ ( ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
152
+ page_content=' )] cou cou sm Arg \uf074 \uf066 \uf066 \uf046 \uf03d ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
153
+ page_content=' (7) Figure 6 gives out the transmission spectra and the phase shift spectra for 2 2 cou T \uf0b4 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
154
+ page_content=' 2 2 cou \uf0b4 \uf046 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
155
+ page_content=' respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
156
+ page_content=' 3 2 1 0 1 2 3 \uf071 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
157
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
158
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
159
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
160
+ page_content='8 1 T m s u o c \uf048\uf071\uf04c 3 2 1 0 1 2 3 \uf071 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
161
+ page_content='5 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
162
+ page_content='5 1 \uf046 m s u o c \uf048\uf071\uf04c Figure 6 The transmission and phase shift spectra for cou sm T ,, cou sm \uf046 with the parameters 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
163
+ page_content='999 r \uf03d , 2 1 2 r a a \uf03d \uf0b4 , 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
164
+ page_content='9999 a \uf03d , 2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
165
+ page_content='88 a \uf03d versus\uf071 in unit of radian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
166
+ page_content=' Figure 7 shows the schematic diagram of 3 3 \uf0b4 system, (a) the traveling wave coupling, (b) the counter-propagation waves coupling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
167
+ page_content=' (a) (b) a1 b1 a2 b2 a3 b3b1 a2 b2 a3 b38 Figure 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
168
+ page_content=' Schematic diagram of3 3 \uf0b4 system, (a)the traveling wave coupling, (b)the counter-propagation waves coupling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
169
+ page_content=' The transmission and the phase shift spectra for3 3 \uf0b4 system[12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
170
+ page_content=' 2 1 3 1 3 3 3 1 3 1 3 1 trl t B B B B T B B B B t \uf06d \uf064 \uf064 \uf06d \uf0b4 \uf02d \uf02d \uf02b \uf03d \uf02d \uf02d \uf02b , 1 i B e \uf071 \uf061 \uf03d , 3 i B e \uf071 \uf061 \uf02d \uf03d , 1 3 1 3 3 3 1 3 1 3 [ ] 1 trl t B B B B Arg B B B B t \uf06d \uf064 \uf064 \uf06d \uf0b4 \uf02d \uf02d \uf02b \uf046 \uf03d \uf02d \uf02d \uf02b , (8) Figure 8 gives out the transmission and the phase shift spectra for 3 3 trl T \uf0b4 , 3 3 trl \uf0b4 \uf046 , respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
171
+ page_content=' 4 2 0 2 4 \uf071 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
172
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
173
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
174
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
175
+ page_content='8 T3\uf02a3 l r t \uf048\uf071\uf04c 4 2 0 2 4 \uf071 0 1 2 3 4 5 6 \uf046 m s l r t \uf048\uf071\uf04c Figure 8 The transmission and phase shift spectra for 3 3 3 3 , trl trl T \uf0b4 \uf0b4 \uf046 with parameters 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
176
+ page_content='9998 t \uf03d , 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
177
+ page_content='99998 \uf061 \uf03d , 0 \uf06d \uf03d , 0 \uf064 \uf03d versus\uf071 in unit of 4 10\uf02d radian The transmission and the phase shift spectra for3 3 \uf0b4 system[9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
178
+ page_content=' 2 1 3 1 3 3 3 1 3 1 3 1 cou t B B B B T B B B B t \uf06d \uf064 \uf064 \uf06d \uf0b4 \uf02d \uf02d \uf02b \uf03d \uf02d \uf02d \uf02b , 1 cos[ ] B \uf061 \uf071 \uf03d , 3 cos[ ] B \uf061 \uf071 \uf03d , 1 3 1 3 3 3 1 3 1 3 [ ] 1 cou t B B B B Arg B B B B t \uf06d \uf064 \uf064 \uf06d \uf0b4 \uf02d \uf02d \uf02b \uf046 \uf03d \uf02d \uf02d \uf02b , (9) Figure 9 gives out the transmission and the phase shift spectra for 3 3 cou T \uf0b4 , 3 3 cou \uf0b4 \uf046 , respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
179
+ page_content=' 1000 500 0 500 1000 \uf071 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
180
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
181
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
182
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
183
+ page_content='8 T3\uf02a3 u o c \uf048\uf071\uf04c 1000 500 0 500 1000 \uf071 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
184
+ page_content='5 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
185
+ page_content='5 2 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
186
+ page_content='5 3 \uf0463\uf02a3 u o c \uf048\uf071\uf04c\uf048\uf071\uf04c Figure 9 The transmission and phase shift spectra for 3 3 3 3 , cou cou T \uf0b4 \uf0b4 \uf046 with parameters, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
187
+ page_content='9998 t \uf03d , 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
188
+ page_content='99998 \uf061 \uf03d , 0 \uf06d \uf03d , 0 \uf064 \uf03d versus\uf071 in unit of 4 10\uf02d radian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
189
+ page_content=' The numerical calculations shown in Figures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
190
+ page_content='3-6, 8-9, refer to that of the traveling wave coupling, the breadths of the transmission spectra for counter-propagating waves coupling are enhanced by a 9 factor of 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
191
+ page_content='02 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
192
+ page_content='001 20 \uf03d , 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
193
+ page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
194
+ page_content='05 6 \uf03d , 200 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
195
+ page_content='8 250 \uf03d for the 2 2 \uf0b4 , Sm, 3 3 \uf0b4 system, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
196
+ page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
197
+ page_content='The analysis of the phase velocity spectra We have obtained the phase spectra ( ) \uf077 \uf046 \uf03d \uf046 , in the case of counter-propagating waves coupling, the phase shift spectra possess a flat ( ( ) cou sm \uf077 \uf046 \uf03d \uf046 ) or a square profile ( 2 2 3 3 ( ) , cou cou \uf077 \uf0b4 \uf0b4 \uf046 \uf03d \uf046 \uf046 ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
198
+ page_content=' The inverse of the phase velocity is given by 3 3 3 3 cou cou g g c v n d d n c d Ld n c L \uf071 \uf077 \uf074 \uf0b4 \uf0b4 \uf03d \uf02b \uf046 \uf03d \uf02b \uf046 \uf03d \uf02b [12], where L c \uf071 \uf077 \uf03d , the group delay 3 3 cou g d d \uf074 \uf077 \uf0b4 \uf03d \uf046 represents the time delay of narrow-band optical pulses in optical devices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
199
+ page_content=' The strong phase dispersion around the transparent window can cause a large group delay.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
200
+ page_content=' 400 200 0 200 400 \uf071 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
201
+ page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
202
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
203
+ page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
204
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
205
+ page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
206
+ page_content='6 v\uf048\uf071\uf04c\uf090c Figure 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
207
+ page_content=' The phase velocity spectra for3 3 \uf0b4 system versus\uf071 in unit of 4 10\uf02d radian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
208
+ page_content=' As shown in Figure 10, gv approaches to zero (namely a large group delays g \uf074 are obtained) at the edge of the square profile (namely in the vicinity of the transparency peak, see Figure 9).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
209
+ page_content=' The performance characteristics of micro-ring resonator are compared in Table1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
210
+ page_content=' ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
211
+ page_content='Table 1 Comparison of EIT-like characteristic parameters based on different resonator ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
212
+ page_content='Micro-ring ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
213
+ page_content='resonator ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
214
+ page_content='microcavity ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
215
+ page_content='structure ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
216
+ page_content='Number of ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
217
+ page_content='EIT ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
218
+ page_content='coupling ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
219
+ page_content='mechanism ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
220
+ page_content='material ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
221
+ page_content='group ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
222
+ page_content='delays ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
223
+ page_content='[9] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
224
+ page_content='two ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
225
+ page_content='micro-ring ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
226
+ page_content='single ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
227
+ page_content='traveling ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
228
+ page_content='waves ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
229
+ page_content='silica ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
230
+ page_content='--- ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
231
+ page_content='[11] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
232
+ page_content='multiple ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
233
+ page_content='U-shaped ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
234
+ page_content='resonators ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
235
+ page_content='multiple ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
236
+ page_content='dark-light ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
237
+ page_content='/light-light ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
238
+ page_content='mode ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
239
+ page_content='metamaterials ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
240
+ page_content='high ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
241
+ page_content='[13] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
242
+ page_content='chaotic ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
243
+ page_content='single ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
244
+ page_content='micro-ring ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
245
+ page_content='single ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
246
+ page_content='chaos-assisted ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
247
+ page_content='dynamical ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
248
+ page_content='tunneling ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
249
+ page_content='silica ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
250
+ page_content='--- ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
251
+ page_content='[14] ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
252
+ page_content='two ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
253
+ page_content='microtoroid ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
254
+ page_content='single ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
255
+ page_content='traveling ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
256
+ page_content='waves ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
257
+ page_content='silica ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
258
+ page_content='--- ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
259
+ page_content='Our work ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
260
+ page_content='single/two ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
261
+ page_content='single ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
262
+ page_content='counter-propa ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
263
+ page_content='gating waves ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
264
+ page_content='silica ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
265
+ page_content='high ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
266
+ page_content='10 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
267
+ page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
268
+ page_content='Loss analysis According to the coupling mode theory, optical loss can directly affect the line type and characteristics of EIT spectrum of the system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
269
+ page_content=' For the dual-coupling microring resonator proposed in this paper, the transmission loss is mainly composed of scattering loss 1 scat Q caused by the roughness of the waveguide side wall, bending loss 1 bend Q of the microring waveguide and leakage loss 1 leak Q caused by the light field entering the substrate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
270
+ page_content=' 1 mat Q is the absorption loss of microring resonator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
271
+ page_content=' As the light waves travel in the waveguide, part of the light field is absorbed by the silicon material.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
272
+ page_content=' In addition, the top layer of the optical waveguide device also has an oxide coating, which can absorb the light field in different environments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
273
+ page_content=' Finite element analysis (FEM) was used to conduct mode analysis on the waveguide cross section, and negative imaginary part ( k ) was added to the material refraction to obtain the absorption loss of the whole system [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
274
+ page_content=' 1 leak Q is leakage loss, which is an important loss mechanism in SOI structure, and is generated by the middle spectral field of the waveguide into the silicon dioxide layer and silicon substrate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
275
+ page_content=' The leakage loss decreases with the increase of silica layer thickness.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
276
+ page_content=' 1 scat Q is the scattering loss, which occurs when the side wall of the waveguide is rough.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
277
+ page_content=' Increasing the ratio of the width to the height of the waveguide, reducing the mode overlap at the side of the waveguide, and improving the fabrication technology of the waveguide can reduce the scattering loss of the system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
278
+ page_content=' In practical optical waveguide devices, the roughness of the side wall is larger than that of the surface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
279
+ page_content=' 1 bend Q is the bending loss, is the radiation loss caused by the bending of the optical waveguide, and decreases with the increase of the radius of the microring.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
280
+ page_content=' When the radius of the microring is about 30 m \uf06d [15], the bending loss is about 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
281
+ page_content='015 180 dB [16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
282
+ page_content=' 1 back Q represents backscattering loss, which is one of the loss sources in waveguides based on SOI structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
283
+ page_content=' Both the roughness of the waveguide side wall and the directional coupling can cause backscattering losses, which can be suppressed by various ways, such as improving the etching process to reduce the roughness of the waveguide surface, and lower Q values [17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
284
+ page_content=' In this paper, except for the feedback arm region, the coupling distance of the microring resonator is 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
285
+ page_content='15 m \uf06d .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
286
+ page_content=' At this time, 11 the resonance splitting has little influence on the transmission spectrum, so the backscattering can be ignored.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
287
+ page_content=' Assuming that the transmission loss of microring resonator mainly includes absorption loss (1 mat Q ), leakage loss (1 leak Q ) and bending loss (1 bend Q ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
288
+ page_content=' Therefore, the relationship between the value of tot Q the system and the loss coefficient a can be expressed as [18]: 2 gn Q a \uf070 \uf06c \uf03d (10) exp( ) 2 ring L a \uf061 \uf03d \uf02d (11) Where, gn is the group refractive index, which can be obtained by the finite-difference time-domain method of full-vector calculation by MODE Solutions software.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
289
+ page_content=' a is the round-trip loss coefficient of light wave in microring waveguide,\uf061 represents the loss value per unit length of optical waveguide, and tot Q is inversely proportional to \uf061 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
290
+ page_content=' Taking all loss mechanisms into consideration, the transmission loss of the optical waveguide in this paper is about9dB cm [19].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
291
+ page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
292
+ page_content='Conclusions In conclusion, we have demonstrated the transmission spectra and the phase shift spectra of two micro-rings coupled system through numerical simulations and theoretical calculations and analyzed the causes of resonance peaks and transparent windows leads to the EIT-like effects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
293
+ page_content=' As we can see in this paper, we can generate a wide transparent windows, a large flat phase shift and a large group delay by increasing the number of micro-ring resonators.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
294
+ page_content=' Therefore, it can be potential applied in multi-band filters and multi-band slow light devices (such as delay lines) in optical communication field.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
295
+ page_content=' Acknowledgments This work was supported by the State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, Shanxi, China (KF202004,KF202205).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
296
+ page_content=' ORCID iD Chaoying Zhao https://orcid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
297
+ page_content='org/0000-0003-1116-0790 References 12 [1]Longdell J J,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
298
+ page_content=' Fraval E,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
299
+ page_content=' Sellars M J and Manson N B 2005 Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid Phys Rev Lett 95 063601 [2]Jahromi M A F and Bananej A 2016 Tunable slow light in 1-D photonic crystal Optik 127 3889-91 [3]Safavi-Naeini A H,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
300
+ page_content=' Mayer Alegre T P,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
301
+ page_content=' Chan J,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
302
+ page_content=' Eichenfield M,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
303
+ page_content=' Winger M,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
304
+ page_content=' Lin Q,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
305
+ page_content=' Hill J T,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
306
+ page_content=' Chang D E and Painter O 2011 Electromagnetically induced transparency and slow light with optomechanics Nature 472 69-73 [4]Liu C,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
307
+ page_content=' Dutton Z,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
308
+ page_content=' Behroozi C H and Hau L V 2001 Observation of coherent optical information storage in an atomic medium using halted light pulses Nature 409 490-3 [5]Zhu L,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
309
+ page_content=' Dong L,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
310
+ page_content=' Guo J,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
311
+ page_content=' Meng F-Y,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
312
+ page_content=' He X J,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
313
+ page_content=' Zhao C H and Wu Q 2017 A low-loss electromagnetically induced transparency (EIT) metamaterial based on coupling between electric and toroidal dipoles RSC Advances 7 55897-904 [6]Yariv A 2000 Universal relations for coupling of optical power between microresonators and dielectric waveguides.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
314
+ page_content=' Electron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
315
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
316
+ page_content=' 36 321-322 [7]Smith D D, Chang H 2004 Coherence phenomena in coupled optical resonators J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
317
+ page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
318
+ page_content=' Opt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
319
+ page_content=' 51 2503-2513 [8]Meng Y C, Guo Q Z, Tan W H, Huang Z M 2004 Analytical solutions of coupled-mode equations for multiwaveguide systems, obtained by use of Chebyshev and generalized Chebyshev polynomials J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
320
+ page_content=' Opt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
321
+ page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
322
+ page_content=' Am.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
323
+ page_content=' A 21 1518-1528 [9]Zhao C Y, Tan W H 2015 Transmission of asymmetric coupling double-ring resonator J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
324
+ page_content=' Mod.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
325
+ page_content=' Opt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
326
+ page_content=' 62 313-320 [10]Zhang S, Genov D A, Wang Y, Liu M and Zhang X 2008 Plasmon-induced transparency in metamaterials Phys Rev Lett 101 047401 [11]Zhao C Y, Hu J H 2021 Investigation of the characteristics of the dual-band electromagnetic induction transparent-like terahertz spectrum in a grating-like structure J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
327
+ page_content=' Opt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
328
+ page_content=' 23 115103 [12]Heebner J E, Boyd R W, Park Q H 2002 Slow light, induced dispersion, enhanced nonlinearity, and optical solitons in a resonator-array waveguide Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
329
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
330
+ page_content=' E 65 036619 [13]Xiao Y F, Jiang X F, Yang Q F, Wang L, Shi K B, Li Y, Gong Q H 2013 Tunneling-induced transparency in a chaotic microcavity Laser Photon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
331
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
332
+ page_content=' 7 L51-L54 13 [14]Zheng C, Jiang X S, Hua S Y, Chang L, Li G Y, Fan H B, Xiao M 2012 Controllable optical analog to electromagnetically induced transparency in coupled high-Q microtoroid cavities Opt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
333
+ page_content=' Exp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
334
+ page_content=' 20 18319-18325 [15] Gondarenko A, Levy J S, Lipson M 2009 High confinement micron-scale silicon nitride high Q ring resonator[J].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
335
+ page_content=' Opt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
336
+ page_content=' Exp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
337
+ page_content=' 17 11366-11370 [16]Chen J, Xie J, Wu K, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
338
+ page_content=' 2017 Continuously tunable ultra-thin silicon waveguide optical delay line Optica 4 507-515.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
339
+ page_content=' [17]Li A, Van Vaerenbergh T, De Heyn P, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
340
+ page_content=' 2016 Backscattering in silicon microring resonators: a quantitative analysis Laser & Photon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
341
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
342
+ page_content=' 10 420-431 [18]Gaeta A L, Griffith A G, Cardenas J, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
343
+ page_content=' 2017 Low-loss silicon platform for broadband mid-infrared photonics Optica 4 707-712 [19]Talebifard S, Schmidt S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
344
+ page_content='Wei S, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
345
+ page_content=' 2017 Optimized sensitivity of Silicon-on-Insulator (SOI) strip waveguide resonator sensor Biomedical Optics Express, 2017, 8(2): 500-511.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9E2T4oBgHgl3EQfVQcE/content/2301.03820v1.pdf'}
K9FRT4oBgHgl3EQfEDfx/content/tmp_files/2301.13475v1.pdf.txt ADDED
@@ -0,0 +1,883 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.13475v1 [eess.SP] 31 Jan 2023
2
+ A Knowledge-Driven Meta-Learning Method for
3
+ CSI Feedback
4
+ Han Xiao1, Wenqiang Tian1, Wendong Liu1, Zhi Zhang1, Zhihua Shi1, Li Guo1 and Jia Shen1
5
+ 1Department of Standardization, OPPO Research Institute, Beijing, China
6
+ Email: {xiaohan1, tianwenqiang, liuwendong1, zhangzhi, szh, v-guoli, sj}@oppo.com
7
+ Abstract—Accurate and effective channel state information
8
+ (CSI) feedback is a key technology for massive multiple-input and
9
+ multiple-output (MIMO) systems. Recently, deep learning (DL)
10
+ has been introduced to enhance CSI feedback in massive MIMO
11
+ application, where the massive collected training data and lengthy
12
+ training time are costly and impractical for realistic deployment.
13
+ In this paper, a knowledge-driven meta-learning solution for
14
+ CSI feedback is proposed, where the DL model initialized by
15
+ the meta model obtained from meta training phase is able to
16
+ achieve rapid convergence when facing a new scenario during
17
+ the target retraining phase. Specifically, instead of training with
18
+ massive data collected from various scenarios, the meta task
19
+ environment is constructed based on the intrinsic knowledge
20
+ of spatial-frequency characteristics of CSI for meta training.
21
+ Moreover, the target task dataset is also augmented by exploiting
22
+ the knowledge of statistical characteristics of channel, so that
23
+ the DL model initialized by meta training can rapidly fit into
24
+ a new target scenario with higher performance using only a
25
+ few actually collected data in the target retraining phase. The
26
+ method greatly reduces the demand for the number of actual
27
+ collected data, as well as the cost of training time for realistic
28
+ deployment. Simulation results demonstrate the superiority of the
29
+ proposed approach from the perspective of feedback performance
30
+ and convergence speed.
31
+ Index
32
+ Terms—CSI
33
+ feedback,
34
+ meta-learning,
35
+ MIMO,
36
+ knowledge-driven
37
+ I. INTRODUCTION
38
+ Accurate and effective channel state information (CSI)
39
+ feedback has been intensively studied for supporting massive
40
+ multiple-input and multiple-output (MIMO) systems. Along
41
+ with the standardization in the 3rd Generation Partnership
42
+ Project (3GPP), various solutions based on the TypeI and
43
+ enhanced TypeII (eTypeII) codebook have been proposed
44
+ to improve the CSI feedback performance [1]. However, to
45
+ resolve the issues of larger feedback overhead and insufficient
46
+ recovery accuracy, methods for further enhancing the CSI
47
+ feedback are still being actively studied.
48
+ Recently, deep learning (DL) has been introduced for CSI
49
+ feedback enhancement, where the DL model can achieve
50
+ higher CSI recovery accuracy with reduced feedback overhead.
51
+ An autoencoder method of CsiNet for CSI feedback [2] is first
52
+ proposed, where an encoder at the user equipment (UE) com-
53
+ presses the channel matrix and a decoder at the base station
54
+ (BS) recovers the corresponding channel matrix. Subsequently,
55
+ a series of follow-up works are conducted under various condi-
56
+ tions [3]–[7] . However, there are still some challenges for DL-
57
+ based CSI feedback. First, the generalization issue should be
58
+ considered since the DL methods tend to express the scenario-
59
+ specific property. Moreover, plenty of training data of target
60
+ scenario is quite impractical for deployment due to the expense
61
+ and long-time training and collecting data. Meta-learning is
62
+ utilized for CSI feedback in [8] and [9], where the model
63
+ is initialized by the meta model obtained in meta training
64
+ phase with massive CSI samples corresponding to multiple
65
+ various scenarios, and then achieves quick convergence with
66
+ small amount of CSI data in a new target scenario. However,
67
+ the above meta-learning based solutions still require massive
68
+ collected data for the meta training phase. Moreover, in target
69
+ retraining phase the model is retrained on the original small
70
+ amount of data within short time, thus it might suffer from
71
+ performance loss in the new target scenario in comparison with
72
+ models trained on sufficient data. Further, the above methods
73
+ also fail to consider the knowledge of intrinsic characteristics
74
+ of the wireless communication during both phases.
75
+ In this paper, a novel knowledge-driven meta-learning
76
+ method for CSI feedback is proposed. Specifically, instead
77
+ of training with massive CSI data collected from different
78
+ wireless scenarios in meta training phase, one can construct the
79
+ meta task environment by exploring the intrinsic knowledge
80
+ of spatial-frequency characteristic of CSI eigenvector for meta
81
+ training. After the DL model obtains the initialization in meta
82
+ training phase, it is capable of achieving rapid convergence
83
+ by retraining on target task dataset, which is augmented
84
+ from only small amount of actually collected seeded data
85
+ with the assistance of the knowledge of statistical feature of
86
+ wireless channels. Simulation results illustrate the superiority
87
+ of the proposed method from the perspective of feedback
88
+ performance and convergence speed.
89
+ Notations: uppercase and lowercase letters denote scalars.
90
+ Boldface uppercase and boldface lowercase letters denote ma-
91
+ trices and vectors, respectively. Calligraphic uppercase letters
92
+ denote sets. A(:, B) and A(B, :) denote the sub-matrices of
93
+ A that consist of the columns and rows indexed by set B,
94
+ respectively. E{·} denotes expectation and Tr{·} denotes trace.
95
+ AH denotes the Hermitian matrix of A. rand(A, a) denotes
96
+ the random sampling of a samples from set A without re-
97
+ placement. The sets of real and complex numbers are denoted
98
+ by R and C, respectively. | · | denotes the cardinality of a set
99
+ or the absolute value of a scalar.
100
+
101
+ II. SYSTEM DESCRIPTION
102
+ A. System Model
103
+ A MIMO system with Nt = NhNv transmitting anten-
104
+ nas at BS and Nr receiving antennas at UE is considered,
105
+ where Nh and Nv are the numbers of horizontal and vertical
106
+ antenna ports, respectively. Note that our proposed methods
107
+ are suitable for antennas with either dual or single polariza-
108
+ tion, and that single polarization is considered to illustrate
109
+ the basic principle in this paper. The downlink channel in
110
+ time domain can be denoted as a three-dimensional matrix
111
+ �H ∈ CNr×Nt×Nd, where Nd is the number of paths with
112
+ various delays. By conducting Discrete Fourier transform
113
+ (DFT) over the delay-dimension of the time-domain downlink
114
+ channel matrix �H, the downlink channel in frequency domain
115
+ �H ∈ CNr×Nt×Nsc can be written as
116
+ �H =
117
+ � �H1, �H2, · · · , �HNsc
118
+
119
+ ,
120
+ (1)
121
+ where Nsc
122
+ is the number of subcarriers, and Hk
123
+
124
+ CNr×Nt, 1 ≤ k ≤ Nsc denotes the downlink channel on the
125
+ kth subcarrier. Normally, the CSI eigenvector feedback is per-
126
+ formed on each subband which consists of Ngran subcarriers
127
+ with Nsc = NgranNsb. Assuming the rank 1 configuration for
128
+ downlink transmission, the corresponding eigenvector for the
129
+ lth subband wl ∈ CNt×1 with ||wl||2 = 1, can be calculated
130
+ by the eigenvector decomposition on the subband as
131
+
132
+
133
+ 1
134
+ Ngran
135
+ lNgran
136
+
137
+ k=(l−1)Ngran+1
138
+ �HH
139
+ k �Hk
140
+
141
+  wl = λlwl,
142
+ (2)
143
+ where 1 ≤ l ≤ Nsb and λl represents the corresponding
144
+ maximum eigenvalue for the l-th subband. Therefore, the CSI
145
+ eigenvector for all Nsb subbands can be written as
146
+ W =
147
+
148
+ w1, w2, · · · , wNsb
149
+
150
+ ∈ CNt×Nsb,
151
+ (3)
152
+ wherein total NsbNt complex coefficients need to be com-
153
+ pressed at the UE and then recovered at the BS side.
154
+ Generally, the optimization objective for CSI feedback can
155
+ be given as
156
+ min
157
+ F −ρ(W, W′) = min
158
+ F − 1
159
+ Nsb
160
+ Nsb
161
+
162
+ l=1
163
+ � ∥wHw′∥2
164
+ ∥w∥2∥w′∥2
165
+ �2
166
+ ,
167
+ (4)
168
+ where ρ(·, ·) ∈ [0, 1] denotes the squared generalized cosine
169
+ similarity (SGCS), ∥·∥2 denotes ℓ2 norm, wl and w′
170
+ l represent
171
+ the original and recovered CSI eigenvector of the l-th sub-
172
+ band, respectively, F represents the alternative CSI feedback
173
+ schemes such as TypeI, eTypeII and DL-based autoencoder.
174
+ B. DL-based CSI Feedback
175
+ The architecture of DL-based CSI feedback using autoen-
176
+ coder is introduced in Fig. 1, where the neural network (NN)
177
+ encoder and decoder, fe(·; ΘE) and fd(·; ΘD) with trainable
178
+ parameters Θ = {ΘE, ΘD} are deployed at UE and BS,
179
+ respectively. Thus the DL-based autoencoder fa(·; Θ) with
180
+ trainable parameters Θ = {ΘE, ΘD} can be represented as
181
+ W′ = fd(fe(W; ΘE); ΘD) = fa(W; Θ),
182
+ (5)
183
+ UE
184
+ BS
185
+ W
186
+ W�
187
+ Encoder �e
188
+ Decoder �d
189
+ Bitstream b
190
+ SGCS
191
+ Fig. 1. Illustration of DL-based CSI feedback.
192
+ where the encoder first compresses and quantizes the original
193
+ CSI eigenvector W to a bitstream b of length B. Then the
194
+ decoder uses b to recover W′. During training phase, the
195
+ encoder and decoder are jointly optimized to solve (4) with
196
+ sufficient numbers of CSI eigenvector samples.
197
+ C. Meta-learning based CSI Feedback
198
+ Generally, the goal of meta-learning based CSI feedback
199
+ is to find a good initialization of Θ = {ΘE, ΘD}, so that the
200
+ autoencoder can converge quickly with a small amount of CSI
201
+ samples and a few training steps for a new scenario. Specifi-
202
+ cally, the procedure of meta-learning based CSI feedback can
203
+ be divided into two phases, i.e., the meta training phase and
204
+ target retraining phase.
205
+ During meta training phase, the model is trained over a big
206
+ dataset consisting of T CSI tasks of diverse scenarios, which
207
+ can be defined as meta task environment Tmeta = {T1, ..., TT },
208
+ wherein each task Tj = {Wj
209
+ 1, ..., Wj
210
+ T }, 1 ≤ j ≤ T consists
211
+ of |Tj| CSI samples denoted as Wj
212
+ i , 1 ≤ i ≤ Tj. Based on the
213
+ meta task environment Tmeta, meta-learning algorithms can be
214
+ performed to learn the initial parameters �Θ, i.e.,
215
+ min
216
+ �Θ
217
+ ETj⊂Tmeta
218
+
219
+ −ρ′(Tj, fa(Tj; Ug
220
+ Tj(�Θ)))
221
+
222
+ ,
223
+ (6)
224
+ where Ug
225
+ Tj(�Θ) is the operator that updates �Θ for g training
226
+ steps using data sampled from Tj. The initialization �Θ learnt
227
+ in (6) is expected to has the same ability of quick adaptation
228
+ with small amount of data on an unobserved target task Ttarget.
229
+ Secondly, the target retraining phase can be formulated as
230
+ min
231
+ Φ=Ug
232
+ Ttarget (�Θ)
233
+ −ρ′(Ttarget, fa(Ttarget; Φ)),
234
+ (7)
235
+ where Φ denotes the possible parameter sets trained on Ttarget
236
+ after g retraining steps based on the initialization �Θ, which
237
+ indicates that the final parameters on a new target task of
238
+ scenario can be rapidly obtained with only a few retraining
239
+ steps.
240
+ However, the existing meta-leaning based CSI feedback still
241
+ has to face two major challenges, which our knowledge-driven
242
+ meta-learning method aims to solve.
243
+ • During meta training phase, it requires sufficient samples
244
+ to construct the meta task environment Tmeta to solve (6),
245
+ which is extremely costly since it is impractical to collect
246
+ all existing types of wireless scenarios with adequate
247
+ diversity.
248
+ • During target retraining phase, despite the rapid conver-
249
+ gence for solving (7) using small amount of data Ttarget
250
+ based on the initialization �Θ, it is always difficult to
251
+ achieve comparable performance with using large amount
252
+ of CSI data in target scenario.
253
+
254
+ Knowledge
255
+ Meta
256
+ Training
257
+ Phase
258
+ Target
259
+ Retraining
260
+ Phase
261
+ Initialization
262
+ Meta Task
263
+ Environment
264
+ Meta Model
265
+ Seeded Data
266
+ Knowledge
267
+ Augmented Data
268
+ Target Scenario
269
+ Target Model
270
+ UE
271
+ BS
272
+
273
+ Encoder �
274
+ Decoder �
275
+ Bitstream
276
+ SGCS
277
+ Fig. 2. Proposed knowledge-driven meta-learning framework for CSI feedback.
278
+ III. KNOWLEDGE-DRIVEN META-LEARNING FOR CSI
279
+ FEEDBACK
280
+ A. Knowledge-driven Meta Training Phase
281
+ 1) Spatial-Frequency Characteristic: Generally, consider-
282
+ ing the intrinsic structure of the CSI eigenvector, W ∈
283
+ CNt×Nsb can be decomposed as
284
+ W = SEFH
285
+ (8)
286
+ where S ∈ CNt×Nt is constructed with Nt orthogonal basis
287
+ vectors in spatial domain and F ∈ CNsb×Nsb is constructed
288
+ with Nsb orthogonal basis vectors in frequency domain.
289
+ Specifically, both S and F are unitary matrices, which indicate
290
+ the full-rank spatial-frequency characteristic. The projection
291
+ coefficient matrix E ∈ CNt×Nsb represents that each CSI
292
+ eigenvector W can be completely expressed by the linear
293
+ combination of the orthogonal basis vectors in S and F.
294
+ Obviously, the distribution of the elements in E with relatively
295
+ larger amplitude determines the dominant spatial-frequency
296
+ feature of W given the same S and F, where the dominant
297
+ spatial-frequency features can be considered as the intrinsic
298
+ knowledge and hence can be learnt by the DL model during
299
+ the meta-training phase.
300
+ 2) Knowledge-driven Meta Training: Inspired by the intrin-
301
+ sic knowledge of spatial-frequency feature in section III-A1, a
302
+ knowledge-driven algorithm is proposed to solve (6). During
303
+ the meta training phase, the meta task environment Tmeta =
304
+ {T1, ..., TT } consisting of T tasks is firstly established, where
305
+ the construction approach of CSI eigenvector in each task
306
+ explores the CSI decomposition formula in section III-A1.
307
+ Each task usually consists of different CSI eigenvectors from
308
+ specific number of UEs that can be sampled on various number
309
+ of slots. Specifically, denote Nue,j and Nslot,j as the number
310
+ of UEs and slots for the j-th task Tj, 1 ≤ j ≤ T , respectively,
311
+ which can be set as
312
+ Nue,j = rand({1, ..., �
313
+ Nue}, 1),
314
+ (9)
315
+ Nslot,j = rand({1, ..., �
316
+ Nslot}, 1),
317
+ (10)
318
+ where Nslot,j Nue,j = |Tj|, �
319
+ Nue and �
320
+ Nslot denote the maxi-
321
+ mum number of UEs and maximum number of slots of CSI
322
+ that can be generated in one task, respectively.
323
+ Moreover, according to the intrinsic knowledge of spatial-
324
+ frequency feature, to generate the CSI samples in the j-th task
325
+ Tj, P groups of spatial orthogonal basis vector and one group
326
+ of frequency orthogonal basis vector can be firstly given as
327
+ Sp = [sp,1, ..., sp,Nt] ∈ CNt×Nt, 1 ≤ p ≤ P,
328
+ (11)
329
+ F = [f1, ..., fNsb] ∈ CNsb×Nsb,
330
+ (12)
331
+ respectively, where each column of Sp and F is an orthogonal
332
+ basis vector. Specifically, each basis in Sp indicates a beam
333
+ direction in spatial domain, and multiple groups of orthogonal
334
+ basis vectors are designed in order to improve the diversity
335
+ of spatial features. Here we introduce a Schmidt orthogo-
336
+ nalization method for obtaining the basis vector groups Sp
337
+ and F. For each group of spatial orthogonal basis vector
338
+ Sp, 1 ≤ p ≤ P, and the frequency orthogonal basis vector
339
+ group F, the Schmidt orthogonalization can be performed on
340
+ three full-rank random matrices Xh
341
+ p ∈ CNh×Nh ∼ CN(0, 1),
342
+ Xv
343
+ p ∈ CNv×Nv ∼ CN(0, 1) and Xf ∈ CNsb×Nsb ∼ CN(0, 1),
344
+ obtaining the orthogonal matrices Uh
345
+ p, Uv
346
+ p and Uf, respec-
347
+ tively. F = Uf can be utilized as frequency orthogonal basis
348
+ vector. The p-th spatial orthogonal basis vector group can be
349
+ obtained by performing kronecker product, i.e., Sp = Uh
350
+ p⊗Uv
351
+ p
352
+ Next, the method of generating CSI samples for the j-th
353
+ task Tj is introduced. The group index pj for task Tj are first
354
+ randomized by
355
+ {pj} = rand({1, ..., P}, 1),
356
+ (13)
357
+ and the indices of dominant spatial and frequency feature
358
+ vectors are also randomized by
359
+ �Sj = rand({1, ..., Nt}, Ltask),
360
+ (14)
361
+ �Fj = rand({1, ..., Nsb}, Mtask),
362
+ (15)
363
+ respectively, where the parameters Ltask ≤ Nt and Mtask ≤
364
+ Nsb are defined to constrain the degree of feature diversity of
365
+ the task in spatial and frequency domain, respectively.
366
+ For the m-th UE 1 ≤ m ≤ Nue in task Tj, the indices
367
+ of the dominant spatial and frequency feature vectors are also
368
+ randomized by
369
+ �Sm = rand( �Sj, Lm),
370
+ (16)
371
+ �Fm = rand( �
372
+ Fj, Mm),
373
+ (17)
374
+ respectively, where the degree of feature diversity in spatial
375
+ and frequency domain Lm and Mm are both UE-specific, i.e.,
376
+ {Lm} = rand({1, ..., Ltask}, 1),
377
+ (18)
378
+ {Mm} = rand({1, ..., Mtask}, 1),
379
+ (19)
380
+ respectively.
381
+ Similarly for the n-th slot 1 ≤ n ≤ Nslot of the m-th UE in
382
+ task Tj, the dominant spatial and frequency feature vectors are
383
+ respectively selected from the corresponding dominant vectors
384
+ of the UE, so that the feature is maintained for the m-th UE
385
+ but distinguished between different slots, i.e.,
386
+ Sm,n = rand( �Sm, ⌈αLm⌉),
387
+ (20)
388
+
389
+ Algorithm 1: Knowledge-driven Meta Training Phase
390
+ Initialization: �
391
+ Nue, �
392
+ Nslot, T , α, β, g, ǫ, �Θ;
393
+ Formulate the feature basis using (11) to (12);
394
+ for j = 1, . . . , T do
395
+ Construct structure of Tj using (9), (10) and (13)
396
+ to (15);
397
+ for m = 1, . . . , Nue,j do
398
+ Consturt structure of UE m using (16) to (19);
399
+ for n = 1, . . . , Nslot,j do
400
+ Generate a CSI of slot n using (20) to (23);
401
+ end
402
+ end
403
+ end
404
+ Meta training by iterating (24).
405
+ Fm,n = rand( �
406
+ Fm, ⌈βMm⌉),
407
+ (21)
408
+ where the parameters α ∈ (0, 1] and β ∈ (0, 1] are set to scale
409
+ the diversity of the feature of each slot. Consequently, a CSI
410
+ sample for the n-th slot of the m-th UE in task Tj can be
411
+ generated as
412
+ Wj
413
+ m,n = Spj(:, Sm,n)�EFH(:, Fm,n),
414
+ (22)
415
+ where the elements in �E ∈ C|Sm,n|×|Fm,n| are indepen-
416
+ dently sampled from complex normal distribution CN(0, 1).
417
+ A subband-level normalization should be also performed for
418
+ 1 ≤ l ≤ Nsb using
419
+ Wj
420
+ m,n(:, l) =
421
+ Wj
422
+ m,n(:, l)
423
+ ||Wj
424
+ m,n(:, l)||2
425
+ .
426
+ (23)
427
+ Through the procedure of (9) to (23) for generating each CSI
428
+ sample of each UE, the meta task environment Tmeta can be
429
+ finally constructed.
430
+ Utilizing the meta task environment Tmeta, the meta training
431
+ procedure can be conducted to solve (6). The parameters of
432
+ the DL model of CSI feedback is randomly initialized by �Θ.
433
+ For the j-th task Tj in the meta task environment Tmeta, �Θ
434
+ can be updated with
435
+ �Θ = �Θ + ǫ(Ug
436
+ Tj(�Θ) − �Θ),
437
+ (24)
438
+ where Ug
439
+ Tj(�Θ) is the operator that updates �Θ for g training
440
+ steps on task Tj, and ǫ denotes the step size of meta training.
441
+ After that, the obtained �Θ can be utilized as initialization for
442
+ further fast retraining on a new target task of scenario. The
443
+ proposed algorithm for knowledge-driven meta training phase
444
+ is summarized in Algorithm 1.
445
+ B. Knowledge-driven Target Retraining Phase
446
+ 1) Statistical Feature of Channel: In this part, the statistical
447
+ features of the channel in both spatial domain and time delay
448
+ domain are explored. Specifically, for a specific UE in the
449
+ target scenario, denote the actually collected �
450
+ Nslot channel
451
+ samples in time domain as H = { �H1, ..., �H �
452
+ Nslot}, where each
453
+ channel sample �Ht ∈ CNr×Nt×Nd, 1 ≤ t ≤ �
454
+ Nslot.
455
+ Firstly, the statistical feature in delay domain can be
456
+ described by the power-delay spectrum. Denote
457
+ �H′
458
+ t,d
459
+
460
+ CNr×Nt, 1 ≤ d ≤ Nd as the d-th delay of the t-th channel
461
+ sample �Ht, the power of the d-th delay can be calculated as
462
+ ˆpd =
463
+ 1
464
+ NtNr �
465
+ Nslot
466
+
467
+ Nslot
468
+
469
+ t=1
470
+ || �H′
471
+ t,d||2
472
+ F,
473
+ (25)
474
+ Secondly, the statistical feature in spatial domain can be
475
+ demonstrated by the self-correlation matrices of the transmit-
476
+ ting and receiving antenna ports, which can be calculated as
477
+ Rtx
478
+ d =
479
+ Nt
480
+ � �
481
+ Nslot
482
+ t=1
483
+ �H′H
484
+ t,d �H′
485
+ t,d
486
+ Tr(� �
487
+ Nslot
488
+ t=1
489
+ �H′H
490
+ t,d �H′
491
+ t,d)
492
+ ,
493
+ (26)
494
+ Rrx
495
+ d =
496
+ Nr
497
+ � �
498
+ Nslot
499
+ t=1
500
+ �H′
501
+ t,d �H′H
502
+ t,d
503
+ Tr(� �
504
+ Nslot
505
+ t=1
506
+ �H′
507
+ t,d �H′H
508
+ t,d)
509
+ ,
510
+ (27)
511
+ respectively, where the trace operation Tr(·) is performed for
512
+ normalization. Then the kronecker product is implemented
513
+ on the transmitting and receiving self-correlation matrices to
514
+ obtain the joint spatial feature as
515
+ Rd = Rrx
516
+ d ⊗ Rtx
517
+ d ∈ CNtNr×NtNr,
518
+ (28)
519
+ It should be noted that the dataset of the target scenario
520
+ could be very small, and thus it is not sufficient for training
521
+ autoencoder with superior CSI feedback and to ensure recov-
522
+ ery performance, even though it is able to converge quickly
523
+ based on the initialization �Θ obtained by meta training phase.
524
+ Therefore, it is necessary to consider a data augmentation
525
+ seeded by H exploiting the knowledge of statistical features
526
+ in spatial and delay domain.
527
+ The intrinsic knowledge of statistical features of the channel
528
+ for a specific UE can be completely described by ˆpd and
529
+ Rd, 1 ≤ d ≤ Nd. Therefore, to align with the statistical
530
+ features of the collected channel samples, the augmented
531
+ channel for the d-th delay ˆhaug
532
+ d
533
+ should satisfy
534
+ E[ˆhaug
535
+ d
536
+ (ˆhaug
537
+ d
538
+ )H] = ˆpdRd.
539
+ (29)
540
+ 2) Knowledge-driven Target Retraining: The knowledge-
541
+ driven target retraining is introduced with data augmentation
542
+ inspired by (29). Firstly, SVD is performed on Rd, i.e.,
543
+ Ud, Dd, Vd = svd(Rd),
544
+ (30)
545
+ where Vd = UH
546
+ d because of Rd = RH
547
+ d .
548
+ Secondly, the augmented channel sample for the d-th delay
549
+ can be generated by conducting
550
+ ˆhaug
551
+ d
552
+ =
553
+
554
+ ˆpdUdD
555
+ 1
556
+ 2
557
+ d n,
558
+ (31)
559
+ where the random vector n ∈ CNtNr×1 ∼ CN(0, 1).
560
+ Next, ˆhaug
561
+ d
562
+ can be reshaped as the channel matrix �Haug
563
+ d
564
+
565
+ CNr×Nt. By concatenating all Nd augmented channel matri-
566
+ ces, the augmented channel sample can be obtained as
567
+ Haug = [ �Haug
568
+ 1
569
+ , ..., �Haug
570
+ Nd ],
571
+ (32)
572
+
573
+ Algorithm 2: Knowledge-driven Target Retraining
574
+ Phase
575
+ Initialization:H, Naug, g′;
576
+ Calculate statistical delay power spectrum using (25);
577
+ for q = 1, . . . , �
578
+ Nue do
579
+ for d = 1, . . . , Ndelay do
580
+ Data augmentation using (26) to (32) and (1)
581
+ to (3);
582
+ end
583
+ end
584
+ Target retraining using (33).
585
+ where Haug ∈ CNr×Nt×Nd. Then the augmented CSI eigen-
586
+ vector sample Waug can be finally obtained by implementing
587
+ (1) to (3) on Haug.
588
+ For each UE, the total Naug channel samples can be
589
+ provided with Naug randomly generated vectors n. Moreover,
590
+ for Nue UEs, we can generate totally NueNaug augmented CSI
591
+ eigenvector samples that can be used to construct the target
592
+ task dataset T aug
593
+ target.
594
+ Based on the target task dataset T aug
595
+ target and the initialization
596
+ �Θ obtained in knowledge-driven meta training phase, (7) can
597
+ be solved with higher SGCS using a few training steps, i.e.,
598
+ Φ = Ug
599
+ Ttarget(�Θ).
600
+ (33)
601
+ The proposed algorithm for knowledge-driven target retraining
602
+ phase can be summarized in Algorithm 2.
603
+ IV. SIMULATION RESULTS
604
+ The
605
+ simulation
606
+ results
607
+ are
608
+ provided in
609
+ this
610
+ section.
611
+ Knowledge-driven scheme in meta training phase (KMeta-
612
+ *) and target retraing phase (*-KAug) are evaluated, where
613
+ ‘None’ denotes no knowledge-driven schemes are used. The
614
+ simulation parameters are listed in Table I. CDL-C [10]
615
+ channel model with delay spread 300 ns and random dis-
616
+ tributed UE with speed 300 km/h are utilized as actually
617
+ collected channels. The training was performed three times
618
+ with different random seeds, one of which is shown since the
619
+ TABLE I
620
+ BASIC SIMULATION PARAMETERS
621
+ Parameter
622
+ Value
623
+ System bandwidth
624
+ 10MHz
625
+ Carrier frequency
626
+ 3.5GHz
627
+ Subcarrier spacing
628
+ 15KHz
629
+ Subcarriers number Nsc
630
+ 624
631
+ Subband number Nsb
632
+ 13
633
+ Horizontal Tx antenna ports per polarization Nh
634
+ 8
635
+ Vertical Tx antenna ports per polarization Nv
636
+ 2
637
+ Tx antenna ports Nt
638
+ 32
639
+ Rx antennas Nr
640
+ 4
641
+ Meta task enviroment size T
642
+ 8000
643
+ Meta training step size ǫ
644
+ 0.25
645
+ Step number per task g
646
+ 32
647
+ Spatial diversity degree Ltask
648
+ 6
649
+ Frequency diversity degree Mtask
650
+ 6
651
+ Spatial diversity scale α
652
+ 0.75
653
+ Frequency diversity scale β
654
+ 0.75
655
+ 0
656
+ 500
657
+ 1000
658
+ 1500
659
+ 2000
660
+ Steps
661
+ 0
662
+ 0.1
663
+ 0.2
664
+ 0.3
665
+ 0.4
666
+ 0.5
667
+ 0.6
668
+ 0.7
669
+ 0.8
670
+ 0.9
671
+ SGCS
672
+ None-None
673
+ None-KAug
674
+ KMeta-None
675
+ KMeta-KAug
676
+ eTypeII
677
+ Fig. 3.
678
+ Convergence process of target retraining phase with the number of
679
+ training steps on CDL-C channel ( �
680
+ Nue = 300, �
681
+ Nslot = 10, Naug = 100).
682
+ results are almost equal. Moreover, the Transformer backbone
683
+ for CSI feedback [4] with number of feedback bits B = 64 is
684
+ implemented in evaluation.
685
+ Fig. 3 show the convergence process of target retraining
686
+ phase with the number of training steps. Note that the vertical
687
+ axis represents the best achieved SGCS on the test set within
688
+ the steps. Here we consider the eTypeII codebook and DL-
689
+ based method without meta training and target augmentation
690
+ (None-None) as the baselines. Note that since the existing
691
+ meta-learning methods for CSI require a large amount of
692
+ multi-scenario real data, and our method lever knowledge for
693
+ meta-learning, it is unfair to compare our method with them
694
+ in terms of data cost. In terms of convergence speed, it can
695
+ be noticed that the proposed KMeta-None require fewer train-
696
+ ing steps to achieve convergence than None-None. Even on
697
+ augmented data, KMeta-KAug can also fit more quickly than
698
+ None-KAug. From the perspective of feedback performance,
699
+ the knowledge-driven meta training brings higher SGCS since
700
+ KMeta-None outperforms None-None. Moreover, the methods
701
+ of *-KAug outperform the methods of *-None, which reveals
702
+ that the knowledge-driven target retraining phase can further
703
+ effectively improve the SGCS performance.
704
+ In Fig. 4 and Fig. 5 we compare the SGCS performance
705
+ training 2000 steps on different number of seeded UEs �
706
+ Nue
707
+ and slots �
708
+ Nslot, respectively. It is observed that the proposed
709
+ knowledge-driven method of KMeta-KAug outperforms tra-
710
+ ditional eTypeII codebook and basic DL-based method None-
711
+ None. Specifically, the performance gaps between the methods
712
+ KMeta-* and None-* can respectively demonstrate the gain
713
+ provided by proposed knowledge-driven meta training. The
714
+ gaps between *-KAug and *-None respectively initimate the
715
+ gain obtained from proposed knowledge-driven target retrain-
716
+ ing. Moervoer, in Fig. 5, the performance of None-KAug
717
+ improves as the number of slots �
718
+ Nslot increased, while the
719
+ performance of KMeta-KAug stays almost unchanged, which
720
+ implies that the proposed knowledge-driven target retraining
721
+ requires fewer slots to achieve the performance ceiling when
722
+ it is enhanced by proposed knowledge-driven meta training.
723
+ Table II illustrates the SGCS performance of the proposed
724
+ method and the existing data augmentation methods [4] for
725
+ DL-based CSI feedback including noise injection, flipping,
726
+
727
+ 50
728
+ 100
729
+ 150
730
+ 200
731
+ 250
732
+ 300
733
+ 0.4
734
+ 0.5
735
+ 0.6
736
+ 0.7
737
+ 0.8
738
+ SGCS
739
+ None-None
740
+ None-KAug
741
+ KMeta-None
742
+ KMeta-KAug
743
+ eTypeII
744
+ Fig. 4.
745
+ Comparison of SGCS for varying number of seeded UEs �
746
+ Nue on
747
+ CDL-C channel, fixing number of slots per UE �
748
+ Nslot = 10.
749
+ 10
750
+ 20
751
+ 30
752
+ 40
753
+ 50
754
+ 60
755
+ 0.55
756
+ 0.6
757
+ 0.65
758
+ 0.7
759
+ 0.75
760
+ 0.8
761
+ 0.85
762
+ SGCS
763
+ None-None
764
+ None-KAug
765
+ KMeta-None
766
+ KMeta-KAug
767
+ eTypeII
768
+ Fig. 5. Comparison of SGCS for varying number of slots per UE �
769
+ Nslot on
770
+ CDL-C channel, fixing number of UEs �
771
+ Nue = 300.
772
+ cyclic shift, random shift and rotation. It is observed that
773
+ the proposed method can obtain 0.1953 SGCS performance
774
+ gain in comparison to none augmantation. Specifically, the
775
+ performance gap between proposed method and other com-
776
+ petitors is at least 0.1526, which demonstrates that exploiting
777
+ communication knowledge effectively bring performance gain.
778
+ The link-level block error rate (BLER) performance is
779
+ presented in Fig. 6, where omnidirectional and directional
780
+ antennas is deployed at UE and BS, respectively. The gap
781
+ between KMeta-None and None-None proves the performance
782
+ gain of knowledge-driven meta training phase. The gap be-
783
+ tween None-KAug and None-None proves the performance
784
+ gain of knowledge-driven target retraining phase. Since the
785
+ method of KMeta-Aug outperforms other competitors in terms
786
+ of BLER, the advantages and application potential of proposed
787
+ TABLE II
788
+ COMPARISON OF DIFFERENT AUGMENT SCHEMES
789
+ Scheme
790
+ SGCS
791
+ None
792
+ 0.5977
793
+ Noise Injection
794
+ 0.6189
795
+ Flipping
796
+ 0.6171
797
+ Cyclic Shift
798
+ 0.6404
799
+ Random Shift
800
+ 0.6225
801
+ Rotation
802
+ 0.6178
803
+ Proposed
804
+ 0.7930
805
+ Note 1: �
806
+ Nue = 300 and �
807
+ Nslot = 10
808
+ Note 2: All methods augments to 30k samples, except the flipping which
809
+ can only augment to 6k samples due to method limitation.
810
+ -1
811
+ 0
812
+ 1
813
+ 2
814
+ 3
815
+ 4
816
+ 5
817
+ 6
818
+ SNR (dB)
819
+ 10-3
820
+ 10-2
821
+ 10-1
822
+ 100
823
+ BLER
824
+ KMeta-KAug
825
+ KMeta-None
826
+ None-KAug
827
+ None-None
828
+ eTypeII
829
+ Fig. 6. Link-level BLER performance comparison trained on CDL-C300 for
830
+ different solutions ( �
831
+ Nue = 300, �
832
+ Nslot = 10).
833
+ knowledge-driven approach are well demonstrated.
834
+ V. CONCLUSION
835
+ In this paper, we propose a knowledge-driven meta-learning
836
+ method for CSI feedback, where the meta task environment for
837
+ meta training is constructed based on the intrinsic knowledge
838
+ of spatial-frequency feature of CSI eigenvector. Initialized
839
+ by the knowledge-driven meta training phase, the DL model
840
+ is capable of achieving rapid convergence by retraining on
841
+ the target task dataset, which is augmented from only a few
842
+ actually collected seeded data with the assistance of the knowl-
843
+ edge of statistical feature of wireless channels. Simulation
844
+ results demonstrate the superiority of the approach from the
845
+ perspective of feedback performance and convergence speed.
846
+ REFERENCES
847
+ [1] 3GPP, “3GPP TS 38.214 v17.2.0 3rd Generation Partnership Project;
848
+ technical specification group radio access network; NR; physical layer
849
+ procedures for data (release 17),” Tech. Rep., 2022.
850
+ [2] C.-K. Wen, W.-T. Shih, and S. Jin, “Deep learning for massive MIMO
851
+ CSI feedback,” IEEE Wireless Communications Letters, vol. 7, no. 5,
852
+ pp. 748–751, 2018.
853
+ [3] X. Li and H. Wu, “Spatio-temporal representation with deep neural
854
+ recurrent network in MIMO CSI feedback,” IEEE Wireless Communi-
855
+ cations Letters, vol. 9, no. 5, pp. 653–657, 2020.
856
+ [4] H. Xiao, Z. Wang, D. Li, W. Tian, X. Liu, W. Liu, S. Jin, J. Shen,
857
+ Z. Zhang, and N. Yang, “AI enlightens wireless communication: A trans-
858
+ former backbone for CSI feedback,” arXiv preprint arXiv:2206.07949,
859
+ 2022.
860
+ [5] J. Guo, C.-K. Wen, and S. Jin, “CAnet: Uplink-aided downlink channel
861
+ acquisition in FDD massive MIMO using deep learning,” IEEE Trans-
862
+ actions on Communications, vol. 70, no. 1, pp. 199–214, 2021.
863
+ [6] H. Xiao, Z. Wang, W. Tian, X. Liu, W. Liu, S. Jin, J. Shen, Z. Zhang, and
864
+ N. Yang, “AI enlightens wireless communication: Analyses, solutions
865
+ and opportunities on CSI feedback,” China Communications, vol. 18,
866
+ pp. 104–116, 2021.
867
+ [7] W. Liu, W. Tian, H. Xiao, S. Jin, X. Liu, and J. Shen, “EVCsiNet:
868
+ Eigenvector-based CSI feedback under 3GPP link-level channels,” IEEE
869
+ Wireless Communications Letters, vol. 10, no. 12, pp. 2688–2692, 2021.
870
+ [8] J. Zeng, J. Sun, G. Gui, B. Adebisi, T. Ohtsuki, H. Gacanin, and
871
+ H. Sari, “Downlink CSI feedback algorithm with deep transfer learning
872
+ for FDD massive MIMO systems,” IEEE Transactions on Cognitive
873
+ Communications and Networking, vol. 7, no. 4, pp. 1253–1265, 2021.
874
+ [9] B. Tolba, A. H. Abd El-Malek, M. Abo-Zahhad, and M. Elsabrouty,
875
+ “A meta learner autoencoder for channel state information feedback in
876
+ massive MIMO systems,” in 2021 28th International Conference on
877
+ Telecommunications (ICT).
878
+ IEEE, 2021, pp. 1–5.
879
+ [10] 3GPP, “3GPP TR 38.901 v17.0.0 3rd Generation Partnership Project;
880
+ technical specification group radio access network; study on channel
881
+ model for frequencies from 0.5 to 100 GHz (release 17),” Tech. Rep.,
882
+ 2022.
883
+
K9FRT4oBgHgl3EQfEDfx/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,386 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf,len=385
2
+ page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
3
+ page_content='13475v1 [eess.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
4
+ page_content='SP] 31 Jan 2023 A Knowledge-Driven Meta-Learning Method for CSI Feedback Han Xiao1, Wenqiang Tian1, Wendong Liu1, Zhi Zhang1, Zhihua Shi1, Li Guo1 and Jia Shen1 1Department of Standardization, OPPO Research Institute, Beijing, China Email: {xiaohan1, tianwenqiang, liuwendong1, zhangzhi, szh, v-guoli, sj}@oppo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
5
+ page_content='com Abstract—Accurate and effective channel state information (CSI) feedback is a key technology for massive multiple-input and multiple-output (MIMO) systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
6
+ page_content=' Recently, deep learning (DL) has been introduced to enhance CSI feedback in massive MIMO application, where the massive collected training data and lengthy training time are costly and impractical for realistic deployment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
7
+ page_content=' In this paper, a knowledge-driven meta-learning solution for CSI feedback is proposed, where the DL model initialized by the meta model obtained from meta training phase is able to achieve rapid convergence when facing a new scenario during the target retraining phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
8
+ page_content=' Specifically, instead of training with massive data collected from various scenarios, the meta task environment is constructed based on the intrinsic knowledge of spatial-frequency characteristics of CSI for meta training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
9
+ page_content=' Moreover, the target task dataset is also augmented by exploiting the knowledge of statistical characteristics of channel, so that the DL model initialized by meta training can rapidly fit into a new target scenario with higher performance using only a few actually collected data in the target retraining phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
10
+ page_content=' The method greatly reduces the demand for the number of actual collected data, as well as the cost of training time for realistic deployment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
11
+ page_content=' Simulation results demonstrate the superiority of the proposed approach from the perspective of feedback performance and convergence speed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
12
+ page_content=' Index Terms—CSI feedback, meta-learning, MIMO, knowledge-driven I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
13
+ page_content=' INTRODUCTION Accurate and effective channel state information (CSI) feedback has been intensively studied for supporting massive multiple-input and multiple-output (MIMO) systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
14
+ page_content=' Along with the standardization in the 3rd Generation Partnership Project (3GPP), various solutions based on the TypeI and enhanced TypeII (eTypeII) codebook have been proposed to improve the CSI feedback performance [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
15
+ page_content=' However, to resolve the issues of larger feedback overhead and insufficient recovery accuracy, methods for further enhancing the CSI feedback are still being actively studied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
16
+ page_content=' Recently, deep learning (DL) has been introduced for CSI feedback enhancement, where the DL model can achieve higher CSI recovery accuracy with reduced feedback overhead.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
17
+ page_content=' An autoencoder method of CsiNet for CSI feedback [2] is first proposed, where an encoder at the user equipment (UE) com- presses the channel matrix and a decoder at the base station (BS) recovers the corresponding channel matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
18
+ page_content=' Subsequently, a series of follow-up works are conducted under various condi- tions [3]–[7] .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
19
+ page_content=' However, there are still some challenges for DL- based CSI feedback.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
20
+ page_content=' First, the generalization issue should be considered since the DL methods tend to express the scenario- specific property.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
21
+ page_content=' Moreover, plenty of training data of target scenario is quite impractical for deployment due to the expense and long-time training and collecting data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
22
+ page_content=' Meta-learning is utilized for CSI feedback in [8] and [9], where the model is initialized by the meta model obtained in meta training phase with massive CSI samples corresponding to multiple various scenarios, and then achieves quick convergence with small amount of CSI data in a new target scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
23
+ page_content=' However, the above meta-learning based solutions still require massive collected data for the meta training phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
24
+ page_content=' Moreover, in target retraining phase the model is retrained on the original small amount of data within short time, thus it might suffer from performance loss in the new target scenario in comparison with models trained on sufficient data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
25
+ page_content=' Further, the above methods also fail to consider the knowledge of intrinsic characteristics of the wireless communication during both phases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
26
+ page_content=' In this paper, a novel knowledge-driven meta-learning method for CSI feedback is proposed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
27
+ page_content=' Specifically, instead of training with massive CSI data collected from different wireless scenarios in meta training phase, one can construct the meta task environment by exploring the intrinsic knowledge of spatial-frequency characteristic of CSI eigenvector for meta training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
28
+ page_content=' After the DL model obtains the initialization in meta training phase, it is capable of achieving rapid convergence by retraining on target task dataset, which is augmented from only small amount of actually collected seeded data with the assistance of the knowledge of statistical feature of wireless channels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
29
+ page_content=' Simulation results illustrate the superiority of the proposed method from the perspective of feedback performance and convergence speed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
30
+ page_content=' Notations: uppercase and lowercase letters denote scalars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
31
+ page_content=' Boldface uppercase and boldface lowercase letters denote ma- trices and vectors, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
32
+ page_content=' Calligraphic uppercase letters denote sets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
33
+ page_content=' A(:, B) and A(B, :) denote the sub-matrices of A that consist of the columns and rows indexed by set B, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
34
+ page_content=' E{·} denotes expectation and Tr{·} denotes trace.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
35
+ page_content=' AH denotes the Hermitian matrix of A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
36
+ page_content=' rand(A, a) denotes the random sampling of a samples from set A without re- placement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
37
+ page_content=' The sets of real and complex numbers are denoted by R and C, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
38
+ page_content=' | · | denotes the cardinality of a set or the absolute value of a scalar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
39
+ page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
40
+ page_content=' SYSTEM DESCRIPTION A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
41
+ page_content=' System Model A MIMO system with Nt = NhNv transmitting anten- nas at BS and Nr receiving antennas at UE is considered, where Nh and Nv are the numbers of horizontal and vertical antenna ports, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
42
+ page_content=' Note that our proposed methods are suitable for antennas with either dual or single polariza- tion, and that single polarization is considered to illustrate the basic principle in this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
43
+ page_content=' The downlink channel in time domain can be denoted as a three-dimensional matrix �H ∈ CNr×Nt×Nd, where Nd is the number of paths with various delays.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
44
+ page_content=' By conducting Discrete Fourier transform (DFT) over the delay-dimension of the time-domain downlink channel matrix �H, the downlink channel in frequency domain �H ∈ CNr×Nt×Nsc can be written as �H = � �H1, �H2, · · · , �HNsc � , (1) where Nsc is the number of subcarriers, and Hk ∈ CNr×Nt, 1 ≤ k ≤ Nsc denotes the downlink channel on the kth subcarrier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
45
+ page_content=' Normally, the CSI eigenvector feedback is per- formed on each subband which consists of Ngran subcarriers with Nsc = NgranNsb.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
46
+ page_content=' Assuming the rank 1 configuration for downlink transmission, the corresponding eigenvector for the lth subband wl ∈ CNt×1 with ||wl||2 = 1, can be calculated by the eigenvector decomposition on the subband as \uf8eb \uf8ed 1 Ngran lNgran � k=(l−1)Ngran+1 �HH k �Hk \uf8f6 \uf8f8 wl = λlwl, (2) where 1 ≤ l ≤ Nsb and λl represents the corresponding maximum eigenvalue for the l-th subband.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
47
+ page_content=' Therefore, the CSI eigenvector for all Nsb subbands can be written as W = � w1, w2, · · · , wNsb � ∈ CNt×Nsb, (3) wherein total NsbNt complex coefficients need to be com- pressed at the UE and then recovered at the BS side.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
48
+ page_content=' Generally, the optimization objective for CSI feedback can be given as min F −ρ(W, W′) = min F − 1 Nsb Nsb � l=1 � ∥wHw′∥2 ∥w∥2∥w′∥2 �2 , (4) where ρ(·, ·) ∈ [0, 1] denotes the squared generalized cosine similarity (SGCS), ∥·∥2 denotes ℓ2 norm, wl and w′ l represent the original and recovered CSI eigenvector of the l-th sub- band, respectively, F represents the alternative CSI feedback schemes such as TypeI, eTypeII and DL-based autoencoder.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
49
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
50
+ page_content=' DL-based CSI Feedback The architecture of DL-based CSI feedback using autoen- coder is introduced in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
51
+ page_content=' 1, where the neural network (NN) encoder and decoder, fe(·;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
52
+ page_content=' ΘE) and fd(·;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
53
+ page_content=' ΘD) with trainable parameters Θ = {ΘE, ΘD} are deployed at UE and BS, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
54
+ page_content=' Thus the DL-based autoencoder fa(·;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
55
+ page_content=' Θ) with trainable parameters Θ = {ΘE, ΘD} can be represented as W′ = fd(fe(W;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
56
+ page_content=' ΘE);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
57
+ page_content=' ΘD) = fa(W;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
58
+ page_content=' Θ), (5) UE BS W W� Encoder �e Decoder �d Bitstream b SGCS Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
59
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
60
+ page_content=' Illustration of DL-based CSI feedback.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
61
+ page_content=' where the encoder first compresses and quantizes the original CSI eigenvector W to a bitstream b of length B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
62
+ page_content=' Then the decoder uses b to recover W′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
63
+ page_content=' During training phase, the encoder and decoder are jointly optimized to solve (4) with sufficient numbers of CSI eigenvector samples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
64
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
65
+ page_content=' Meta-learning based CSI Feedback Generally, the goal of meta-learning based CSI feedback is to find a good initialization of Θ = {ΘE, ΘD}, so that the autoencoder can converge quickly with a small amount of CSI samples and a few training steps for a new scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
66
+ page_content=' Specifi- cally, the procedure of meta-learning based CSI feedback can be divided into two phases, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
67
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
68
+ page_content=', the meta training phase and target retraining phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
69
+ page_content=' During meta training phase, the model is trained over a big dataset consisting of T CSI tasks of diverse scenarios, which can be defined as meta task environment Tmeta = {T1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
70
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
71
+ page_content=', TT }, wherein each task Tj = {Wj 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
72
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
73
+ page_content=', Wj T }, 1 ≤ j ≤ T consists of |Tj| CSI samples denoted as Wj i , 1 ≤ i ≤ Tj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
74
+ page_content=' Based on the meta task environment Tmeta, meta-learning algorithms can be performed to learn the initial parameters �Θ, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
75
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
76
+ page_content=', min �Θ ETj⊂Tmeta � −ρ′(Tj, fa(Tj;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
77
+ page_content=' Ug Tj(�Θ))) � , (6) where Ug Tj(�Θ) is the operator that updates �Θ for g training steps using data sampled from Tj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
78
+ page_content=' The initialization �Θ learnt in (6) is expected to has the same ability of quick adaptation with small amount of data on an unobserved target task Ttarget.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
79
+ page_content=' Secondly, the target retraining phase can be formulated as min Φ=Ug Ttarget (�Θ) −ρ′(Ttarget, fa(Ttarget;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
80
+ page_content=' Φ)), (7) where Φ denotes the possible parameter sets trained on Ttarget after g retraining steps based on the initialization �Θ, which indicates that the final parameters on a new target task of scenario can be rapidly obtained with only a few retraining steps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
81
+ page_content=' However, the existing meta-leaning based CSI feedback still has to face two major challenges, which our knowledge-driven meta-learning method aims to solve.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
82
+ page_content=' During meta training phase, it requires sufficient samples to construct the meta task environment Tmeta to solve (6), which is extremely costly since it is impractical to collect all existing types of wireless scenarios with adequate diversity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
83
+ page_content=' During target retraining phase, despite the rapid conver- gence for solving (7) using small amount of data Ttarget based on the initialization �Θ, it is always difficult to achieve comparable performance with using large amount of CSI data in target scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
84
+ page_content=' Knowledge Meta Training Phase Target Retraining Phase Initialization Meta Task Environment Meta Model Seeded Data Knowledge Augmented Data Target Scenario Target Model UE BS � Encoder � Decoder � Bitstream SGCS Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
85
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
86
+ page_content=' Proposed knowledge-driven meta-learning framework for CSI feedback.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
87
+ page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
88
+ page_content=' KNOWLEDGE-DRIVEN META-LEARNING FOR CSI FEEDBACK A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
89
+ page_content=' Knowledge-driven Meta Training Phase 1) Spatial-Frequency Characteristic: Generally, consider- ing the intrinsic structure of the CSI eigenvector, W ∈ CNt×Nsb can be decomposed as W = SEFH (8) where S ∈ CNt×Nt is constructed with Nt orthogonal basis vectors in spatial domain and F ∈ CNsb×Nsb is constructed with Nsb orthogonal basis vectors in frequency domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
90
+ page_content=' Specifically, both S and F are unitary matrices, which indicate the full-rank spatial-frequency characteristic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
91
+ page_content=' The projection coefficient matrix E ∈ CNt×Nsb represents that each CSI eigenvector W can be completely expressed by the linear combination of the orthogonal basis vectors in S and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
92
+ page_content=' Obviously, the distribution of the elements in E with relatively larger amplitude determines the dominant spatial-frequency feature of W given the same S and F, where the dominant spatial-frequency features can be considered as the intrinsic knowledge and hence can be learnt by the DL model during the meta-training phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
93
+ page_content=' 2) Knowledge-driven Meta Training: Inspired by the intrin- sic knowledge of spatial-frequency feature in section III-A1, a knowledge-driven algorithm is proposed to solve (6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
94
+ page_content=' During the meta training phase, the meta task environment Tmeta = {T1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
95
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
96
+ page_content=', TT } consisting of T tasks is firstly established, where the construction approach of CSI eigenvector in each task explores the CSI decomposition formula in section III-A1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
97
+ page_content=' Each task usually consists of different CSI eigenvectors from specific number of UEs that can be sampled on various number of slots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
98
+ page_content=' Specifically, denote Nue,j and Nslot,j as the number of UEs and slots for the j-th task Tj, 1 ≤ j ≤ T , respectively, which can be set as Nue,j = rand({1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
99
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
100
+ page_content=', � Nue}, 1), (9) Nslot,j = rand({1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
101
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
102
+ page_content=', � Nslot}, 1), (10) where Nslot,j Nue,j = |Tj|, � Nue and � Nslot denote the maxi- mum number of UEs and maximum number of slots of CSI that can be generated in one task, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
103
+ page_content=' Moreover, according to the intrinsic knowledge of spatial- frequency feature, to generate the CSI samples in the j-th task Tj, P groups of spatial orthogonal basis vector and one group of frequency orthogonal basis vector can be firstly given as Sp = [sp,1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
104
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
105
+ page_content=', sp,Nt] ∈ CNt×Nt, 1 ≤ p ≤ P, (11) F = [f1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
106
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
107
+ page_content=', fNsb] ∈ CNsb×Nsb, (12) respectively, where each column of Sp and F is an orthogonal basis vector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
108
+ page_content=' Specifically, each basis in Sp indicates a beam direction in spatial domain, and multiple groups of orthogonal basis vectors are designed in order to improve the diversity of spatial features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
109
+ page_content=' Here we introduce a Schmidt orthogo- nalization method for obtaining the basis vector groups Sp and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
110
+ page_content=' For each group of spatial orthogonal basis vector Sp, 1 ≤ p ≤ P, and the frequency orthogonal basis vector group F, the Schmidt orthogonalization can be performed on three full-rank random matrices Xh p ∈ CNh×Nh ∼ CN(0, 1), Xv p ∈ CNv×Nv ∼ CN(0, 1) and Xf ∈ CNsb×Nsb ∼ CN(0, 1), obtaining the orthogonal matrices Uh p, Uv p and Uf, respec- tively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
111
+ page_content=' F = Uf can be utilized as frequency orthogonal basis vector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
112
+ page_content=' The p-th spatial orthogonal basis vector group can be obtained by performing kronecker product, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
113
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
114
+ page_content=', Sp = Uh p⊗Uv p Next, the method of generating CSI samples for the j-th task Tj is introduced.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
115
+ page_content=' The group index pj for task Tj are first randomized by {pj} = rand({1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
116
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
117
+ page_content=', P}, 1), (13) and the indices of dominant spatial and frequency feature vectors are also randomized by �Sj = rand({1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
118
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
119
+ page_content=', Nt}, Ltask), (14) �Fj = rand({1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
120
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
121
+ page_content=', Nsb}, Mtask), (15) respectively, where the parameters Ltask ≤ Nt and Mtask ≤ Nsb are defined to constrain the degree of feature diversity of the task in spatial and frequency domain, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
122
+ page_content=' For the m-th UE 1 ≤ m ≤ Nue in task Tj, the indices of the dominant spatial and frequency feature vectors are also randomized by �Sm = rand( �Sj, Lm), (16) �Fm = rand( � Fj, Mm), (17) respectively, where the degree of feature diversity in spatial and frequency domain Lm and Mm are both UE-specific, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
123
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
124
+ page_content=', {Lm} = rand({1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
125
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
126
+ page_content=', Ltask}, 1), (18) {Mm} = rand({1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
127
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
128
+ page_content=', Mtask}, 1), (19) respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
129
+ page_content=' Similarly for the n-th slot 1 ≤ n ≤ Nslot of the m-th UE in task Tj, the dominant spatial and frequency feature vectors are respectively selected from the corresponding dominant vectors of the UE, so that the feature is maintained for the m-th UE but distinguished between different slots, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
130
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
131
+ page_content=', Sm,n = rand( �Sm, ⌈αLm⌉), (20) Algorithm 1: Knowledge-driven Meta Training Phase Initialization: � Nue, � Nslot, T , α, β, g, ǫ, �Θ;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
132
+ page_content=' Formulate the feature basis using (11) to (12);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
133
+ page_content=' for j = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
134
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
135
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
136
+ page_content=' , T do Construct structure of Tj using (9), (10) and (13) to (15);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
137
+ page_content=' for m = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
138
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
139
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
140
+ page_content=' , Nue,j do Consturt structure of UE m using (16) to (19);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
141
+ page_content=' for n = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
142
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
143
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
144
+ page_content=' , Nslot,j do Generate a CSI of slot n using (20) to (23);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
145
+ page_content=' end end end Meta training by iterating (24).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
146
+ page_content=' Fm,n = rand( � Fm, ⌈βMm⌉), (21) where the parameters α ∈ (0, 1] and β ∈ (0, 1] are set to scale the diversity of the feature of each slot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
147
+ page_content=' Consequently, a CSI sample for the n-th slot of the m-th UE in task Tj can be generated as Wj m,n = Spj(:, Sm,n)�EFH(:, Fm,n), (22) where the elements in �E ∈ C|Sm,n|×|Fm,n| are indepen- dently sampled from complex normal distribution CN(0, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
148
+ page_content=' A subband-level normalization should be also performed for 1 ≤ l ≤ Nsb using Wj m,n(:, l) = Wj m,n(:, l) ||Wj m,n(:, l)||2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
149
+ page_content=' (23) Through the procedure of (9) to (23) for generating each CSI sample of each UE, the meta task environment Tmeta can be finally constructed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
150
+ page_content=' Utilizing the meta task environment Tmeta, the meta training procedure can be conducted to solve (6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
151
+ page_content=' The parameters of the DL model of CSI feedback is randomly initialized by �Θ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
152
+ page_content=' For the j-th task Tj in the meta task environment Tmeta, �Θ can be updated with �Θ = �Θ + ǫ(Ug Tj(�Θ) − �Θ), (24) where Ug Tj(�Θ) is the operator that updates �Θ for g training steps on task Tj, and ǫ denotes the step size of meta training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
153
+ page_content=' After that, the obtained �Θ can be utilized as initialization for further fast retraining on a new target task of scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
154
+ page_content=' The proposed algorithm for knowledge-driven meta training phase is summarized in Algorithm 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
155
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
156
+ page_content=' Knowledge-driven Target Retraining Phase 1) Statistical Feature of Channel: In this part, the statistical features of the channel in both spatial domain and time delay domain are explored.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
157
+ page_content=' Specifically, for a specific UE in the target scenario, denote the actually collected � Nslot channel samples in time domain as H = { �H1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
158
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
159
+ page_content=', �H � Nslot}, where each channel sample �Ht ∈ CNr×Nt×Nd, 1 ≤ t ≤ � Nslot.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
160
+ page_content=' Firstly, the statistical feature in delay domain can be described by the power-delay spectrum.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
161
+ page_content=' Denote �H′ t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
162
+ page_content='d ∈ CNr×Nt,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
163
+ page_content=' 1 ≤ d ≤ Nd as the d-th delay of the t-th channel sample �Ht,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
164
+ page_content=' the power of the d-th delay can be calculated as ˆpd = 1 NtNr � Nslot � Nslot � t=1 || �H′ t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
165
+ page_content='d||2 F,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
166
+ page_content=' (25) Secondly,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
167
+ page_content=' the statistical feature in spatial domain can be demonstrated by the self-correlation matrices of the transmit- ting and receiving antenna ports,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
168
+ page_content=' which can be calculated as Rtx d = Nt � � Nslot t=1 �H′H t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
169
+ page_content='d �H′ t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
170
+ page_content='d Tr(� � Nslot t=1 �H′H t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
171
+ page_content='d �H′ t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
172
+ page_content='d) ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
173
+ page_content=' (26) Rrx d = Nr � � Nslot t=1 �H′ t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
174
+ page_content='d �H′H t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
175
+ page_content='d Tr(� � Nslot t=1 �H′ t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
176
+ page_content='d �H′H t,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
177
+ page_content='d) ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
178
+ page_content=' (27) respectively,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
179
+ page_content=' where the trace operation Tr(·) is performed for normalization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
180
+ page_content=' Then the kronecker product is implemented on the transmitting and receiving self-correlation matrices to obtain the joint spatial feature as Rd = Rrx d ⊗ Rtx d ∈ CNtNr×NtNr, (28) It should be noted that the dataset of the target scenario could be very small, and thus it is not sufficient for training autoencoder with superior CSI feedback and to ensure recov- ery performance, even though it is able to converge quickly based on the initialization �Θ obtained by meta training phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
181
+ page_content=' Therefore, it is necessary to consider a data augmentation seeded by H exploiting the knowledge of statistical features in spatial and delay domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
182
+ page_content=' The intrinsic knowledge of statistical features of the channel for a specific UE can be completely described by ˆpd and Rd, 1 ≤ d ≤ Nd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
183
+ page_content=' Therefore, to align with the statistical features of the collected channel samples, the augmented channel for the d-th delay ˆhaug d should satisfy E[ˆhaug d (ˆhaug d )H] = ˆpdRd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
184
+ page_content=' (29) 2) Knowledge-driven Target Retraining: The knowledge- driven target retraining is introduced with data augmentation inspired by (29).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
185
+ page_content=' Firstly, SVD is performed on Rd, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
186
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
187
+ page_content=', Ud, Dd, Vd = svd(Rd), (30) where Vd = UH d because of Rd = RH d .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
188
+ page_content=' Secondly, the augmented channel sample for the d-th delay can be generated by conducting ˆhaug d = � ˆpdUdD 1 2 d n, (31) where the random vector n ∈ CNtNr×1 ∼ CN(0, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
189
+ page_content=' Next, ˆhaug d can be reshaped as the channel matrix �Haug d ∈ CNr×Nt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
190
+ page_content=' By concatenating all Nd augmented channel matri- ces, the augmented channel sample can be obtained as Haug = [ �Haug 1 , .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
191
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
192
+ page_content=', �Haug Nd ], (32) Algorithm 2: Knowledge-driven Target Retraining Phase Initialization:H, Naug, g′;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
193
+ page_content=' Calculate statistical delay power spectrum using (25);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
194
+ page_content=' for q = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
195
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
196
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
197
+ page_content=' , � Nue do for d = 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
198
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
199
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
200
+ page_content=' , Ndelay do Data augmentation using (26) to (32) and (1) to (3);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
201
+ page_content=' end end Target retraining using (33).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
202
+ page_content=' where Haug ∈ CNr×Nt×Nd.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
203
+ page_content=' Then the augmented CSI eigen- vector sample Waug can be finally obtained by implementing (1) to (3) on Haug.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
204
+ page_content=' For each UE, the total Naug channel samples can be provided with Naug randomly generated vectors n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
205
+ page_content=' Moreover, for Nue UEs, we can generate totally NueNaug augmented CSI eigenvector samples that can be used to construct the target task dataset T aug target.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
206
+ page_content=' Based on the target task dataset T aug target and the initialization �Θ obtained in knowledge-driven meta training phase, (7) can be solved with higher SGCS using a few training steps, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
207
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
208
+ page_content=', Φ = Ug Ttarget(�Θ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
209
+ page_content=' (33) The proposed algorithm for knowledge-driven target retraining phase can be summarized in Algorithm 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
210
+ page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
211
+ page_content=' SIMULATION RESULTS The simulation results are provided in this section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
212
+ page_content=' Knowledge-driven scheme in meta training phase (KMeta- ) and target retraing phase (*-KAug) are evaluated, where ‘None’ denotes no knowledge-driven schemes are used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
213
+ page_content=' The simulation parameters are listed in Table I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
214
+ page_content=' CDL-C [10] channel model with delay spread 300 ns and random dis- tributed UE with speed 300 km/h are utilized as actually collected channels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
215
+ page_content=' The training was performed three times with different random seeds, one of which is shown since the TABLE I BASIC SIMULATION PARAMETERS Parameter Value System bandwidth 10MHz Carrier frequency 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
216
+ page_content='5GHz Subcarrier spacing 15KHz Subcarriers number Nsc 624 Subband number Nsb 13 Horizontal Tx antenna ports per polarization Nh 8 Vertical Tx antenna ports per polarization Nv 2 Tx antenna ports Nt 32 Rx antennas Nr 4 Meta task enviroment size T 8000 Meta training step size ǫ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
217
+ page_content='25 Step number per task g 32 Spatial diversity degree Ltask 6 Frequency diversity degree Mtask 6 Spatial diversity scale α 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
218
+ page_content='75 Frequency diversity scale β 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
219
+ page_content='75 0 500 1000 1500 2000 Steps 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
220
+ page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
221
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
222
+ page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
223
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
224
+ page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
225
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
226
+ page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
227
+ page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
228
+ page_content='9 SGCS None-None None-KAug KMeta-None KMeta-KAug eTypeII Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
229
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
230
+ page_content=' Convergence process of target retraining phase with the number of training steps on CDL-C channel ( � Nue = 300, � Nslot = 10, Naug = 100).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
231
+ page_content=' results are almost equal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
232
+ page_content=' Moreover, the Transformer backbone for CSI feedback [4] with number of feedback bits B = 64 is implemented in evaluation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
233
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
234
+ page_content=' 3 show the convergence process of target retraining phase with the number of training steps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
235
+ page_content=' Note that the vertical axis represents the best achieved SGCS on the test set within the steps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
236
+ page_content=' Here we consider the eTypeII codebook and DL- based method without meta training and target augmentation (None-None) as the baselines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
237
+ page_content=' Note that since the existing meta-learning methods for CSI require a large amount of multi-scenario real data, and our method lever knowledge for meta-learning, it is unfair to compare our method with them in terms of data cost.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
238
+ page_content=' In terms of convergence speed, it can be noticed that the proposed KMeta-None require fewer train- ing steps to achieve convergence than None-None.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
239
+ page_content=' Even on augmented data, KMeta-KAug can also fit more quickly than None-KAug.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
240
+ page_content=' From the perspective of feedback performance, the knowledge-driven meta training brings higher SGCS since KMeta-None outperforms None-None.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
241
+ page_content=' Moreover, the methods of *-KAug outperform the methods of *-None, which reveals that the knowledge-driven target retraining phase can further effectively improve the SGCS performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
242
+ page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
243
+ page_content=' 4 and Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
244
+ page_content=' 5 we compare the SGCS performance training 2000 steps on different number of seeded UEs � Nue and slots � Nslot, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
245
+ page_content=' It is observed that the proposed knowledge-driven method of KMeta-KAug outperforms tra- ditional eTypeII codebook and basic DL-based method None- None.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
246
+ page_content=' Specifically, the performance gaps between the methods KMeta-* and None-* can respectively demonstrate the gain provided by proposed knowledge-driven meta training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
247
+ page_content=' The gaps between *-KAug and *-None respectively initimate the gain obtained from proposed knowledge-driven target retrain- ing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
248
+ page_content=' Moervoer, in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
249
+ page_content=' 5, the performance of None-KAug improves as the number of slots � Nslot increased, while the performance of KMeta-KAug stays almost unchanged, which implies that the proposed knowledge-driven target retraining requires fewer slots to achieve the performance ceiling when it is enhanced by proposed knowledge-driven meta training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
250
+ page_content=' Table II illustrates the SGCS performance of the proposed method and the existing data augmentation methods [4] for DL-based CSI feedback including noise injection, flipping, 50 100 150 200 250 300 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
251
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
252
+ page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
253
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
254
+ page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
255
+ page_content='8 SGCS None-None None-KAug KMeta-None KMeta-KAug eTypeII Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
256
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
257
+ page_content=' Comparison of SGCS for varying number of seeded UEs � Nue on CDL-C channel, fixing number of slots per UE � Nslot = 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
258
+ page_content=' 10 20 30 40 50 60 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
259
+ page_content='55 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
260
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
261
+ page_content='65 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
262
+ page_content='7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
263
+ page_content='75 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
264
+ page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
265
+ page_content='85 SGCS None-None None-KAug KMeta-None KMeta-KAug eTypeII Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
266
+ page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
267
+ page_content=' Comparison of SGCS for varying number of slots per UE � Nslot on CDL-C channel, fixing number of UEs � Nue = 300.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
268
+ page_content=' cyclic shift, random shift and rotation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
269
+ page_content=' It is observed that the proposed method can obtain 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
270
+ page_content='1953 SGCS performance gain in comparison to none augmantation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
271
+ page_content=' Specifically, the performance gap between proposed method and other com- petitors is at least 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
272
+ page_content='1526, which demonstrates that exploiting communication knowledge effectively bring performance gain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
273
+ page_content=' The link-level block error rate (BLER) performance is presented in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
274
+ page_content=' 6, where omnidirectional and directional antennas is deployed at UE and BS, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
275
+ page_content=' The gap between KMeta-None and None-None proves the performance gain of knowledge-driven meta training phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
276
+ page_content=' The gap be- tween None-KAug and None-None proves the performance gain of knowledge-driven target retraining phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
277
+ page_content=' Since the method of KMeta-Aug outperforms other competitors in terms of BLER, the advantages and application potential of proposed TABLE II COMPARISON OF DIFFERENT AUGMENT SCHEMES Scheme SGCS None 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
278
+ page_content='5977 Noise Injection 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
279
+ page_content='6189 Flipping 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
280
+ page_content='6171 Cyclic Shift 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
281
+ page_content='6404 Random Shift 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
282
+ page_content='6225 Rotation 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
283
+ page_content='6178 Proposed 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
284
+ page_content='7930 Note 1: � Nue = 300 and � Nslot = 10 Note 2: All methods augments to 30k samples, except the flipping which can only augment to 6k samples due to method limitation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
285
+ page_content=' 1 0 1 2 3 4 5 6 SNR (dB) 10-3 10-2 10-1 100 BLER KMeta-KAug KMeta-None None-KAug None-None eTypeII Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
286
+ page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
287
+ page_content=' Link-level BLER performance comparison trained on CDL-C300 for different solutions ( � Nue = 300, � Nslot = 10).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
288
+ page_content=' knowledge-driven approach are well demonstrated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
289
+ page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
290
+ page_content=' CONCLUSION In this paper, we propose a knowledge-driven meta-learning method for CSI feedback, where the meta task environment for meta training is constructed based on the intrinsic knowledge of spatial-frequency feature of CSI eigenvector.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
291
+ page_content=' Initialized by the knowledge-driven meta training phase, the DL model is capable of achieving rapid convergence by retraining on the target task dataset, which is augmented from only a few actually collected seeded data with the assistance of the knowl- edge of statistical feature of wireless channels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
292
+ page_content=' Simulation results demonstrate the superiority of the approach from the perspective of feedback performance and convergence speed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
293
+ page_content=' REFERENCES [1] 3GPP, “3GPP TS 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
294
+ page_content='214 v17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
295
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
296
+ page_content='0 3rd Generation Partnership Project;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
297
+ page_content=' technical specification group radio access network;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
298
+ page_content=' NR;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
299
+ page_content=' physical layer procedures for data (release 17),” Tech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
300
+ page_content=' Rep.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
301
+ page_content=', 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
302
+ page_content=' [2] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
303
+ page_content='-K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
304
+ page_content=' Wen, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
305
+ page_content='-T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
306
+ page_content=' Shih, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
307
+ page_content=' Jin, “Deep learning for massive MIMO CSI feedback,” IEEE Wireless Communications Letters, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
308
+ page_content=' 7, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
309
+ page_content=' 5, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
310
+ page_content=' 748–751, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
311
+ page_content=' [3] X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
312
+ page_content=' Li and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
313
+ page_content=' Wu, “Spatio-temporal representation with deep neural recurrent network in MIMO CSI feedback,” IEEE Wireless Communi- cations Letters, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
314
+ page_content=' 9, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
315
+ page_content=' 5, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
316
+ page_content=' 653–657, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
317
+ page_content=' [4] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
318
+ page_content=' Xiao, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
319
+ page_content=' Wang, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
320
+ page_content=' Li, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
321
+ page_content=' Tian, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
322
+ page_content=' Liu, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
323
+ page_content=' Liu, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
324
+ page_content=' Jin, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
325
+ page_content=' Shen, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
326
+ page_content=' Zhang, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
327
+ page_content=' Yang, “AI enlightens wireless communication: A trans- former backbone for CSI feedback,” arXiv preprint arXiv:2206.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
328
+ page_content='07949, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
329
+ page_content=' [5] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
330
+ page_content=' Guo, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
331
+ page_content='-K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
332
+ page_content=' Wen, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
333
+ page_content=' Jin, “CAnet: Uplink-aided downlink channel acquisition in FDD massive MIMO using deep learning,” IEEE Trans- actions on Communications, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
334
+ page_content=' 70, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
335
+ page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
336
+ page_content=' 199–214, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
337
+ page_content=' [6] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
338
+ page_content=' Xiao, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
339
+ page_content=' Wang, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
340
+ page_content=' Tian, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
341
+ page_content=' Liu, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
342
+ page_content=' Liu, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
343
+ page_content=' Jin, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
344
+ page_content=' Shen, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
345
+ page_content=' Zhang, and N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
346
+ page_content=' Yang, “AI enlightens wireless communication: Analyses, solutions and opportunities on CSI feedback,” China Communications, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
347
+ page_content=' 18, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
348
+ page_content=' 104–116, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
349
+ page_content=' [7] W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
350
+ page_content=' Liu, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
351
+ page_content=' Tian, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
352
+ page_content=' Xiao, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
353
+ page_content=' Jin, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
354
+ page_content=' Liu, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
355
+ page_content=' Shen, “EVCsiNet: Eigenvector-based CSI feedback under 3GPP link-level channels,” IEEE Wireless Communications Letters, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
356
+ page_content=' 10, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
357
+ page_content=' 12, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
358
+ page_content=' 2688–2692, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
359
+ page_content=' [8] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
360
+ page_content=' Zeng, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
361
+ page_content=' Sun, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
362
+ page_content=' Gui, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
363
+ page_content=' Adebisi, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
364
+ page_content=' Ohtsuki, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
365
+ page_content=' Gacanin, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
366
+ page_content=' Sari, “Downlink CSI feedback algorithm with deep transfer learning for FDD massive MIMO systems,” IEEE Transactions on Cognitive Communications and Networking, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
367
+ page_content=' 7, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
368
+ page_content=' 4, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
369
+ page_content=' 1253–1265, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
370
+ page_content=' [9] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
371
+ page_content=' Tolba, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
372
+ page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
373
+ page_content=' Abd El-Malek, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
374
+ page_content=' Abo-Zahhad, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
375
+ page_content=' Elsabrouty, “A meta learner autoencoder for channel state information feedback in massive MIMO systems,” in 2021 28th International Conference on Telecommunications (ICT).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
376
+ page_content=' IEEE, 2021, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
377
+ page_content=' 1–5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
378
+ page_content=' [10] 3GPP, “3GPP TR 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
379
+ page_content='901 v17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
380
+ page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
381
+ page_content='0 3rd Generation Partnership Project;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
382
+ page_content=' technical specification group radio access network;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
383
+ page_content=' study on channel model for frequencies from 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
384
+ page_content='5 to 100 GHz (release 17),” Tech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
385
+ page_content=' Rep.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}
386
+ page_content=', 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/K9FRT4oBgHgl3EQfEDfx/content/2301.13475v1.pdf'}